首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Using correlation analyses, composite analyses, and singular value decomposition, the relationship between the atmospheric cold source over the eastern Tibetan Plateau and atmospheric/ocean circulation is discussed. In winter, the anomaly of the strong (weak) atmospheric cold source over the eastern plateau causes low-level anomalous north (south) winds to appear in eastern China and low-level anomaly zonal west (east) winds to prevail in the equatorial Pacific from spring to autumn. This contributes to the anomalous warm (cold) sea surface temperature the following autumn and winter. In addition, the anomalous variation of sea surface temperature over the equatorial middle and eastern Pacific in winter can influence the snow depth and intensity of the cold source over the plateau in the following winter due to variation of the summer west Pacific subtropical high.  相似文献   

2.
The interannual variations of rainfall over southwest China (SWC) during spring and its relationship with sea surface temperature anomalies (SSTAs) in the Pacific are analyzed, based on monthly mean precipitation data from 26 stations in SWC between 1961 and 2010, NCEP/NCAR re-analysis data, and Hadley global SST data. Sensitivity tests are conducted to assess the response of precipitation in SWC to SSTAs over two key oceanic domains, using the global atmospheric circulation model ECHAM5. The interannual variation of rainfall over SWC in spring is very significant. There are strong negative (positive) correlation coefficients between the anomalous precipitation over SWC and SSTAs over the equatorial central Pacific (the mid-latitude Pacific) during spring. Numerical simulations show that local rainfall in the northwest of the equatorial central Pacific is suppressed, and a subtropical anticyclone circulation anomaly is produced, while a cyclonic circulation anomaly in the mid-latitude western Pacific occurs, when the equatorial Pacific SSTAs are in a cold phase in spring. Anomalous northerly winds appear in the northeastern part of SWC in the lower troposphere. Precipitation increases over the Maritime Continent of the western equatorial Pacific, while a cyclonic circulation anomaly appears in the northwest of the western equatorial Pacific. A trough over the Bay of Bengal enhances the southerly flow in the south of SWC. The trough also enhances the transport of moisture to SWC. The warm moisture intersects with anomalous cold air over the northeast of SWC, and so precipitation increases during spring. On the interannual time scale, the impacts of the mid-latitude Pacific SSTAs on rainfall in SWC during spring are not significant, because the mid-latitude Pacific SSTAs are affected by the equatorial central Pacific SSTAs; that is, the mid-latitude Pacific SSTAs are a feedback to the circulation anomaly caused by the equatorial central Pacific SSTAs.  相似文献   

3.
Increased evidence has shown the important role of Atlantic sea surface temperature(SST) in modulating the El Nio-Southern Oscillation(ENSO). Persistent anomalies of summer Madden-Julian Oscillation(MJO) act to link the Atlantic SST anomalies(SSTAs) to ENSO. The Atlantic SSTAs are strongly correlated with the persistent anomalies of summer MJO, and possibly affect MJO in two major ways. One is that an anomalous cyclonic(anticyclonic) circulation appears over the tropical Atlantic Ocean associated with positive(negative) SSTA in spring, and it intensifies(weakens) the Walker circulation. Equatorial updraft anomaly then appears over the Indian Ocean and the eastern Pacific Ocean, intensifying MJO activity over these regions. The other involves a high pressure(low pressure) anomaly associated with the North Atlantic SSTA tripole pattern that is transmitted to the mid-and low-latitudes by a circumglobal teleconnection pattern, leading to strong(weak) convective activity of MJO over the Indian Ocean. The above results offer new viewpoints about the process from springtime Atlantic SSTA signals to summertime atmospheric oscillation, and then to the MJO of tropical atmosphere affecting wintertime Pacific ENSO events, which connects different oceans.  相似文献   

4.
Guangzhou spring rainfall mainly exhibits interannual variation of Quasi-biannual and interdecadal variation of 30 yrs, and is in the period of weak rainfall at interdecadal time scale. SST anomalies (SSTA) of Nino3 are the strongest precursor of Guangzhou spring rainfall. They have significant positive correlation from previous November and persist stably to April. Nino3 SSTA in the previous winter affects Guangzhou spring rainfall through North Pacific subtropical high and low wind in spring. When Nino3 SSTA is positive in the previous winter, spring subtropical high is intense and westward, South China is located in the area of ascending airflow at the edge of the subtropical high, and water vapor transporting to South China is intensified by anticyclone circulation to the east of the Philippines. So Guangzhou spring rainfall is heavy. When Nino3 SSTA is negative, the subtropical high is weak and eastward, South China is far away from the subtropical high and is located in the area of descending airflow, and water vapor transporting to South China is weak because low-level cyclonic circulation controls areas to the east of the Philippines and north wind prevails in South China. So Guangzhou spring rainfall is weak and spring drought is resulted.  相似文献   

5.
This paper investigates the contrasts between strong and weak Madden-Julian Oscillation (MJO) activity over the equatorial western Pacific during winter using the NCEP reanalysis data. It is shown that the MJO over the equatorial western Pacific in winter shows significant interannual and interdecadal variabilities. During the winters with strong MJO activity, an anomalous cyclonic circulation lies east of the Philippines, strong anomalous easterlies control the equatorial eastern Pacific, and anomalous westerlies extend from the Indian Ocean to the western Pacific in the lower troposphere, which strengthens the convergence and convection over the equatorial western Pacific. The moisture convergence in the lower troposphere is also enhanced over the western Pacific, which is favorable to the activity of MJO. Eastward propagation is a significant feature of the MJO, though there is some westward propagation. The space-time spectral power and center period of the MJO are higher during strong MJO activity winters. The anomalous activity of MJO is closely related to the sea surface temperature (SST) and East Asian winter monsoon (EAWM). During strong MJO activity winters, there are positive/negative anomalies at high/low latitudes in both sea level pressure and 500 hPa geopotential height, and the temperature is lower over the central part of the Chinese mainland, which indicates a strong EAWM. China experiences more rainfall between the Yellow and Yangtze Rivers, but less rainfall south of the Yangtze River. The SSTA is negative near the Taiwan Island due to the impact of strong EAWM and shows a La Ni?a pattern anomaly over the eastern Pacific. During the weak MJO activity winters, the situation is reversed.  相似文献   

6.
Based on the analysis of NCEP height, wind and OLR data, the influence of spring equatorial eastern Pacific SSTA on the seasonal change from spring to summer of eastern Asian circulation has been investigated. Results show that related to the warm (cold) spring SSTA in the equatorial eastern Pacific, the anomalous anticyclone (cyclone) circulation emerges around the South China Sea and the Philippines, the strong (weak) west Pacific subtropical high locates to the west (east) of its normal position, which induces to the late (early) onset of the South China Sea monsoon. The numerical simulations have also shown that the remarkable influence of spring SSTA in the equatorial eastern Pacific on the spring seasonal change of eastern Asian circulation will last till summer.  相似文献   

7.
An analysis of high-resolution precipitation data for 1978-2006 indicates that the precipitation over southern China in June experienced a low-value period in 1980-1989 and a high-value period in 1992-2001.It also reveals that exceptional heavy(light) precipitation occurred in June 2005(2004) since 1951.For these variations on both interdecadal and interannual timescales,fairly uniform anomalies of precipitation appeared over Vietnam,southern China,and southeastern China.Corresponding to positive(negative) precipitation anomalies,anomalous southeasterly(northwesterly) flow at 850 hPa reached Vietnam and anomalous southwesterly(northeasterly) flow expanded to the coastal regions of southern and southeastern China.Precedent to the positive(negative) precipitation anomalies during 1992-2001(1980-1989),positive(negative) anomalies of sea surface temperature appeared over the extratropical northwestern Pacific in the winter and spring seasons,associated with a strong(weak) extension of the warm Kuroshio Current that affects the coastal region of eastern China.The above-normal precipitation in June 2005 was associated with the pseudo-ENSO event in the previous winter,and the below-normal precipitation in June 2004 was associated with negative anomalies of sea surface temperature over the equatorial central Pacific and positive anomalies over the equatorial western and eastern Pacific.  相似文献   

8.
The 2015/16 El Ni?o displayed a distinct feature in the SST anomalies over the far eastern Pacific(FEP)compared to the 1997/98 extreme case.In contrast to the strong warm SST anomalies in the FEP in the 1997/98 event,the FEP warm SST anomalies in the 2015/16 El Ni?o were modest and accompanied by strong southeasterly wind anomalies in the southeastern Pacific.Exploring possible underlying causes of this distinct difference in the FEP may improve understanding of the diversity of extreme El Ni?os.Here,we employ observational analyses and numerical model experiments to tackle this issue.Mixed-layer heat budget analysis suggests that compared to the 1997/98 event,the modest FEP SST warming in the 2015/16 event was closely related to strong vertical upwelling,strong westward current,and enhanced surface evaporation,which were caused by the strong southeasterly wind anomalies in the southeastern Pacific.The strong southeasterly wind anomalies were initially triggered by the combined effects of warm SST anomalies in the equatorial central and eastern Pacific(CEP)and cold SST anomalies in the southeastern subtropical Pacific in the antecedent winter,and then sustained by the warm SST anomalies over the northeastern subtropical Pacific and CEP.In contrast,southeasterly wind anomalies in the 1997/98 El Ni?o were partly restrained by strong anomalously negative sea level pressure and northwesterlies in the northeast flank of the related anomalous cyclone in the subtropical South Pacific.In addition,the strong southeasterly wind and modest SST anomalies in the 2015/16 El Ni?o may also have been partly related to decadal climate variability.  相似文献   

9.
Using the 1980-2010 winter GODAS oceanic assimilations, study is conducted of the winter heat content (HC) established in the subsurface layer (5 to 366 m in depth) over the western Pacific warm pool (WP), followed by investigating the HC spatiotemporal characteristics, persistence and the impacts on the climate anomalies of neighboring regions. Results are as follows: 1) the pattern of integral consistency is uncovered by the leading EOF1 (PC1) mode of HC interannual variability, the year-to-year fluctuation of the time coefficients being well indicative of the interannual anomaly of the WP winter subsurface-layer thermal regime. The HC variation is bound up with ENSO, keeping pronounced autocorrelation during the following two seasons and more, with the persistence being more stable in comparison to SSTA in the equatorial middle eastern Pacific; 2) the winter HC anomalies produce lasting effect on the WP thermal state in the following spring and summer and corresponding changes in the warm water volume lead to the meridional transport and vertical exchange of warm water, which exerts greater impacts upon the sea surface temperature/heat flux over the warm pool per se and neighboring regions, especially in the Philippine Sea during the posterior spring and summer; 3) the increase in the winter HC corresponds to the spring OLR decrease and richer precipitation over the waters east to the Philippine Sea and the resultant convective heating anomalies are responsible for the rise of geopotential isobaric surfaces over tropical and subtropical western North Pacific, thereby producing effect on the western Pacific subtropical high (anomaly). Subsequently, the sea-surface heat flux exchange is intensified in the warm pool, a robust anomalous cyclone shows up at lower levels, air-sea interactions are enhanced and abnormal convective heating occurs, together making the winter HC anomalies even more closely associated with the variation in the summer subtropical high. As a result, the WP winter HC can be used as an effective predictor of the variation in spring/summer western Pacific subtropical high and the strength of summer monsoon over the northwestern Pacific.  相似文献   

10.
Based on an observational analysis, seven numerical experiments are designed to study the impacts of Pacific SSTA on summer precipitation over eastern China and relevant physical mechanism by NCAR CCM3. The numerical simulation results show that preceding winter SSTA in the Kuroshio region leads to summer precipitation anomaly over the Yangtze River valleys by modifying atmospheric general circulation over eastern Asia and middle-high latitude. West Pacific subtropical high is notably affected by preceding spring SSTA over the middle and east of Equator Pacific; SSTA of the central region of middle latitude in the corresponding period causes the summer rainfall anomaly over eastern China so as to trigger the atmospheric Eurasia-Pacific teleconnection pattern.  相似文献   

11.
利用1979—2019年Hadley中心的海表温度资料、GPCP的降水资料以及NCEP-DOE的再分析资料等,分析了北半球春季热带南大西洋海表温度异常与北半球夏季亚澳季风区降水异常的联系。研究表明,北半球春季热带南大西洋海表温度异常与随后夏季热带西太平洋到南海(澳大利亚东侧海域到热带东印度洋)地区的降水异常为显著负相关(正相关)关系。北半球春季热带南大西洋的海表温度正异常可以引起热带大西洋和热带太平洋间的异常垂直环流,其中异常上升支(下沉支)位于热带大西洋(热带中太平洋)。热带中太平洋的异常下沉气流和低层辐散气流引起热带中西太平洋低层的异常东风,后者有利于热带中东太平洋海表温度出现负异常。通过Bjerknes正反馈机制,热带中东太平洋海表温度异常从北半球春季到夏季得到发展。热带中东太平洋海表温度负异常激发的Rossby波使得北半球夏季热带西太平洋低层出现一对异常反气旋。此时,850 hPa上热带西太平洋到海洋性大陆地区为显著的异常东风,有利于热带西太平洋到南海(澳大利亚东侧海域到热带东印度洋)地区出现异常的水汽辐散(辐合),导致该地区降水减少(增加)。  相似文献   

12.
Caribbean rainfall and associated regional-scale ocean–atmosphere anomalies are analyzed during and after warm pool (WP) and cold tongue (CT) El Niño (EN) events (i.e. from the usual peak of EN events in boreal winter to next summer from 1950 to 2011). During and after a CT event, a north–south dipolar pattern with positive (negative) rainfall anomalies over the northern (southern) Caribbean during the boreal winter tends to reverse in spring, and then to vanish in summer. On the contrary, during and after a WP event, weak rainfall anomalies during the boreal winter intensify themselves from spring, with anomalous wet conditions over most of the Caribbean basin observed during summer, except over the eastern coast of Nicaragua and Costa Rica. The Caribbean rainfall anomalies associated with WP and CT events are shaped by competition between at least four different, but interrelated, mechanisms; (1) the near-equatorial large-scale subsidence anomaly over the equatorial Atlantic linked to the zonal adjustment of the Walker circulation; (2) the extra-tropical wave-like train combining positive phase of the Pacific/North American mode and negative phase of the North Atlantic Oscillation; (3) the wind-evaporation-sea surface temperature (SST) positive feedback coupling warmer-than-normal SST with weaker-than-normal low level easterlies over the tropical North Atlantic; and (4) the air-sea coupling between the speed of low level easterlies, including the Caribbean low level jet, and the SST anomaly (SSTA) gradient between the Caribbean basin and the eastern equatorial Pacific. It seems that Caribbean rainfall anomalies are shaped mostly by mechanisms (1–3) during CT events from the boreal winter to spring. These mechanisms seem less efficient during WP events when the atmospheric response seems driven mostly by mechanism (4), coupling positive west-east SSTA gradient with weaker-than-normal low level easterlies, and secondary by mechanism (3), from the boreal spring to summer.  相似文献   

13.
利用逐月台站观测降水、HadISST1.1海温和ERA5大气再分析资料,研究了前冬印度洋海盆一致模(Indian Ocean Basin,IOB)对华南春季降水(SCSR)与ENSO关系的影响,并分析了IOB通过调控ENSO环流异常进而影响SCSR的可能机制。结果表明:当前冬El Ni?o(La Ni?a)与IOB暖(冷)位相同时发生时,SCSR显著增多(减少);而当El Ni?o或La Ni?a单独发生而IOB处于中性时,SCSR并无明显多寡倾向。其原因在于,当El Ni?o与IOB暖相位并存时,前冬热带印度洋和赤道中东太平洋均为正海温异常(Sea-Surface Temperature Anomaly,SSTA),且印度洋SSTA强度可一直维持至春季。在对流层低层,春季赤道中东太平洋的正SSTA激发出异常西北太平洋反气旋(Western North Pacific Anticyclone,WNPAC)。而热带印度洋的正SSTA在副热带印度洋激发出赤道南北反对称环流,赤道以北的东风异常有利于异常WNPAC西伸;赤道以南的西风异常与来自赤道西太平洋的东风异常在东印度洋辐合上升,气流至西北太平洋下沉,形成经向垂直环流,有利于春季WNPAC维持。在对流层高层,印度洋的正SSTA在热带印度洋上空激发出位势高度正异常,随之形成的气压经向梯度加强了东亚高空副热带西风急流,进而在华南上空形成异常辐散环流。WNPAC的西伸和加强可为华南提供充足的水汽,同时高空辐散在华南引发水汽上升运动,共同导致SCSR正异常。而若El Ni?o发生时IOB处于中性状态,El Ni?o相关的SSTA衰减较快,春季WNPAC不显著,SCSR无明显多寡趋势。   相似文献   

14.
龙振夏  李崇银 《大气科学》2001,25(2):145-159
利用LASG九层大气环流谱模式及IAP两层大气环流模式,模拟研究了不同持续时间的赤道东太平洋海表温度正异常(海表温度异常的持续时间分别为1月份,1~2月份,1~4月份及1~8月份,其他月份为气候SST)对西太平洋副高的影响。结果表明,尽管海表温度异常的持续时间不同,但其引起的西太平洋副高的异常演变及其分布却十分相似;同时,季风区的异常降水(进而异常潜热释放)随时间的演变及其分布也存在一定的相似性(对应于不同持续时间的赤道东太平洋的海表温度正异常,5月份印度洋至西太平洋地区都表现出赤道辐合带北移偏晚的特征);季风区降水的这种变化同西太平副高的异常是一致的,从而揭示出这两种现象有可能存在着某种联系。结果还表明,导致这种大气响应场对赤道东太平洋海表温度异常持续时间不敏感的一个重要原因是大气内部过程的影响:中纬大气的内部Rossby波源维持了热带地区激发的扰动在中高纬的存在,同时大气内部Rossby波源对赤道太平洋地区的海表温度异常持续时间表现出不敏感性,正是由于这种不敏感性才导致了响应场对赤道太平洋地区海表温度异常持续时间的不敏感性。模拟结果还表明,在夏季赤道东太平洋存在海表温度正异常的情况,尽管大气内部动力过程的作用十分重要,但夏季赤道东太平洋海表温度正异常对夏季西太平洋副高的影响却明显存在,因此,基于赤道太平洋地区海表温度异常的夏季西太平洋副高的可预报性受到赤道东太平洋海表温度正异常及大气内部动力过程的双重影响。模式的依赖性研究表明,模拟结果具有一定的普遍性。  相似文献   

15.
The impact of surface sensible heating over the Tibetan Plateau(SHTP) on the western Pacific subtropical high(WPSH)with and without air–sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually followed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an enhanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly(SSTA) in the equatorial central Pacific via surface warm advection.Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the atmospheric dipole anomalies over the western Pacific. Therefore, the air–sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land–air–sea interaction framework.  相似文献   

16.
郑玉琼  陈文  陈尚锋 《大气科学》2020,44(2):435-454
根据观测资料的研究指出春季北极涛动(Arctic Oscillation, AO)对随后冬季厄尔尼诺-南方涛动(El Nino–Southern Oscillation, ENSO)的影响具有明显不对称性。春季AO处于正位相时,它对随后冬季厄尔尼诺(El Nino)事件的影响显著,然而春季AO负位相对随后冬季拉尼娜(La Nina)的影响不明显。本研究分析了30个来自CMIP5的耦合模式对春季AO与随后冬季ENSO不对称性关系的模拟能力。30个CMIP5耦合模式中,只有CNRM-CM5和GISS-E2-H-CC模式能较好地抓住春季AO与冬季ENSO的联系。进一步分析这两个模式中春季AO与冬季ENSO的不对称性关系,发现CNRM-CM5模式能较好地再现春季AO与冬季ENSO的非对称关系,即春季AO正(负)位相会导致赤道中东太平洋出现El Nino(La Nina)型海表温度增暖(冷却)。然而,GISS-E2-H-CC模式的模拟结果显示,春季AO对随后冬季ENSO的影响是对称的。本文随后解释了CNRM-CM5(GISS-E2-H-CC)模式能(不能)模拟出春季AO与冬季ENSO不对称关系的原因。对于CNRMCM5模式,在春季AO正位相年,副热带西北太平洋上空存在明显的异常气旋和正降水异常,正降水异常通过Gill型大气响应对赤道西太平洋异常西风的形成和维持起着重要作用,异常西风通过激发向东传播的暖赤道Kelvin波对随后冬季El Nino事件的发生产生显著的影响;然而,在春季AO负位相年,副热带北太平洋的异常反气旋和负降水异常较弱,导致赤道西太平洋的异常东风不明显,因此,春季AO负异常对随后冬季La Nina的影响不显著。所以,CNRM-CM5模式能够较好地抓住春季AO对随后冬季ENSO事件的非对称性影响。相比之下,对于GISS-E2-H-CC模式,春季AO正(负)位相年副热带西北太平洋上存在显著的正(负)降水异常,通过Gill型大气响应在赤道西太平洋激发出明显的异常西(东)风从而影响随后冬季的El Nino(La Nina)事件。因此,在GISS-E2-H-CC模式中,春季AO对随后冬季ENSO具有对称性影响。另外,模式捕捉春季AO对随后冬季ENSO非对称性影响的能力与模式对春季AO空间结构的模拟能力有一定的联系。  相似文献   

17.
汤明敏  王毅 《气象科学》1995,15(2):10-19
本文利用一个全球大气环流说模式,对七月份赤道太平洋海温异常,北极海冰异常及高原积雪对西北太平洋副高和我国降水的影响进行数值试验,得出一些有铁结果。例如,当赤道东或西太平洋海表温度出现负距平时,副高较趋近负SSTA区,当出现正距平时,副高则远离正SSTA区;北区海冰覆盖面积较大时副高位置偏南,覆盖面积较小时副高位置偏北等等。  相似文献   

18.
In the summers of 2003 and 2007, eastern China suffered similar climate disasters with severe flooding in the Huaihe River valley and heat waves in the southern Yangtze River delta and South China. Using SST data and outgoing longwave radiation (OLR) data from NOAA along with reanalysis data from NCEP/NCAR, the 2002/03 and 2006/07 El Nino episodes in the central Pacific and their delayed impacts on the following early summertime climate anomalies of eastern China were analyzed. The possible physical progresses behaved as follows: Both of the moderate El Nino episodes matured in the central equatorial Pacific during the early winter. The zonal wind anomalies near the sea surface of the west-central equatorial Pacific excited equatorial Kelvin waves propagating eastward and affected the evolution of the El Ni\~no episodes. From spring to early summer, the concurring anomalous easterly winds in the central equatorial Pacific and the end of upwelling Kelvin waves propagating eastward in the western equatorial Pacific, favored the equatorial warm water both of the SST and the subsurface temperature in the western Pacific. These conditions favored the warm state of the western equatorial Pacific in the early summer for both cases of 2003 and 2007. Due to the active convection in the western equatorial Pacific in the early summer and the weak warm SST anomalies in the tropical western Pacific from spring to early summer, the convective activities in the western Pacific warm pool showed the pattern in which the anomalous strong convection only appeared over the southern regions of the tropical western Pacific warm pool, which effects the meridional shift of the western Pacific subtropical high in the summer. The physical progress of the delayed impacts of the El Ni\~no episodes in the central equatorial Pacific and their decaying evolution on the climate anomalies in eastern China were interpreted through the key role of special pattern for the heat convection in the tropical western Pacific warm pool and the response of the western North Pacific anomalous anticyclone.  相似文献   

19.
东亚夏季风强弱年大气环流和热源异常对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
根据黄刚等定义的东亚夏季风指数, 对强、弱东亚夏季风年大气环流、大气热源和外强迫源SST的差异进行分析, 结果表明:强 (弱) 东亚夏季风年前期冬季到夏季, 太平洋SSTA为La Ni?a (El Ni?o) 型分布, 西太平洋暖池SST暖 (冷), 使得暖池附近对流活动较强 (较弱)。与此同时, 南亚大陆从印度半岛、青藏高原南部、中南半岛至华南大气异常加热 (变冷), 并且海陆热力对比加强 (减弱), 有利于出现强 (弱) 的东亚夏季风。此外, 由于暖池附近对流活动强 (弱), 该地区上升气流较强 (弱), Walker环流增强 (减弱), 当强 (弱) 的东亚夏季风向北推进时, 副热带西风急流北撤位置偏北 (南), 副热带高压位置也偏北 (南), 7月至8月华北 (江淮流域) 位于副热带西风急流南侧, 降水偏多, 江淮流域 (华北) 降水偏少。并给出与东亚夏季风年际变异有关的大气环流和SST异常的物理图像。  相似文献   

20.
An analysis on the physical process of the influence of AO on ENSO   总被引:4,自引:1,他引:3  
The influence of the spring AO on ENSO has been demonstrated in several recent studies. This analysis further explores the physical process of the influence of AO on ENSO using the NCEP/NCAR reanalysis data over the period 1958–2010. We focus on the formation of the westerly wind burst in the tropical western Pacific, and examine the evolution and formation of the atmospheric circulation, atmospheric heating, and SST anomalies in association with the spring AO variability. The spring AO variability is found to be independent from the East Asian winter monsoon activity. The spring AO associated circulation anomalies are supported by the interaction between synoptic-scale eddies and the mean-flow and its associated vorticity transportation. Surface wind changes may affect surface heat fluxes and the oceanic heat transport, resulting in the SST change. The AO associated warming in the equatorial SSTs results primarily from the ocean heat transport in the face of net surface heat flux damping. The tropical SST warming is accompanied by anomalous atmospheric heating in the subtropical north and south Pacific, which sustains the anomalous westerly wind in the equatorial western Pacific through a Gill-like atmospheric response from spring to summer. The anomalous westerly excites an eastward propagating and downwelling equatorial Kelvin wave, leading to SST warming in the tropical central-eastern Pacific in summer-fall. The tropical SST, atmospheric heating, and atmospheric circulation anomalies sustain and develop through the Bjerknes feedback mechanism, which eventually result in an El Niño-like warming in the tropical eastern Pacific in winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号