首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Magnetic field measurements, taken by the magnetometer experiment (MAM) on board the German Equator-S spacecraft, have been used to identify and categorise 131 crossings of the dawn-side magnetopause at low latitude, providing unusual, long duration coverage of the adjacent magnetospheric regions and near magnetosheath. The crossings occurred on 31 orbits, providing unbiased coverage over the full range of local magnetic shear from 06:00 to 10:40 LT. Apogee extent places the spacecraft in conditions associated with intermediate, rather than low, solar wind dynamic pressure, as it processes into the flank region. The apogee of the spacecraft remains close to the magnetopause for mean solar wind pressure. The occurrence of the magnetopause encounters are summarised and are found to compare well with predicted boundary location, where solar wind conditions are known. Most scale with solar wind pressure. Magnetopause shape is also documented and we find that the magnetopause orientation is consistently sunward of a model boundary and is not accounted for by IMF or local magnetic shear conditions. A number of well-established crossings, particularly those at high magnetic shear, or exhibiting unusually high-pressure states, were observed and have been analysed for their boundary characteristics and some details of their boundary and near magnetosheath properties are discussed. Of particular note are the occurrence of mirror-like signatures in the adjacent magnetosheath during a significant fraction of the encounters and a high number of multiple crossings over a long time period. The latter is facilitated by the spacecraft orbit which is designed to remain in the near magnetosheath for average solar wind pressure. For most encounters, a well-ordered, tangential (draped) magnetosheath field is observed and there is little evidence of large deviations in local boundary orientations. Two passes corresponding to close conjunctions of the Geotail spacecraft are analysed to confirm boundary orientation and motion. These further show evidence of an anti-sunward moving depression on the magnetopause (which is much smaller at Equator-S). The Tsyganenko model field is used routinely to assist in categorising the crossings and some comparison of models is carried out. We note that typically the T87 model fits the data better than the T89 model during conditions of low to intermediate Kp index near the magnetopause and also near the dawn-side tail current sheet in the dawnside region.  相似文献   

2.
We present data from conjugate SuperDARN radars describing the high-latitude ionospheres response to changes in the direction of IMF By during a period of steady IMF Bz southward and Bx positive. During this interval, the radars were operating in a special mode which gave high-time resolution data (30 s sampling period) on three adjacent beams with a full scan every 3 min. The location of the radars around magnetic local noon at the time of the event allowed detailed observations of the variations in the ionospheric convection patterns close to the cusp region as IMF By varied. A significant time delay was observed in the ionospheric response to the IMF By changes between the two hemispheres. This is explained as being partially a consequence of the location of the dominant merging region on the magnetopause, which is 8/12RE closer to the northern ionosphere than to the southern ionosphere (along the magnetic field line) due to the dipole tilt of the magnetosphere and the orientation of the IMF. This interpretation supports the anti-parallel merging hypothesis and highlights the importance of the IMF Bx component in solar wind-magnetosphere coupling.  相似文献   

3.
We compare numerical results obtained from a steady-state MHD model of solar wind flow past the terrestrial magnetosphere with documented observations made by the AMPTE/IRM spacecraft on 24 October, 1985, during an inbound crossing of the magnetosheath. Observations indicate that steady conditions prevailed during this about 4 hour-long crossing. The magnetic shear at spacecraft entry into the magnetosphere was 15°. A steady density decrease and a concomitant magnetic field pile-up were observed during the 40 min interval just preceding the magnetopause crossing. In this plasma depletion layer (1) the plasma beta dropped to values below unity; (2) the flow speed tangential to the magnetopause was enhanced; and (3) the local magnetic field and velocity vectors became increasingly more orthogonal to each other as the magnetopause was approached (Phan et al., 1994). We model parameter variations along a spacecraft orbit approximating that of AMPTE/IRM, which was at slightly southern GSE latitudes and about 1.5 h postnoon Local Time. We model the magnetopause as a tangential discontinuity, as suggested by the observations, and take as input solar wind parameters those measured by AMPTE/IRM just prior to its bow shock crossing. We find that computed field and plasma profiles across the magnetosheath and plasma depletion layer match all observations closely. Theoretical predictions on stagnation line flow near this low-shear magnetopause are confirmed by the experimental findings. Our theory does not give, and the data on this pass do not show, any localized density enhancements in the inner magnetosheath region just outside the plasma depletion layer.  相似文献   

4.
We study an interval of 56 h on January 16 to 18, 1995, during which the GEOTAIL spacecraft traversed the duskside magnetosheath from X ≅ −15 to −40 RE and the EPIC/ICS and EPIC/STICS sensors sporadically detected tens of energetic particle bursts. This interval coincides with the expansion and growth of a great geomagnetic storm. The flux bursts are strongly dependent on the magnetic field orientation. They switch on whenever the Bz component approaches zero (Bz ≅ 0 nT). We strongly suggest a magnetospheric origin for the energetic ions and electrons streaming along these “exodus channels”. The time profiles for energetic protons and “tracer” O+ ions are nearly identical, which suggests a common source. We suggest that the particles leak out of the magnetosphere all the time and that when the magnetosheath magnetic field connects the spacecraft to the magnetotail, they stream away to be observed by the GEOTAIL sensors. The energetic electron fluxes are not observed as commonly as the ions, indicating that their source is more limited in extent. In one case study the magnetosheath magnetic field lines are draped around the magnetopause within the YZ plane and a dispersed structure for peak fluxes of different species is detected and interpreted as evidence for energetic electrons leaking out from the dawn LLBL and then being channelled along the draped magnetic field lines over the magnetopause. Protons leak from the equatorial dusk LLBL and this spatial differentiation between electron and proton sources results in the observed dispersion. A gradient of energetic proton intensities toward the ZGSM= 0 plane is inferred. There is a permanent layer of energetic particles adjacent to the magnetosheath during this interval in which the dominant component of the magnetic field was Bz.  相似文献   

5.
Summary Magnetic field structures at great distances from the Sun have been analyzed qualitatively for a simple vacuum reconnection model of the interplanetary and interstellar magnetic field. In dependence on the mutual orientation of the main solar dipole s and the local interstellar fieldB 0 , either an open or closed configuration of the large-scale field is formed. For(s B 0 )>0, the field lines are represented by a system of magnetic lines open towards interstellar space. In the case of(s B 0 )<0 there exist two zero-points and a separating surface below the heliopause separating the open lines of the interstellar field from the closed lines of the interplanetary field. The magnetic field configuration is characterized by a certain asymmetry, which is considered for(s B 0 )=0.  相似文献   

6.
We analyze the dependence of the magnitude of the magnetic field, its three components, and the clock angle in the magnetosheath just in front of the magnetopause on the same values in the solar wind before a shock wave using the data of the THEMIS experiment. We take into account the time delay of the solar wind arrival at the subsolar point of the magnetopause. We obtain dependencies of the components of the magnetic field and the clock angle at the magnetopause on the corresponding quantities in the solar wind for different averaging intervals. We point to the events for which the direction of the magnetic field at the magnetopause is highly different from the direction of the magnetic field in the solar wind up to the sign change.  相似文献   

7.
Radio waves undergo angular scattering when they propagate through a plasma with fluctuating density. We show how the angular scattering coefficient can be calculated as a function of the frequency spectrum of the local density fluctuations. In the Earths magnetosheath, the ISEE 1–2 propagation experiment measured the spectral power of the density fluctuations for periods in the range 300 to 1 s, which produce most of the scattering. The resultant local angular scattering coefficient can then be calculated for the first time with realistic density fluctuation spectra, which are neither Gaussian nor power laws. We present results on the variation of the local angular scattering coefficient during two crossings of the dayside magnetosheath, from the quasi-perpendicular bow shock to the magnetopause. For a radio wave at twice the local electron plasma frequency, the scattering coefficient in the major part of the magnetosheath is b(2fp) 0.5–4 × 10–9 rad2/m. The scattering coefficient is about ten times stronger in a thin sheet (0.1 to IRE) just downstream of the shock ramp, and close to the magnetopause.  相似文献   

8.
The terrestrial magnetosheath contains a rich variety of low-frequency ( proton gyrofrequency) fluctuations. Kinetic and fluid-like processes at the bow shock, within the magnetosheath plasma, and at the magnetopause all provide sources of wave energy. The dominance of kinetic features such as temperature anisotropies, coupled with the high- conditions, complicates the wave dispersion and variety of instabilities to the point where mode identification is difficult. We review here the observed fluctuations and attempts to identify the dominant modes, along with the identification tools. Alfvén/ion-cyclotron and mirror modes are generated by T/T 1 temperature anisotropies and dominate when the plasma is low or high, respectively. Slow modes may also be present within a transition layer close to the subsolar magnetopause, although they are expected to suffer strong damping. All mode identifications are based on linearized theory in a homogeneous plasma and there are clear indications, in both the data and in numerical simulations, that nonlinearity and/or inhomogeneity modify even the most basic aspects of some modes. Additionally, the determination of the wave vector remains an outstanding observational issue which, perhaps, the Cluster mission will overcome.  相似文献   

9.
We present for the first time a statistical study of 50 keV ion events of a magnetospheric origin upstream from Earths bow shock. The statistical analysis of the 50–220 keV ion events observed by the IMP-8 spacecraft shows: (1) a dawn-dusk asymmetry in ion distributions, with most events and lower intensities upstream from the quasi-parallel pre-dawn side (4 LT-6 LT) of the bow shock, (2) highest ion fluxes upstream from the nose/dusk side of the bow shock under an almost radial interplanetary magnetic field (IMF) configuration, and (3) a positive correlation of the ion intensities with the solar wind speed and the index of geomagnetic index Kp, with an average solar wind speed as high as 620 km s–1 and values of the index Kp 2. The statistical results are consistent with (1) preferential leakage of 50 keV magnetospheric ions from the dusk magnetopause, (2) nearly scatter free motion of 50 keV ions within the magnetosheath, and (3) final escape of magnetospheric ions from the quasi-parallel dawn side of the bow shock. An additional statistical analysis of higher energy (290–500 keV) upstream ion events also shows a dawn-dusk asymmetry in the occurrence frequency of these events, with the occurrence frequency ranging between 16%-34% in the upstream region.  相似文献   

10.
Based on the magnetopause observations near the Earth by the Prognoz/Interball satellites in 1972–2000, the empirical model of this boundary has been proposed, and the magnetopause behavior at different parameters of the oncoming solar wind has been studied. For the first time, it has been detected that the Earth’s magnetopause is compressed by ∼5% in the direction perpendicular to the plane including the vectors of the solar wind velocity and IMF. At the same time, any dependence of the subsolar magnetopause position on the IMF B z component has not been revealed in the Progrnoz/Interball data. The proposed magnetopause model can be used to model the position and shape of the near-Earth bow shock.  相似文献   

11.
Volume currents in the magnetosheath region are calculated within the framework of a new analytical model. Magnetic field structure in the region is found, satisfying boundary conditions on the bow shock and the magnetopause, and then volume currents are calculated using the Maxwell equation. Surface bow shock and magnetopause currents are calculated, too. Free parameters of the model are interplanetary magnetic field, Mach number of the solar wind flow, distances to the bow shock and to the magnetopause, and field compression at the magnetopause.  相似文献   

12.
In this paper, the correlation coefficient between the ion fluxes in the solar wind and the magnetosheath is analyzed with the use of data of two satellites of the THEMIS mission and the THEMIS/Spektr-R satellites obtained in 2008 and 2011?2014, respectively. We have distinguished the conditions in which a high level of correlation between the measurements in the solar wind and the magnetosheath is observed, i.e., the correlation coefficient exceeds 0.7. As key factors, we consider both direct parameters of the solar wind, such as the density, the magnetic field magnitude, the magnetosonic Mach number, and the ratio β of the thermal pressure to the magnetic, and a more general factor—the type of large-scale structure of the solar wind. In addition, the effect of the satellite location in the magnetosheath relative to its boundaries—the bow shock and the magnetopause—on the correlation level is considered. It has been shown that, in roughly one third of cases, the plasma structures of the solar wind undergo a strong modification at the bow shock and in the magnetosheath, which results in a low correlation level corresponding to a correlation coefficient of less than 0.5; a high correlation level is observed in half of cases, i.e., the plasma structures are weakly disturbed. It has been determined that (1) the low correlation level in the magnetosheath behind quasi-perpendicular bow shock is more often observed near the magnetopause than in region just behind the bow shock, (2) the probability of observations of a high correlation level is independent of the profile shape of the quasi-perpendicular bow shock, and (3) the high correlation is more probable for the events corresponding to the solar wind of the Corotating Interaction Region (CIR) type than for those with the other solar wind types observed in the considered period.  相似文献   

13.
Using the empirical magnetic field model dependent on the Dst index and solar wind dynamic pressure, we calculated the behaviour of the contour B = Bs in the equatorial plane of the magnetosphere where Bs is the magnetic field in the subsolar point at the magnetopause. The inner domain of the magnetosphere outlined by this contour contains the bulk of geomag-netically trapped particles. During quiet time the boundary of the inner magnetosphere passes at the distance ∼10RE at noon and at ∼7RE at midnight. During very intense storms this distance can be reduced to 4–5 RE for all MLT. The calculation results agree well with the satellite measurements of the magneto-pause location during storms. The ionospheric projection of the B = Bs contour calculated with the Euler potential technique is close to the equatorward edge of the auroral oval.  相似文献   

14.
The Toulouse electron spectrometer flown on the Russian project INTERBALL-Tail performs electron measurements from 10 to 26 000 eV over a 4 solid angle in a satellite rotation period. The INTERBALL-Tail probe was launched on 3 August 1995 together with a subsatellite into a 65° inclination orbit with an apogee of about 30 RE. The INTERBALL mission also includes a polar spacecraft launched in August 1996 for correlated studies of the outer magnetosphere and of the auroral regions. We present new observations concerning the low-latitude boundary layers (LLBL) of the magnetosphere obtained near the dawn magnetic meridian. LLBL are encountered at the interface between two plasma regimes, the magnetosheath and the dayside extension of the plasma sheet. Unexpectedly, the radial extent of the region where LLBL electrons can be sporadically detected as plasma clouds can reach up to 5 RE inside the magnetopause. The LLBL core electrons have an average energy of the order of 100 eV and are systematically field-aligned and counterstreaming. As a trend, the temperature of the LLBL electrons increases with decreasing distance to Earth. Along the satellite orbit, the apparent time of occurrence of LLBL electrons can vary from about 5 to 20 min from one pass to another. An initial first comparison between electron-and magnetic-field measurements indicates that the LLBL clouds coincide with a strong increase in the magnetic field (by up to a factor of 2). The resulting strong magnetic field gradient can explain why the plasma-sheet electron flux in the keV range is strongly depressed in LLBL occurrence regions (up to a factor of 10). We also show that LLBL electron encounters are related to field-aligned current structures and that wide LLBL correspond to northward interplanetary magnetic field. Evidence for LLBL/plasma-sheet electron leakage into the magnetosheath during southward IMF is also presented.  相似文献   

15.
We present a numerical solution for the momentum equation of the magnetosheath particles that describes the distribution of the pressure anisotropy of the magnetosheath plasma in the midday meridian plane. The pressure anisotropy is a maximum near the magnetopause subsolar point (p/p\Vert\cong10). The pressure anisotropy is caused by two factors: particles with small pitch angles (V\Vert>V) which travel along the magnetic field lines away from the equatorial plane of the magnetosheath; and particles, after crossing the bowshock, which reach the bulk velocity component directed along the magnetic field lines again, away from the magnetosheath equatorial plane. This velocity increases with increasing distance from the subsolar point of the bowshock, and does not permit particles with large pitch angles (V>V\Vert) to move toward the equatorial plane.  相似文献   

16.
Intense quasimonchromatic geomagnetic pulsations with a period of ~15 min, observed on the Earth’s surface in the near-noon sector at the beginning of the recovery phase of a very strong (Dst min = ?260 nT) magnetic storm of May 15, 2005, are analyzed. The variations were registered at auroral latitudes only in the X field component, and wave activity shifted into the postnoon sector of the polar cap an hour later; in this case pulsations were observed in the X and Y field components. Within the magnetosphere the source of magnetic pulsations could be the surface waves on the magnetopause caused by the pulse of the solar wind magnetic pressure. Geomagnetic pulsations in the polar cap, observed in phase at different latitudes, could apparently reflect quasiperiodic variations in the NBZ system of field-aligned currents. Such variations can originate due to the series of pulsed reconnections in the postnoon outer cusp at large (~20 nT) positive B z values and large (about ?40 nT) negative values of IMF B x .  相似文献   

17.
Quasi-periodic Pc 5 pulsations have been reported inside and just outside the Earth’s magnetotail during intervals of low geomagnetic activity. In order to further define their characteristics and spatial extent, we present three case studies of simultaneous magnetic field and plasma observations by IMP-8, ISEE-1 (and ISEE-2 in one case) in the Earth’s magnetotail and ISEE-3 far upstream of the bow shock, during intervals in which the spacecraft were widely separated. In the first case study, similar pulsations are observed by IMP-8 at the dawn flank of the plasma sheet and by ISEE-1 near the plasma sheet boundary layer (PSBL) near midnight local time. In the second case study, simultaneous pulsations are observed by IMP-8 in the dusk magnetosheath and by ISEE-1 and 2 in the dawn plasma sheet. In the third case study, simultaneous pulsations are observed in the north plasma sheet boundary layer and the south plasma sheet. We conclude that the pulsations occur simultaneously throughout much of the nightside magnetosphere and the surrounding magnetosheath, i.e. that they have a global character. Some additional findings are the following: (a) the observed pulsations are mixed mode compressional and transverse, where the compressional character is more apparent in the close vicinity of the plane ZGSM=0; (b) the compressional pulsations of the magnetic field in the dusk magnetosheath show peaks that coincide (almost one-to-one) with similar peaks observed inside the dawn plasma sheet; (c) in the second case study the polarization sense of the magnetic field and the recurrent left-hand plasma vortices observed in the dawn plasma sheet are consistent with antisunward moving waves on the magneto-pause; (d) pulsation amplitudes are weaker in the PSBL(or lobe) as compared with those in the magneto-tail’s flanks, suggesting a decay with distance from the magnetopause; (e) the thickness of the plasma sheet (under extremely quiet conditions) is estimated to be \sim22 RE at an average location of (X, Y)GSM=(16, 17) RE, whereas at midnight local time the thickness is \sim14 RE. The detected pulsations are probably due to the pressure variations (recorded by ISEE-3) in the solar wind, and/or the Kelvin Helmholtz instability in the low-latitude boundary layer or the magnetopause due to a strongly northward IMF.  相似文献   

18.
Superposed epoch studies have been carried out in order to determine the ionospheric response at mid-latitudes to southward turnings of the interplanetary magnetic field (IMF). This is compared with the geomagnetic response, as seen in the indices Kp, AE and Dst. The solar wind, IMF and geomagnetic data used were hourly averages from the years 1967–1989 and thus cover a full 22-year cycle in the solar magnetic field. These data were divided into subsets, determined by the magnitudes of the southward turnings and the concomitant increase in solar wind pressure. The superposed epoch studies were carried out using the time of the southward turning as time zero. The response of the mid-latitude ionosphere is studied by looking at the F-layer critical frequencies, foF2, from hourly soundings by the Slough ionosonde and their deviation from the monthly median values, foF2. For the southward turnings with a change in Bz of Bz > 11.5 nT accompanied by a solar wind dynamic pressure P exceeding 5 nPa, the F region critical frequency, foF2, shows a marked decrease, reaching a minimum value about 20 h after the southward turning. This recovers to pre-event values over the subsequent 24 h, on average. The Dst index shows the classic storm-time decrease to about –60 nT. Four days later, the index has still to fully recover and is at about –25 nT. Both the Kp and AE indices show rises before the southward turnings, when the IMF is strongly northward but the solar wind dynamic pressure is enhanced. The average AE index does register a clear isolated pulse (averaging 650 nT for 2 h, compared with a background peak level of near 450 nT at these times) showing enhanced energy deposition at high latitudes in substorms but, like Kp, remains somewhat enhanced for several days, even after the average IMF has returned to zero after 1 day. This AE background decays away over several days as the Dst index recovers, indicating that there is some contamination of the currents observed at the AE stations by the continuing enhanced equatorial ring current. For data averaged over all seasons, the critical frequencies are depressed at Slough by 1.3 MHz, which is close to the lower decile of the overall distribution of foFl values. Taking 30-day periods around summer and winter solstice, the largest depression is 1.6 and 1.2 MHz, respectively. This seasonal dependence is confirmed by a similar study for a Southern Hemisphere station, Argentine Island, giving peak depressions of 1.8 MHz and 0.5 MHz for summer and winter. For the subset of turnings where Bz > 11.5 nT and P 5 nPa, the response of the geomagnetic indices is similar but smaller, while the change in foF2 has all but disappeared. This confirms that the energy deposited at high latitudes, which leads to the geomagnetic and ionospheric disturbances following a southward turning of the IMF, increases with the energy density (dynamic pressure) of the solar wind flow. The magnitude of all responses are shown to depend on Bz. At Slough, the peak depression always occurs when Slough rotates into the noon sector. The largest ionospheric response is for southward turnings seen between 15–21 UT.  相似文献   

19.
20.
The ring current is conventionally considered responsible for the shift of the boundary of solar proton penetration into the inner Earth’s magnetosphere during magnetic storms. The cases of a boundary shift were observed in some works on the dark side before the onset of a magnetic storm, i.e., at positive values of the Dst index. In this work, this type of shift of the penetration boundary is considered in detail with two storms as examples. It is shown that the corresponding distortion of the magnetosphere configuration is induced by an increase in the solar wind pressure during the initial phase of a magnetic storm. The current induced in this case on the magnetopause is closed by a current in the equator plane, which changes the configuration of the dark side of the inner magnetosphere, weakens the magnetic field, and allows solar protons to penetrate the inner magnetosphere. The significant difference in the positions of the penetration boundary and the boundary found from models of the magnetosphere magnetic field can be explained by insufficient consideration of closing currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号