首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using Cassini images, we examine the faint material along the orbits of Methone, Anthe and Pallene, three small moons that reside between the orbits of Mimas and Enceladus. A continuous ring of material covers the orbit of Pallene; it is visible at extremely high phase angles and appears to be localized vertically to within ±25 km of Pallene's inclined orbit. By contrast, the material associated with Anthe and Methone appears to lie in longitudinally confined arcs. The Methone arc extends over ∼10° in longitude around the satellite's position, while the Anthe arc reaches ∼20° in length. The extents of these arcs are consistent with their confinement by nearby corotation eccentricity resonances with Mimas. Anthe has even been observed to shift in longitude relative to its arc in the expected manner given the predicted librations of the moon.  相似文献   

2.
Aegaeon (Saturn LIII, S/2008 S1) is a small satellite of Saturn that orbits within a bright arc of material near the inner edge of Saturn’s G-ring. This object was observed in 21 images with Cassini’s Narrow-Angle Camera between June 15 (DOY 166), 2007 and February 20 (DOY 051), 2009. If Aegaeon has similar surface scattering properties as other nearby small saturnian satellites (Pallene, Methone and Anthe), then its diameter is approximately 500 m. Orbit models based on numerical integrations of the full equations of motion show that Aegaeon’s orbital motion is strongly influenced by multiple resonances with Mimas. In particular, like the G-ring arc it inhabits, Aegaeon is trapped in the 7:6 corotation eccentricity resonance with Mimas. Aegaeon, Anthe and Methone therefore form a distinctive class of objects in the Saturn system: small moons in corotation eccentricity resonances with Mimas associated with arcs of debris. Comparisons among these different ring-arc systems reveal that Aegaeon’s orbit is closer to the exact resonance than Anthe’s and Methone’s orbits are. This could indicate that Aegaeon has undergone significant orbital evolution via its interactions with the other objects in its arc, which would be consistent with the evidence that Aegaeon’s mass is much smaller relative to the total mass in its arc than Anthe’s and Methone’s masses are.  相似文献   

3.
《Planetary and Space Science》2007,55(14):2042-2044
By considering the finite mass of Fraternite, the dynamic nature of the Adams ring arcs is regarded as caused by the reaction of a test body (a minor arc) through the Lindblad resonance (LR). Assuming the eccentricity of the test body is larger than that of Galatea, this generates several locations along the ring in the neighborhood of Fraternite where the time averaged force on a test body vanishes. These locations appear to correspond to the time dependent configuration of Egalite (2,1), Liberte, and Courage, and seem to be able to account for the dynamics of the arcs. Such a configuration is a dynamic one because the minor arcs are not bounded by the corotation eccentricity resonance (CER) externally imposed by Galatea, but are self-generated by LR reacting to the external fields.  相似文献   

4.
We present delay-Doppler images of Saturn's rings based on radar observations made at Arecibo Observatory between 1999 and 2003, at a wavelength of 12.6 cm and at ring opening angles of 20.1°?|B|?26.7°. The average radar cross-section of the A ring is ∼77% relative to that of the B ring, while a stringent upper limit of 3% is placed on the cross-section of the C ring and 9% on that of the Cassini Division. These results are consistent with those obtained by Ostro et al. [1982, Icarus 49, 367-381] from radar observations at |B|=21.4°, but provide higher resolution maps of the rings' reflectivity profile. The average cross-section of the A and B rings, normalized by their projected unblocked area, is found to have decreased from 1.25±0.31 to 0.74±0.19 as the rings have opened up, while the circular polarization ratio has increased from 0.64±0.06 to 0.77±0.06. The steep decrease in cross-section is at variance with previous radar measurements [Ostro et al., 1980, Icarus 41, 381-388], and neither this nor the polarization variations are easily understood within the framework of either classical, many-particle-thick or monolayer ring models. One possible explanation involves vertical size segregation in the rings, whereby observations at larger elevation angles which see deeper into the rings preferentially see the larger particles concentrated near the rings' mid-plane. These larger particles may be less reflective and/or rougher and thus more depolarizing than the smaller ones. Images from all four years show a strong m=2 azimuthal asymmetry in the reflectivity of the A ring, with an amplitude of ±20% and minima at longitudes of 67±4° and 247±4° from the sub-Earth point. We attribute the asymmetry to the presence of gravitational wakes in the A ring as invoked by Colombo et al. [1976, Nature 264, 344-345] to explain the similar asymmetry long seen at optical wavelengths. A simple radiative transfer model suggests that the enhancement of the azimuthal asymmetry in the radar images compared with that seen at optical wavelengths is due to the forward-scattering behavior of icy ring particles at decimeter wavelengths. A much weaker azimuthal asymmetry with a similar orientation may be present in the B ring.  相似文献   

5.
Saturn’s narrow F ring is flanked by two nearby small satellites, Prometheus and Pandora, discovered in Voyager images taken in 1980 and 1981 (Synnott et al., 1983, Icarus 53, 156-158). Observations with the Hubble Space Telescope (HST) during the ring plane crossings (RPX) of 1995 led to the unexpected finding that Prometheus was ∼19° behind its predicted orbital longitude, based on the Synnott et al. (1983) Voyager ephemeris (Bosh and Rivkin, 1996 Science 272, 518-521; Nicholson et al., 1996, Science 272, 509-515). Whereas Pandora was at its predicted location in August 1995, McGhee (2000, Ph.D. thesis, Cornell University) found from the May and November 1995 RPX data that Pandora also deviates from the Synnott et al. (1983) Voyager ephemeris. Using archival HST data from 1994, previously unexamined RPX images, and a large series of targeted WFPC2 observations between 1996 and 2002, we have determined highly accurate sky-plane positions for Prometheus, Pandora, and nine other satellites found in our images. We compare the Prometheus and Pandora measurements to the predictions of substantially revised and improved ephemerides for the two satellites based on an extensive analysis of a large set of Voyager images (Murray et al., 2000, Bull. Am. Astron. Soc. 32, 1090; Evans, 2001 Ph.D. thesis, Queen Mary College). From December 1994 to December 2000, Prometheus’ orbital longitude lag was changing by −0.71° year−1 relative to the new Voyager ephemeris. In contrast, Pandora is ahead of the revised Voyager prediction. From 1994 to 2000, its longitude offset changed by +0.44° year−1, showing in addition an ∼585 day oscillatory component with amplitude ΔλCR0 = 0.65 ± 0.07° whose phase matches the expected perturbation due to the nearby 3:2 corotation resonance with Mimas, modulated by the 71-year libration in the longitude of Mimas due to its 4:2 resonance with Tethys. We determine orbital elements for freely precessing equatorial orbits from fits to the 1994-2000 HST observations, from which we conclude that Prometheus’ semimajor axis was 0.31 km larger, and Pandora’s was 0.20 km smaller, than during the Voyager epoch. Subsequent observations in 2001-2002 reveal a new twist in the meanderings of these satellites: Prometheus’ mean motion changed suddenly by an additional −0.77° year−1, equivalent to a further increase in semimajor axis of 0.33 km, at the same time that Pandora’s mean motion changed by +0.92° year−1, corresponding to a change of −0.42 km in its semimajor axis. There is an apparent anticorrelation of the motions of these two moons seen in the 2001-2002 observations, as well as over the 20-year interval since the Voyager epoch. This suggests a common origin for their wanderings, perhaps through direct exchange of energy between the satellites as the result of resonances, possibly involving the F ring.  相似文献   

6.
S.G. Gibbard  I. de Pater 《Icarus》2005,174(1):253-262
We present the first Earth-based images of several of the individual faint rings of Uranus, as observed with the adaptive optics system on the W.M. Keck II telescope on four consecutive days in October 2003. We derive reflectivities based on multiple measurements of 8 minor moons of Uranus as well as Ariel and Miranda in filters centered at wavelengths of 1.25(J), 1.63(H), and 2.1(Kp) μm. These observations have a phase angle of 1.84°-1.96°. We find that the small satellites are somewhat less bright than in observations made by the HST at smaller phase angles, confirming an opposition surge effect. We calculate albedoes for the ring groups and for each ring separately. We find that the ε ring particles, as well as the particles in the three other ring groups, have albedoes near 0.043 at these phase angles. The equivalent depths of some of the individual rings are different than predicted based upon ring widths from occultation measurements (assuming a constant particle ring brightness); in particular the γ ring is fainter and the η ring brighter than expected. Our results indicate that q, the ratio of ε ring intensity at apoapse vs. periapse, is close to 3.2±0.16. This agrees well with a model that has a filling factor for the ε ring of 0.06 (Karkoschka, 2001, Icarus 151, 78-83). We also determine values of the north to south brightness ratio for the individual rings and find that in most cases they are close to unity.  相似文献   

7.
Cassini's Imaging Science Subsystem (ISS) instrument took nearly 1200 images of the Jupiter ring system during the spacecraft's 6-month encounter with Jupiter (Porco et al., 2003, Science 299, 1541-1547). These observations constitute the most complete data set of the ring taken by a single instrument, both in phase angle (0.5°-120° at seven angles) and wavelength (0.45-0.93 μm through eight filters). The main ring was detected in all targeted exposures; the halo and gossamer rings were too faint to be detected above the planet's stray light. The optical depth and radial profile of the main ring are consistent with previous observations. No broad asymmetries within the ring were seen; we did identify possible hints of 1000 km-scale azimuthal clumps within the ring. Cassini observations taken within 0.02° of the ring plane place an upper limit on the ring's full thickness of 80 km at a phase angle of 64°. We have combined the Cassini ISS and VIMS (Visible and Infrared Mapping Spectrometer) observations with those from Voyager, HST (Hubble Space Telescope), Keck, Galileo, Palomar, and IRTF (Infrared Telescope Facility). We have fit the entire suite of data using a photometric model that includes microscopic silicate dust grains as well as larger, long-lived ‘parent bodies’ that engender this dust. Our best-fit model to all the data indicates an optical depth of small particles of τs=4.7×10−6 and large bodies τl=1.3×10−6. The dust's cross-sectional area peaks near 15 μm. The data are fit significantly better using non-spherical rather than spherical dust grains. The parent bodies themselves must be very red from 0.4-2.5 μm, and may have absorption features near 0.8 and 2.2 μm.  相似文献   

8.
We argue that inner rings in barred spiral galaxies are associated with specific 2D and 3D families of periodic orbits located just beyond the end of the bar. These are families located between the inner radial ultraharmonic 4 : 1 resonance and corotation. They are found in the upper part of a type-2 gap of the x1 characteristic, and can account for the observed ring morphologies without any help from families of the x1-tree. Due to the evolution of the stability of all these families, the ring shapes that are favoured are mainly ovals, as well as polygons with 'corners' on the minor axis, on the sides of the bar. On the other hand, pentagonal rings, or rings of the NGC 7020-type hexagon, should be less probable. The orbits that make the rings belong in their vast majority to 3D families of periodic orbits and orbits trapped around them.  相似文献   

9.
Many barred disc galaxies show rings of gas clouds and young stars thought to be in periodic orbits near the two-fold inner and outer Lindblad resonances (ILR and OLR) plus a four-fold ultraharmonic resonance (UHR) of the turning bar with oscillations about the disc orbital motion. To confirm and extend simulations by Schwarz and by Byrd et al. of resonance ring formation, we present an analytical formulation of the clouds' orbital motion which includes dissipative damping of oscillations relative to the local interstellar medium plus the rotation curve, bar pattern speed, and strength. Observed ring morphology matches our plots of periodic orbits where the density is enhanced but clouds do not collide violently. Pairs of 'outer rings' bracket the OLR. Dimpled outer rings like that of ESO 507-16 can be matched by plots with strong bars. Slightly dimpled outer rings like that of ESO 509-98 can be matched by weak bar plots. For flat rotation curves, a pair of two-fold rings bracket the ILR; the smaller can be identified with the tiny 'nuclear rings'. We find narrow UHR rings just outside this pair as well as just inside the OLR pair. We confirm the identification of the larger ILR ring and the inner UHR ring with 'inner rings'. Disagreeing with the common identification, we associate the dimpled outer rings with the UHR just inside the OLR. See ESO 507-16 as an example. We predict that damping can misalign the ILR and OLR rings relative to the bar as seen in our match to ESO 507-16. We find that for weak bars, if the linearly rising portion of the rotation curve is a significant fraction of the corotation radius, nuclear and inner rings are absent with outer rings still present. We show this in a match to ESO 509-98. Success of the matches to ESO 507-16 and 509-98 shows how the analytic formulation can be used to estimate disc orientation and pattern speed if rotation curve observations are available.  相似文献   

10.
The theory discussed in the present paper is a solar nebula-type theory which assumes the initial existence of a big disk-shaped gas cloud in rotational motion around the Sun. At the outer edge of the gas cloud there is a steady loss of angular momentum, which is mainly caused by the diffusion induced by turbulence and shock waves. This leads to the formation of a doughnutshaped gas ring at the edge of the cloud, outside of which there is plasma in a state of partial corotation. The gas ring is then slowly shifted towards the Sun, whereby the grains of solid matter within the gas cloud are also transported and collected within the gas torus. During the contraction process the following two situations arise: First, due to the small amount of friction, the angular momentum of the inner part of the ring rapidly exceeds that of the outer part. Second, the angle between the orbits of the inner and outer part of the gas ring increases gradually. When, during contraction, a certain distance is covered, the gas ring turns over, i.e. there is a sudden interchange of the inner and outer parts of the gas ring, where two adjacent rings of solid matter (jet streams) are formed. Immediately after the turn-over process the speed of contraction is at first drastically reduced, but then the gas ring is shifted once more towards the Sun. This process is then repeated periodically. The planets originate from the outer rings of solid matter, which contain much more matter than their adjacent inner rings. The inclination between the inner and outer rings is roughly 5°. In particular, Mercury, the Moon, Titan as well as Triton result from the innermost rings of matter. Having gone through the formation process, most of the planets acquire a rotating gas disk out of which the regular satellites are also created by the same periodic contraction process (hetegonic principle). This theory is the first that can explain all noteworthy facts about our planetary system and the satellite systems in a qualitative yet conclusive way.  相似文献   

11.
In the present poster we suggest that some of the structures observed in the envelopes of planetary nebulae are caused by the interaction of central star wind and radiation with preplanetary nebula debris: planets, moons, minor objects and ring and ring arcs.Recently considerable amount of planetary material has been reported to exist around solar type stars, this debris could be evaporated during the envelope ejection and alter the chemical abundance and produce some of the envelope inhomogeneities.If there are massive enough rings of material surrounding the progenitor and planets in their vicinity, arc rings could be formed. If the rings are viewed pole on when the envelope is detached from the central star, it will interact with the arc ring material and produce ansae and pedal and garden-hose-shape structures observed in some planetaries.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

12.
We present a photometric model of the rings of Saturn which includes the main rings and an F ring, inclined to the main rings, with a Gaussian vertical profile of optical depth. This model reproduces the asymmetry in brightness between the east and west ansae of the rings of Saturn that was observed by the Hubble Space Telescope (HST) within a few hours after the Earth ring-plane crossing (RPX) of 10 August 1995. The model shows that during this observation the inclined F ring unevenly blocked the east and west ansae of the main rings. The brightness asymmetry produced by the model is highly sensitive to the vertical thickness and radial optical depth of the F ring. The F-ring model that best matches the observations has a vertical full width at half maximum of 13 ± 7 km and an equivalent depth of 10 ± 4 km. The model also reproduces the shape of the HST profiles of ring brightness vs. distance from Saturn, both before and after the time of ring-plane crossing. Smaller asymmetries observed before the RPX, when the Earth was on the dark side of the rings, cannot be explained by blocking of the main rings by the F ring or vice versa and are probably instead due to the intrinsic longitudinal variation exhibited by the F ring.  相似文献   

13.
We present multi-instrument observations of ultra low frequency (ULF) wave activity from the dawn flank magnetosphere during the period 12:00–13:30 UT on the 16 December 2003. Optical, magnetic and riometer measurements from the Churchill line meridian in the Canadian sector are presented which demonstrate the presence of multiple discrete auroral arc structures accompanied by periodic magnetic and riometer absorption perturbations in the Pc5 (150–600 s) ULF band. Clear polewards propagation is demonstrated in all the instrument data sets, the magnetic signals showing most clearly the amplitude and phase characteristics consistent with discrete frequency field line resonances (FLRs) on closed field lines. Two discrete frequency field line resonant signals are apparent, at 1.8 and 3.0 mHz which resonate at approximately the same latitude. We explain this via the calculation of the Alfvén continuum, and show that both frequencies may be resonant in the same latitudinal region within instrumental resolution. The meridian scanning photometer (MSP) observations from polewards of the magnetometer determined resonant latitudes show evidence of low intensity (∼200 R) poleward moving discrete arcs related to the ULF waves. Interestingly the MSP observations demonstrate poleward phase propagation with variable rates across the field of view; faster apparent polewards phase propagation being seen at higher latitudes. We demonstrate that the complicated “braided” phase of the arcs can be explained via the precipitation resulting from the superposition of two discrete FLRs. Furthermore, we characterise the ≳25 keV energetic electron precipitation in the region of the FLRs and the arc structures via periodic D-region absorption. In this way, we link the magnetic and both soft and energetic particle precipitation signatures of FLRs together for the first time. Our results demonstrate that riometer absorption can be used to characterise FLRs, however, this is only generally possible at lower L-shells where energetic electrons in the ring current overlap with the FLR fields in the equatorial plane.  相似文献   

14.
Radar and rocket electric field observations of auroral arcs have earlier been used to identify essentially four different arc types, namely anticorrelation and correlation arcs (with, respectively, decreased and increased arc-associated field) and asymmetric and reversal arcs. In this paper, rocket double probe and supplementary observations from the literature, obtained under various geophysical conditions, are used to organize the different arc types on a physical rather than morphological basis. This classification is based on the relative influence on the electric field pattern from the two current continuity mechanisms, polarization electric fields and Birkeland currents. In this context the tangential electric field plays an essential role and it is thus important that it can be obtained with both high accuracy and resolution. In situ observations by sounding rockets are shown to be better suited for this specific task than monostatic radar observations. Depending on the dominating mechanism, estimated quantitatively for a number of arc-crossings, the different arc types have been grouped into the following main categories: Polarization arcs, Birkeland current arcs and Combination arcs. Finally the high altitude potential distributions corresponding to some of the different arc types are presented.  相似文献   

15.
The two major factors contributing to the opposition brightening of Saturn’s rings are (i) the intrinsic brightening of particles due to coherent backscattering and/or shadow hiding on their surfaces, and (ii) the reduced interparticle shadowing when the solar phase angle α → 0°. We utilize the extensive set of Hubble Space Telescope observations (Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 199–223) for different elevation angles B and wavelengths λ to disentangle these contributions. We assume that the intrinsic contribution is independent of B, so that any B dependence of the phase curves is due to interparticle shadowing, which must also act similarly for all λ’s. Our study complements that of Poulet et al. (Poulet, F., Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 224), who used a subset of data for a single B ∼ 10°, and the French et al. (French, R.G., Verbiscer, A., Salo, H., McGhee, C.A., Dones, L. [2007b] PASP 119, 623–642) study for the B ∼ 23° data set that included exact opposition. We construct a grid of dynamical/photometric simulation models, with the method of Salo and Karjalainen (Salo and Karjalainen [2003]. Icarus 164, 428–460), and use these simulations to fit the elevation-dependent part of opposition brightening. Eliminating the modeled interparticle component yields the intrinsic contribution to the opposition effect: for the B and A rings it is almost entirely due to coherent backscattering; for the C ring, an intraparticle shadow hiding contribution may also be present.Based on our simulations, the width of the interparticle shadowing effect is roughly proportional to B. This follows from the observation that as B decreases, the scattering is primarily from the rarefied low filling factor upper ring layers, whereas at larger B’s the dense inner parts are visible. Vertical segregation of particle sizes further enhances this effect. The elevation angle dependence of interparticle shadowing also explains most of the B ring tilt effect (the increase of brightness with elevation). From comparison of the magnitude of the tilt effect at different filters, we show that multiple scattering can account for at most a 10% brightness increase as B → 26°, whereas the remaining 20% brightening is due to a variable degree of interparticle shadowing. The negative tilt effect of the middle A ring is well explained by the the same self-gravity wake models that account for the observed A ring azimuthal brightness asymmetry (Salo, H., Karjalainen, R., French, R.G. [2004]. Icarus 170, 70–90; French, R.G., Salo, H., McGhee, C.A., Dones, L. [2007]. Icarus 189, 493–522).  相似文献   

16.
We present a second epoch of Very Large Array Saturn observations taken in February 1997 spanning wavelengths 1.3-21 cm. These observations complement earlier observations at Saturn's autumnal equinox in November 1995. In this epoch, however, we generally have better signal-to-noise ratios and the ring inclination of the present observations was −5.0°, whereas the previous observations were made with ring inclination +2.7°.Our observations confirm the latitudinal structure on the saturnian disk as seen at 2.0, 3.6, and 6.1 cm. We also see some latitudinal structure at 1.3 cm for the first time. The details of this structure have changed dramatically from those reported by I. de Pater and J. R. Dickel (1991, Icarus94, 474-492) for the 1980s and are consistent with those seen in F. van der Tak et al. (1999, Icarus142, 125-147). The most prominent features are a pair of brightness enhancements just inside the edges of the Equatorial Zone.The rings do not show the east-west asymmetry seen in our previous epoch, perhaps indicative of a viewing angle effect on the scattering properties of the rings. The radial trend in brightness in the ansae is generally consistent with that expected from optical depth variations and increasing distance from the source of scattered light. In particular the increased optical depth towards the center of the C ring is evident. Azimuthal variation in brightness in the C ring shows the forward scattering expected of Mie scattering. By contrast, the A and B rings show little or no azimuthal variation.We present Monte Carlo simulations of the ring brightness under the assumptions of isotropic and Mie scattering. These are the first synthetic maps of Saturn which can be directly compared to the images we obtained. Neither model fits all the data well. However, a hybrid model combining isotropic and Mie scattering does fit well. We interpret the consistency with isotropic scattering in the outer rings as an indication that near-field effects may be important. This in turn implies geometrically thin rings, as predicted by dynamical simulations of these rings.  相似文献   

17.
We present a new Very Large Array (VLA) image of Saturn, made from data taken in October 1998 at a wavelength of λ3.6 cm. The moderate ring opening angle (B≈15°) allows us to explore direct transmission of microwave photons through the A and C rings. We find a strong asymmetry of photons transmitted through the A ring, but not in the C ring, a new diagnostic of wake structure in the ring particles. We also find a weak asymmetry between east and west for the far side of the ansae. To facilitate quantitative comparison between dynamic models of the A ring and radio observations, we extend our Monte Carlo radiative transfer code (described in Dunn et al., 2002, Icarus 160, 132-160) to include idealized wakes. We show the idealized model can reproduce the properties of dynamic simulations in directly transmitted light. We examine the model behavior in directly transmitted and scattered light over a range of physical and geometric wake parameters. Finally, we present a wake model with a plausible set of physical parameters that quantitatively reproduces the observed intensity and asymmetry of the A ring both across the planet and in the ansae.  相似文献   

18.
The Io-controlled radio arcs are emissions in the decametric radio range which appear arc shaped in the time-frequency plane. Their occurrence is controlled by Io's position, so it has been for long inferred that they are powered by the Io-Jupiter electrodynamic interaction. Their frequency ranges correspond to the electron cyclotron frequencies along the Io Flux tube, so they are expected to be generated by cyclotron maser instability (CMI). The arc shape was proposed to be a consequence of the strong anisotropy of the decametric radio emissions beaming, combined with the topology of the magnetic field in the source and the observation geometry. Recent papers succeeded at reproducing the morphologies of a few typical radio arcs by modeling in three dimensions the observation geometry, using the best available magnetic field model and a beaming angle variation consistent with a loss-cone driven CMI. In the continuation of these studies, we present here the systematic modeling of a larger number of observations of the radio arcs emitted in Jupiter's southern hemisphere (including multiple arcs or arcs exhibiting abrupt changes of shape), which permits to obtain a statistical determination of the emitting field line localization (lead angle) relative to the instantaneous Io field line, and of the emitting particle velocities or energies. Variations of these parameters relative to Io's longitude are also measured and compared to the location of the UV footprints of the Io-Jupiter interaction. It is shown that the data are better organized in a reference frame attached to the UV spot resulting from the main Alfvén wing resulting from the Io-Jupiter interaction. It is proposed that the radio arcs are related to the first reflected Alfvén wing rather than to the main one.  相似文献   

19.
Jiang & Yeh proposed gas-drag-induced resonant capture as a mechanism able to explain the dominant 3:2 resonance observed in the trans-Neptunian belt. Using a model of a disc–star–planet system they concluded that gaseous drag in a protoplanetary disc can trap trans-Neptunian object (TNO) embryos into the 3:2 resonance rather easily although it could not trap objects into the 2:1 resonance. Here we further investigate this scenario using numerical simulations within the context of the planar restricted four-body problem by including both present-day Uranus and Neptune. Our results show that mean motion and corotation resonances are possible and trapping into both the 3:2 and 2:1 resonances as well as other resonances is observed. The associated corotation centres may easily form larger planetesimals from smaller ones. Corotation resonances evolve into pure Lindblad resonances in a time-scale of 0.5 Myr. The non-linear corotation and mean motion resonances produced are very size selective. The 3:2 resonance is dominant for submetric particles but for larger particles the 2:1 resonance is stronger. In summary, our calculations show that confined chaotic motion around the resonances not only increases trapping efficiency but also the orbital eccentricities of the trapped material, modifying the relative abundance of trapped particles in different resonances. If we assume a more compact planetary system, instead of using the present-day values of the orbital elements of Uranus and Neptune, our results remain largely unchanged.  相似文献   

20.
The discovery of a molecular oxygen atmosphere around Saturn's rings has important implications for the electrodynamics of the ring system. Its existence was inferred from the Cassini in situ detection of molecular oxygen ions above the rings during Saturn Orbit Insertion in 2004. Molecular oxygen is difficult to observe remotely, and theoretical estimates have yielded only a lower limit (Nn?1013 cm−2) to the O2 column density. Comparison with observations has previously concerned matching ion densities at spacecraft altitudes far larger than the scale height of the neutral atmosphere. This is further complicated by charged particle propagation effects in Saturn's offset magnetic field. In this study we adopt a complementary approach, by focusing on bulk atmospheric properties and using additional aspects of the Cassini observations to place an upper limit on the column density. We develop a simple analytic model of the molecular atmosphere and its photo-ionization and dissociation products, with Nn a free parameter. Heating of the neutrals by viscous stirring, cooling by collisions with the rings, and torquing by collisions with pickup ions are all included in the model. We limit the neutral scale height to h?3000 km using the INMS neutral density nondetection over the A ring. A first upper limit to the neutral column is derived by using our model to reassess O2 production and loss rates. Two further limits are then obtained from Cassini observations: corotation of the observed ions with the planet implies that the height-integrated conductivity of the ring atmosphere is less than that of Saturn's ionosphere; and the nondetection of fluorescent atomic oxygen over the rings constrains the molecular column from which it is produced via photo-dissociation. These latter limits are independent of production and loss rates and are only weakly dependent on temperature. From the three independent methods described, we obtain similar limits: Nn?2×1015 cm−2. The mean free path for collisions between neutrals thus cannot be very much smaller than the scale height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号