首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Amassia–Stepanavan blueschist-ophiolite complex of the Lesser Caucasus in NW Armenia is part of an Upper Cretaceous-Cenozoic belt, which presents similar metamorphic features as other suture zones from Turkey to Iran. The blueschists include calcschists, metaconglomerates, quartzites, gneisses and metabasites, suggesting a tectonic mélange within an accretionary prism. This blueschist mélange is tectonically overlain by a low-metamorphic grade ophiolite sequence composed of serpentinites, gabbro-norite pods, plagiogranites, basalts and radiolarites. The metabasites include high-P assemblages (glaucophane–aegirine–clinozoisite–phengite), which indicate maximal burial pressure of ∼1.2 GPa at ∼550°C. Most blueschists show evidence of greenschist retrogression (chlorite—epidote, actinolite), but locally epidote-amphibolite conditions were attained (garnet—epidote, Ca/Na amphibole) at a pressure of ∼0.6 GPa and a temperature of ∼500°C. This LP–MT retrogression is coeval with exhumation and nappe-stacking of lower grade units over higher grade ones. 40Ar/39Ar phengite ages obtained on the high-P assemblages range between 95 and 90 Ma, while ages obtained for epidote-amphibolite retrogression assemblages range within 73.5–71 Ma. These two metamorphic phases are significant of (1) HP metamorphism during a phase of subduction in the Cenomanian–Turonian times followed by (2) exhumation in the greenschist to epidote-amphibolite facies conditions during the Upper Campanian/Maastrichtian due to the onset of continental subduction of the South Armenian block below Eurasia.  相似文献   

2.
An undated high-pressure low-temperature tectonic mélange in the Elekda area (central Pontides, N Turkey) comprises blocks of MORB-derived lawsonite eclogite within a sheared serpentinite matrix. In their outer shells, some of the eclogite blocks contain large (up to 6 cm) tourmaline crystals. Prograde inclusions in poikiloblastic garnet from a well-preserved eclogite block are lawsonite, epidote/clinozoisite, omphacite, rutile, glaucophane, chlorite, Ba-bearing phengite, minor actinolite, winchite and quartz. In addition, glaucophane, lawsonite and rutile occur as inclusions in omphacite. These inclusion assemblages document the transition from a garnet-lawsonite-epidote-bearing blueschist to a lawsonite eclogite with the peak assemblage garnet + omphacite I + lawsonite + rutile. Peak metamorphic conditions are not well-constrained but are estimated approximately 400–430°C and >1.35 GPa, based on Fe–Mg exchange between garnet and omphacite and the coexistence of lawsonite + omphacite + rutile. During exhumation of the eclogite–serpentinite mélange in the hanging wall of a subduction system, infiltration of B-rich aqueous fluids into the rims of eclogite blocks caused retrogressive formation of abundant chlorite, titanite and albite, followed by growth of tourmaline at the expense of chlorite. At the same time, omphacite I (XJd=0.24–0.44) became unstable and partially replaced by omphacite II characterized by higher XJd (0.35–0.48), suggesting a relatively low silica activity in the infiltrating fluid. Apart from Fe-rich rims developed at the contact to chlorite, tourmaline crystals are nearly homogeneous. Their compositions correspond to Na-rich dravite, perhaps with a small amount of excess (tetrahedral) boron (~5.90 Si and 3.10 B cations per 31 anions). 11 B values range from –2.2 to +1.7. The infiltrating fluids were most probably derived from subducting altered oceanic crust and sediments.  相似文献   

3.
During Late Palaeozoic time a wide ocean, known as Palaeotethys, separated the future Eurasian and African continents. This ocean closed in Europe in the west during the Variscan orogeny, whereas in Asia further east it remained open and evolved into the Mesozoic Tethys, only finally closing during Late Cretaceous–Early Cenozoic.Three Upper Palaeozoic lithological assemblages, the Chios Melange (on the Aegean Greek island), the Karaburun Melange (westernmost Aegean Turkey) and the Teke Dere Unit (Lycian Nappes, SW Turkey) provide critical information concerning sedimentary and tectonic processes during closure of Palaeotethys. The Chios and Karaburun melanges in the west are mainly terrigenous turbidites with blocks and dismembered sheets of Silurian–Upper Carboniferous platform carbonate rocks (shallow-water and slope facies) and poorly dated volcanic rocks. The Teke Dere Unit to the southeast begins with alkaline, within-plate-type volcanics, depositionally overlain by Upper Carboniferous shallow-water carbonates. This intact succession is overlain by a tectonic slice complex comprising sandstone turbidites that are intersliced with shallow-water, slope and deep-sea sediments (locally dated as Early Carboniferous). Sandstone petrography and published detrital mineral dating imply derivation from units affected by the Panafrican (Cadomian) and Variscan orogenies.All three units are interpreted as parts of subduction complexes in which pervasive shear zones separate component parts. Silurian–Lower Carboniferous black cherts (lydites) and slope carbonates accreted in a subduction trench where sandstone turbidites accumulated. Some blocks retain primary depositional contacts, showing that gravitational processes contributed to formation of the melange. Detached blocks of Upper Palaeozoic shallow-water carbonates (e.g. Chios) are commonly mantled by conglomerates, which include water-worn clasts of black chert. The carbonate blocks are restored as one, or several, carbonate platforms that collided with an active margin, fragmenting into elongate blocks that slid into a subduction trench. This material was tectonically accreted at shallow levels within a subduction complex, resulting in layer-parallel extension, shearing and slicing. The accretion mainly took place during Late Carboniferous time.Alternative sedimentary-tectonic models are considered in which the timing and extent of closure of Palaeotethys differ, and in which subduction was either northwards towards Eurasia, or southwards towards Gondwana (or both). Terrane displacement is also an option. A similar (but metamorphosed) accretionary unit, the Konya Complex, occurs hundreds of kilometres further east. All of these units appear to have been assembled along the northern margin of Gondwana by Permian time, followed by deposition of overlying Tauride-type carbonate platforms. Northward subduction of Palaeotethys beneath Eurasia is commonly proposed. However, the accretionary units studied here are more easily explained by southward subduction towards Gondwana. Palaeotethys was possibly consumed by long-lived (Late Palaeozoic) northward subduction beneath Eurasia, coupled with more short-lived (Late Carboniferous) southward subduction near Gondwana, during or soon after closure of Palaeotethys in the Balkan region to the west.  相似文献   

4.
The Alpine belt in Corsica (France) is characterized by the occurrence of stacked tectonic slices derived from the Corsica/Europe continental margin, which outcrop between two weakly or non‐metamorphic tectonic domains: the ‘autochthonous’ domain of the Hercynian basement to the west and the Balagne Nappe (ophiolitic unit belonging to the ‘Nappes supérieures’) to the east. These slices, including basement rocks (Permian granitoids and their Palaeozoic host rocks), Late Carboniferous–Permian volcano‐sedimentary deposits, coarse‐grained polymict breccias (Volparone Breccia) and Middle Eocene siliciclastic turbidite deposits, were affected by a polyphase deformation history of Alpine age, associated with a well‐developed metamorphic recrystallization. This study provides new quantitative data about the peak of metamorphism and the retrograde P–T path in the Alpine Corsica: the tectonic slices of Volparone Breccia from the Balagne region (previously regarded as unmetamorphosed) were affected by peak metamorphism characterized by the phengite + chlorite + quartz ± albite assemblage. Using the chlorite‐phengite local equilibria method, peak metamorphic P–T conditions coherent with the low‐grade blueschist facies are estimated as 0.60 ± 0.15 GPa and 325 ± 20 °C. Moreover, the retrograde P–T path, characterized by a decrease of pressure and temperature, is evidence of the first stage of the exhumation path from the peak metamorphic conditions to greenschist facies conditions (0.35 ± 0.06 GPa and 315 ± 20 °C). The occurrence of metamorphic peak at high‐pressure/low‐temperature (HP/LT) conditions is evidence of the fact that these tectonic slices, derived from the Corsica/Europe continental margin, were deformed and metamorphosed in the Alpine subduction zone during their underplating at ~20 km of depth into the accretionary wedge and were subsequently juxtaposed against the metamorphic and non‐metamorphic oceanic units during a complex exhumation history.  相似文献   

5.
The blueschist/greenshist Terekta Complex is the only blueschist locality known in the Russian Altai. The Terekta metabasites contain Na and Na–Ca amphibole, actinolite, phengite, epidote, albite, quartz, calcite, magnetite (or hematite). Depending on the amphibole composition, these rocks were subdivided into blueschist, transitional blueschist/greenschist and greenschist. Both blueschists and transitional blueschist/greenschists (glaucophane-bearing and winchite–actinolite schists) have compositions similar to alkaline basalts of oceanic islands, whereas the greenschists correspond to ocean-floor tholeiitic basalts, or MORB. Available geothermobarometry yielded the following estimates of metamorphic conditions: T=350–400 °C and P=6–8 kbar. The different mineral assemblages of the metabasites are believed to be a result of their different lithologies. The presence of matabasalts with ocean island basalt and MORB affinity, as well as the occurrence of layered metachert, marble, metagraywacke, and plates of serpentinized dunites, pyroxenites indicate that the complex was very likely a subduction-accretionary complex. The complex contains rocks of accretionary wedge, and fragments of oceanic crust which are regarded to be a remnant of an Early Paleozoic subduction zone in the Russian Altai.  相似文献   

6.
The Cretaceous blueschist belt, Tavşanlı Zone, representing the subducted and exhumed northern continental margin of the Anatolide–Tauride platform is exposed in Western Anatolia. The Sivrihisar area east of Tavşanlı is made up of tectonic units consisting of i) metaclastics and conformably overlying massive marbles (coherent blueschist unit), ii) blueschist-eclogite unit, iii) marble–calcschist intercalation and iv) metaperidotite slab. The metaclastics are composed of jadeite–lawsonite–glaucophane and jadeite–glaucophane–chloritoid schists, phengite phyllites, and calcschists with glaucophane–lawsonite metabasite layers. The blueschist-eclogite unit representing strongly sheared, deeply buried and imbricated tectonic slices of accreted uppermost levels of the oceanic crust with minor metamorphosed serpentinite bodies consists of lawsonite-bearing eclogitic metabasites (approximately 90% of the field), lawsonite eclogites, metagabbros, serpentinites, pelagic marbles, omphacite–glaucophane–lawsonite metapelites and metacherts. The mineral assemblage of the lawsonite eclogite (garnet + omphacite > 70%) is omphacite, garnet, lawsonite, glaucophane, phengite and rutile. Lawsonite eclogite lenses are enclosed by garnet–lawsonite blueschist envelopes.Textural evidence from lawsonite eclogites and country rocks reveals that they did not leave the stability field of lawsonite during subduction and exhumation. The widespread preservation of lawsonite in eclogitic metabasites and eclogites can be attributed to rapid subduction and subsequent exhumation in a low geothermal gradient of the oceanic crust material without experiencing a thermal relaxation. Peak PT conditions of lawsonite eclogites are estimated at 24 ± 1 kbar and 460 ± 25 °C. These PT conditions indicate a remarkably low geotherm of 6.2 °C/km corresponding to a burial depth of 74 km.  相似文献   

7.
New mapping in the northern part of the Paleozoic Acatlán Complex (Patlanoaya area) records several ductile shear zones and brittle faults with normal kinematics (previously thought to be thrusts). These movement zones separate a variety of units that pass structurally upwards from: (i) blueschist-eclogitic metamorphic rocks (Piaxtla Suite) and mylonitic megacrystic granites (Columpio del Diablo granite ≡ Ordovician granites elsewhere in the complex); (ii) a gently E-dipping, listric, normal shear zone with top to the east kinematic indicators that formed under upper greenschist to lower amphibolite conditions; (iii) the Middle–Late Ordovician Las Minas quartzite (upper greenschist facies psammites with minor interbedded pelites intruded by mafic dikes and a leucogranite dike from the Columpio del Diablo granite) unconformably overlain by the Otate meta-arenite (lower greenschist facies psammites and pelites): roughly temporal equivalents are the Middle–Late Ordovician Mal Paso and Ojo de Agua units (interbedded metasandstone and slate, and metapelite and mafic minor intrusions, respectively) — some of these units are intruded by the massive, 461 ± 2 Ma, Palo Liso megacrystic granite: decussate, contact metamorphic muscovite yielded a 40Ar/39Ar plateau age of 440 ± 4 Ma; (iv) a steeply-moderately, E-dipping normal fault; (v) latest Devonian–Middle Permian sedimentary rocks (Patlanoaya Group: here elevated from formation status). The upward decrease in metamorphic grade is paralleled by a decrease in the number of penetrative fabrics, which varies from (i) three in the Piaxtla Suite, through (ii) two in the Las Minas unit (E-trending sheath folds deformed by NE-trending, subhorizontal folds with top to the southeast asymmetry, both associated with a solution cleavage), (iii) one in the Otate, Mal Paso, and Ojo de Agua units (steeply SE-dipping, NE–SW plunging, open-close folds), to (iv) none in the Patlanoaya Group. 40Ar/39Ar analyses of muscovite from the earliest cleavage in the Las Minas unit yielded a plateau age of 347 ± 3 Ma and show low temperature ages of  260 Ma. Post-dating all of these structures and the Patlanoaya Group are NE-plunging, subvertical folds and kink bands. An E–W, vertical normal fault juxtaposes the low-grade rocks against the Anacahuite amphibolite that is cut by megacrystic granite sheets, both of which were deformed by two penetrative fabrics. Amphibole from this unit has yielded a 40Ar/39Ar plateau age of 299 ± 6 Ma, which records cooling through  490 °C and is probably related to a Permo-Carboniferous reheating event during exhumation. The extensional deformation is inferred to have started in the latest Devonian ( 360 Ma) during deposition of the basal Patlanoaya Group, lasting through the rapid exhumation of the Piaxtla Suite at  350–340 Ma synchronous with cleavage development in the Las Minas unit, deposition of the Patlanoaya Group with active fault-related exhumation suggested by Mississippian and Early Permian conglomerates ( 340 and 300 Ma, respectively), and continuing at least into the Middle Permian (≡ 260 Ma muscovite ages). The continuity of Mid-Continent Mississippian fauna from the USA to southern Mexico suggests that this extensional deformation occurred on the western margin of Pangea after closure of the Rheic Ocean.  相似文献   

8.
The western terranes exposed east of the Pan-African suture in western Hoggar (southwest Algeria), are reexamined in the light of new structural, petrologic and by the 40Ar/39Ar laser probe data on metamorphic micas and amphiboles. To the north, the Tassendjanet nappe includes the Paleoproterozoic basement, its Mesoproterozoic cover and mafic rocks representing the roots of a ca. 680 Ma arc overlain by Late Neoproterozoic andesites and volcanic greywackes. The nappe preserved at rather shallow crustal level in the east was emplaced southward (D1a) to southeastward (D2). In the south, two metamorphic suites are distinguished. The Tideridjaouine–Tileouine high-pressure metamorphic belt (T=550–600 °C, P=1.4–1.8 GPa) represents a slab of subducted continental material exposed along the western edge of the In Ouzzal granulite unit interpreted as a microcontinent. Differential exhumation of tectonic slices from the high-pressure belt occurred around 615–600 Ma through a system of west-directed recumbent folds (D1b). The Egatalis high grade belt in the west was intruded by syn-metamorphic gabbro–norite bodies. It includes unretrogressed low-pressure granulite facies rocks (T around 750–800 °C, P0.45 GPa) cooled at a rate of 15°/m.y. between 600 and 580 Ma, and followed by the emplacement of several late-kinematic granitic plutons. Final exhumation of the low-pressure, high-temperature metamorphic rocks, that are not found as pebbles in the molasse, took place in the Late Cambrian. The early and relatively fast cooling of the high-pressure and high-temperature metamorphic rocks of the southern part of the Tassendjanet terrane is at variance with the slow cooling of central Hoggar where repeated magmatic activity as young as Late Cambrian occurred [Lithos 45 (1998) 245].  相似文献   

9.
The Kurtoğlu metamorphic complex, that forms part of the pre-Liassic basement of the Sakarya zone in northern Turkey, consists of at least two tectonic units. Blueschist-facies rocks of unknown metamorphic age in the southern part of the complex are tectonically overlain by Variscan low-pressure high-temperature metamorphic rocks. The latter comprise mica schists and fine-grained gneisses, cut by metaleucogranitic dikes, as well as migmatitic biotite gneisses and subordinate amphibolite intercalations. Structural data indicate that metamorphism and penetrative deformation occurred after dyke intrusion. Peak metamorphic conditions of the mica schists, fine-grained gneisses and metaleucogranites are estimated to ∼650°C and ∼0.4 GPa, based on phase relationships in the system NCKFMASH, Fe–Mg partitioning between garnet and biotite as well as garnet-aluminosilicate-quartz-plagioclase (GASP) and garnet-plagioclase-biotite-quartz (GBPQ) barometry. Peak temperatures of the migmatitic biotite gneisses and amphibolite intercalations are not well constrained but might have been significantly higher (690–740°C), as suggested from hornblende-plagioclase thermometry. 40Ar–39Ar incremental dating on muscovite and biotite fractions from the mica schists and fine-grained gneisses yielded plateau ages of ∼323 Ma. Significantly older model ages of ∼329 and ∼337 Ma were obtained on muscovite fractions from two metaleucogranite samples. These fractions contain both relict igneous and newly formed metamorphic muscovite.  相似文献   

10.
Retrograded eclogites from the central part of the northern margin of the North China Craton, Hebei Province, China occur as separate tectonic lenses or boundins within garnet–biotite–plagioclase gneisses of the Paleoproterozoic Hongqiyingzi Complex characterized by amphibolite facies paragneisses. The petrographic features and mineralogical compositions represent three main metamorphic stages: (1) the peak eclogite facies stage (P > 1.40–1.50 GPa, T = 680–730 °C), (2) the granulite facies stage and (3) the amphibolite facies stage (P = 0.67–0.81 GPa, T = 530–610 °C) formed during decompression. The major and trace element and Sm–Nd isotopic data suggest that most of the retrograded eclogite samples had protoliths of tholeiitic oceanic crust with geochemical characteristics of mid-ocean ridge basalt (MORB) or island arc tholeiite (IAT) environment, and were contaminated by crustal components during subsequent subduction. Zircon SHRIMP isotopic dating of two different textural varieties of retrograded eclogite defines a weighted mean age of 325 Ma, which is interpreted as the peak metamorphic age of the eclogites and reflects the occurrence of eclogite facies metamorphism related to subduction of Paleo-Asian Oceanic crust beneath the North China Craton during the Late Paleozoic. Finally, we show that the retrograded eclogite from Hebei Province is not related to the Baimashi retrograded eclogite at the northern foot of the Heng Mountains, approximately, 300 km to the southwest.  相似文献   

11.
New 40Ar/39Ar geochronology places time constraints on several stages of the evolution of the Penninic realm in the Eastern Alps. A 186±2 Ma age for seafloor hydrothermal metamorphic biotite from the Reckner Ophiolite Complex of the Pennine–Austroalpine transition suggests that Penninic ocean spreading occurred in the Eastern Alps as early as the Toarcian (late Early Jurassic). A 57±3 Ma amphibole from the Penninic subduction–accretion Rechnitz Complex dates high-pressure metamorphism and records a snapshot in the evolution of the Penninic accretionary wedge. High-pressure amphibole, phengite, and phengite+paragonite mixtures from the Penninic Eclogite Zone of the Tauern Window document exhumation through ≤15 kbar and >500 °C at 42 Ma to 10 kbar and 400 °C at 39 Ma. The Tauern Eclogite Zone pressure–temperature path shows isothermal decompression at mantle depths and rapid cooling in the crust, suggesting rapid exhumation. Assuming exhumation rates slower or equal to high-pressure–ultrahigh-pressure terrains in the Western Alps, Tauern Eclogite Zone peak pressures were reached not long before our high-pressure amphibole age, probably at ≤45 Ma, in accordance with dates from the Western Alps. A late-stage thermal overprint, common to the entire Penninic thrust system, occurred within the Tauern Eclogite Zone rocks at 35 Ma. The high-pressure peak and switch from burial to exhumation of the Tauern Eclogite Zone is likely to date slab breakoff in the Alpine orogen. This is in contrast to the long-lasting and foreland-propagating Franciscan-style subduction–accretion processes that are recorded in the Rechnitz Complex.  相似文献   

12.
The Dabie–Sulu collision belt in China extends to the Hongseong–Odesan belt in Korea while the Okcheon metamorphic belt in Korea is considered as an extension of the Nanhua rift within the South China block. The Hongseong–Odesan belt divides Korea's Gyeonggi massif into northern and southern portions. The southern Gyeonggi massif and the Yeongnam massif are correlated with China's Yangtze and Cathaysia blocks, respectively, while the northern Gyeonggi massif is part of the southern margin of the North China block. The southern and northern Gyeonggi massifs rifted from the Rodinia supercontinent during the Neoproterozoic, to form the borders of the South China and North China blocks, respectively. Subduction commenced along the southern and eastern borders of the North China block in the Ordovician and continued until a Triassic collision between the North China and South China blocks. While subduction was occurring on the margin of the North China block, high-P/T metamorphic belts and accretionary complexes developed along the inner zone of southwest Japan from the Ordovician to the Permian. During the subduction, the Hida belt in Japan grew as a continental margin or continental arc. Collision between the North and South China blocks began in Korea during the Permian (290–260 Ma), and propagated westwards until the Late Triassic (230–210 Ma) creating the sinistral TanLu fault in China and the dextral fault in the Hida and Hida marginal belt in Japan. Phanerozoic subduction and collision along the southern and western borders of the North China block led to formation of the Qinling–Dabie–Sulu–Hongseong–Hida–Yanji belt.  相似文献   

13.
The north Qilian high‐pressure (HP)/low‐temperature (LT) metamorphic belt is composed mainly of blueschists, eclogites and greenschist facies rocks. It formed within an Early Palaeozoic accretionary wedge associated with the subduction of the oceanic crust and is considered to be one of the best preserved HP/LT metamorphic belts in China. Here we report new lawsonite‐bearing eclogites and eclogitic rocks enclosed within epidote blueschists in the North Qilian Mountains. Five samples contain unaltered lawsonite coexisting with omphacite and phengite as inclusions in garnet, indicating eclogite facies garnet growth and lawsonite pseudomorphs were observed in garnet from an additional 11 eclogites and eclogitic rocks. Peak pressure conditions estimated from lawsonite omphacite‐phengite‐garnet assemblages were 2.1–2.4 GPa at temperatures of 420–510 °C, in or near the stability field of lawsonite eclogite, and implying formation under an apparent geothermal gradient of 6–8 °C km?1, consistent with metamorphism in a cold subduction zone. SHRIMP U‐Pb dating of zircon from two lawsonite‐bearing eclogitic metabasites yields ages of 489 ± 7 Ma and 477 ± 16 Ma, respectively. CL images and mineral inclusions in zircon grains indicate that these ages reflect an eclogite facies metamorphism. An age of 502 ± 16 Ma is recorded in igneous cores of zircon grains from one lawsonite pseudomorph‐bearing eclogite, which is in agreement with the formation age of Early Ordovician for some ophiolite sequences in the North Qilian Mountains, and may be associated with a period of oceanic crust formation. The petrological and chronological data demonstrate the existence of a cold Early Palaeozoic subduction zone in the North Qilian Mountains.  相似文献   

14.
Due to its geographical location, geology and topography, Turkey mainly undergoes three different types of natural disasters related to gravity flows. They are floods, landslides and snow avalanches.The heavy snow falls during winter pose the hazard of snow avalanches. According to statistics, 800 people were killed in snow avalanches during the period of 1960–1997. Within the program of the International Decade of Natural Disaster Reduction (1990–2000), an international cooperation has been initiated among SFISAR (Swiss Federal Institute for Snow and Avalanche Research), CEMAGREF (Centre National du Machinisme Agricole du Génie Rural des Eaux at des Forets) and AFET (Turkish Ministry of Public Works and Settlement, General Directorate of Disaster Affairs). This three-year project started in 1994 as a development project on avalanche forecasting, mapping, zoning and paravalanche construction technologies. For the pilot project area, the Soanli Mountains located in north-eastern Turkey were chosen, covering an area of approximately 40 by 30 km. After training the Turkish engineers, the basic technologies in avalanche forecasting and avalanche mapping were transferred from Switzerland and France to Turkey with the necessary infrastructure. The difficulties faced in meteorological data collection with the help of local observers and the limited data available caused some delay in avalanche forecasting. If automatic weather stations could take the place of manual work, the realization of a prognosis would be quicker. At present, avalanche-hit houses are rebuilt in new disaster-free zones by AFET. With this project, the idea of using paravalanche structures for protection is promoted. The physico-sociological impacts of avalanche disasters, avalanche mapping and zoning of disaster areas on local people are also studied.  相似文献   

15.
Phengite is a common metamorphic mineral stable in a wide pressure range. The dependence of pressure on silicon content established in the mid-20th century allowed us to propose a phengite-based geobarometer. Recently, the phengite geobarometer was calibrated by Caddik and Thompson (2008) but in the narrow pressure range. However, there attempts have been made to extend this range. We have analyzed the large number of published datasets on phengite composition. These data included both natural and experimental specimens of well defined P–T-conditions. For moderate temperatures (T < 750°C), two groups of phengite are identified. These groups are divided by silicon content value of 3.25 apfu. Different geobarometer equations were suggested for both groups. The precision of these geobarometers is ±0.34 GPa and ±0.56 GPa, respectively. There is no evidence of phengite used as a geobarometer at high temperatures (T > 750°C). The derived dependences were applied to study the conditions of gneiss and schist metamorphism of the Blyb metamorphic complex in the Northern Caucasus. This study shows that the peak pressure of gneiss and schist metamorphism is 2.0–2.2 ± 0.56 GPa. The latter agrees with previous data on the Blyb metamorphic complex.  相似文献   

16.
Rb-Sr mineral ages and Sr isotopic ratios were determined for several Permian rhyolites of the Schwarzwald, mainly by using mica-apatite pairs. Extrusion ages between_307+5 and 286+7 Ma were found ( Rb=1.42· 10–11 a–1, 2). The initial Sr isotopic ratios range from 0,710 to 0.7125, with one exception (St. Märgen: 0.706). The Rb-Sr age of the granite porphyry Schweighof in the Southern Schwarzwald is 323+4 Ma.Thus the subsequent volcanic activity of the Hercynian orogeny lasted nearly 20–30 Ma, starting in the Late Carboniferous and culminating in the Early Permian. The volcanic activity moved in time from South to North. In the Southern as well as the Northern Schwarzwald a hiatus of about 20 Ma exists between late orogenic plutonism and subsequent volcanism. The initial ratios lie on the crustal evolution line of Schwarzwald basement and favour, with the St. Märgen porphyry as exception, a crustal provenance of the volcanic magmas.  相似文献   

17.
A strongly deformed and metamorphosed Triassic oceanic seamount(s) and plateau succession extends as an east–west belt for 1100 km along the Pontides of northern Turkey. This succession, known widely as the Nilüfer unit, consists mainly of metabasic lava and tuff–marble–phyllite association including tectonic slices of ultramafic rock and gabbro. According to the conodont findings the unit formed during the Early to Mid-Triassic, and the isotopic age data indicate that it underwent high-pressure greenschist facies metamorphism during the latest Triassic period. The metavolcanic rocks form over 80% of the sequence. The Nilüfer unit covers an area of 120,000 km2, with the volume of mafic lava estimated as 2×105 km3. Such a huge volcanic pile has erupted rapidly in a relatively short period during the Early to Mid-Triassic (approx. 10 Ma). Hypotheses for the origin of the Nilüfer unit include a ‘seamount’, ‘intra-arc and/or fore-arc basin’, ‘oceanic plateau’, and ‘Early Triassic rift’. The geochemistry of metabasites and that of relict magmatic clinopyroxenes indicate that there are two main mafic rock groups in the Nilüfer unit displaying tholeiitic and alkaline affinities. No metabasite and clinopyroxene sample display typical orogenic basalt affinity or a subduction signature. Geochemical data obtained in this study are consistent with the derivation of the metabasites from the topmost extrusive layers of an oceanic plateau (LIP) together with the volcanic rocks of seamount(s).  相似文献   

18.
Nine samples from the Monte Rosa Granite have been investigated by microscopic, X-ray, wet chemical, electron microprobe, stable isotope and Rb-Sr and K-Ar methods. Two mineral assemblages have been distinguished by optical methods and dated as Permian and mid-Tertiary by means of Rb-Sr age determinations. The Permian assemblage comprises quartz, orthoclase, oligoclase, biotite, and muscovite whereas the Alpine assemblage comprises quartz, microcline, albite+epidote or oligoclase, biotite, and phengite. Disequilibrium between the Permian and Alpine mineral assemblages is documented by the following facts: (i) Two texturally distinguishable generations of white K-mica are 2 M muscovite (Si=3.1–3.2) and 2 M or 3 T phengite (Si=3.3–3.4). Five muscovites show Permian Rb-Sr ages and oxygen isotope fractionations indicating temperatures between 520 and 560 ° C; however, K-Ar ages are mixed or rejuvenated. Phengite always shows mid-Tertiary Rb-Sr ages, (ii) Two biotite generations can be recognized, although textural evidence is often ambiguous. Three out of four texturally old biotites show mid-Tertiary Rb-Sr cooling ages while the oxygen isotopic fractionations point to Permian, mixed or Alpine temperatures, (iii) Comparison of radiogenic and stable isotope relations indicates that the radiogenic isotopes in the interlayer positions of the micas were mobilized during Alpine time without recrystallization, that is, without breaking Al-O or Si-O bonds. High Ti contents in young muscovites and biotites also indicate that the octahedral (and tetrahedral) sites remained undisturbed during rejuvenation. (iv) Isotopic reversals in the order of O18 enrichment between K-feldspar and albite exist. Arguments for equilibrium during Permian time are meagre because of Alpine overprinting effects. Texturally old muscovites show high temperatures and Permian Rb-Sr ages in concordancy with Rb-Sr whole rock ages. For the tectonically least affected samples, excellent concordance between quartz-muscovite and quartz-biotite Permian temperatures implies oxygen isotope equilibrium in Permian time which was undisturbed during Alpine metamorphism. Arguments for equilibrium during the mid-Tertiary metamorphism are as follows: (i) Mid-Tertiary Rb-Sr mineral isochrons of up to six minerals exist, (ii) Oxygen isotope temperatures of coexisting Alpine phengites and biotites are concordant.The major factor for the adjustment of the Permian assemblages to Alpine conditions was the degree of Alpine tectonic overprinting rather than the maximum temperatures reached during the mid-Tertiary Alpine metamorphism. The lack of exchange with externally introduced fluid phases in the samples least affected by tectonism indicates that the Monte Rosa Granite stewed in its own juices. This seems to be the major cause for the persistence of Permian ages and corresponding temperatures.  相似文献   

19.
We study the first occurrence of clinopyroxene-free garnet bearing metabasites encased in migmatitic gneisses and metapelites, in the area of Tin Begane belonging to the Laouni terrane in the Pan-African Trans-Saharan belt (Hoggar, Algeria). They present two successive parageneses after a primary assemblage characterized by the presence of high titanium amphiboles equilibrated with coarse-grained garnet, plagioclase, biotite, quartz, and rutile. The two retrograde parageneses show decompression textures with the developing of coronas- and worm-like symplectites consisting of orthopyroxene + plagioclase ± amphibole for the secondary paragenesis and plagioclase + amphibole for the late stage paragenesis. These garnet metabasites do not show high pressure paragenesese compared to those previously studied from the Laouni terrane and which are known to present at least one high pressure paragenesis involving primary pyroxenes. We investigate the exhumation of these metabasites by combining detailed petrographic and thermobarometric studies in order to constrain the P-T conditions for each metamorphic stage. The results suggest an isothermal decompression from peak granulitic conditions (850 ± 50 ° C and 0.85 ± 0.15 GPa) down to transitional granulitic conditions (830 ±50 ° C and 0.5 ±0.1 GPa) followed by a cooling episode to the amphibolite-greenschist facies transition at 480 ± 80 ° C and 0.4– 0.5 GPa. These conditions are consistent with a tectonic exhumation process most likely provoked by a lithospheric thinning accompanied by a magmatic episode and partial melting of the lower continental crust.  相似文献   

20.
Thirty-five illite and muscovite concentrates were extracted from Triassic and Permian claystones, shales, slates and phyllites along a cross-section from the diagenetic Alpine foreland (Tabular Jura and borehole samples beneath the Molasse Basin) to the anchi- and epimetamorphic Helvetic Zone of the Central Alps. Concentrates and thin sections were investigated by microscopic, X-ray, infrared, Mössbauer, thermal (DTA and TG), wet chemical, electron microprobe, K-Ar, Rb-Sr, 40Ar/39Ar and stable isotope methods.With increasing metamorphic grade based on illite crystallinity data (XRD and IR) the following continuous changes are observed: (i) the 1Md2M1 polymorph transformation is completed in the higher grade anchizone; (ii) K2O increases from 6–8 wt. % (diagenetic zone) to 8.5–10% (anchizone) to 10–11.5% (epizone), reflecting an increase in the total negative layer charge from 1.2 to 2.0; (iii) a decrease of the chemical variation of the mica population with detrital muscovite surviving up to the anchizone/ epizone boundary; iv) a shift of an endothermic peak in differential thermal curves from 500 to 750° C; (v) K-Ar and Rb-Sr apparent ages of the fraction <2 m decrease from the diagenetic zone to the epizone, K-Ar ages being generally lower than Rb-Sr ages. The critical temperature for total Ar resetting is estimated to be 260±30° C. K-Ar and Rb-Sr ages become concordant when the anchizone/ epizone boundary is approached. The stable isotope data, on the other hand, show no change with metamorphic grade but are dependent on stratigraphic age.These results suggest that the prograde evolution from 1 Md illite to 2M1 muscovite involves a continuous lattice restructuration without rupture of the tetrahedral and octahedral bonds and change of the hydroxyl radicals, however this is not a recrystallization process. This restructuration is completed approximately at the anchizone/epizone boundary. The isotopic data indicate significant diffusive loss of 40Ar and 87Sr prior to any observable lattice reorganization. The restructuration progressively introduces a consistent repartition of Ar and K in the mineral lattices and is outlined by the 40Ar/39Ar age spectra.Concordant K-Ar and Rb-Sr ages of around 35-30 Ma. with concomitant concordant 40Ar/39Ar release spectra are representative for the main phase of Alpine metamorphism (Calanda phase) in the Glarus Alps. A second age group between 25 and 20 Ma. can probably be attributed to movements along the Glarus thrust (Ruchi phase), while values down to 9 Ma., in regions with higher metamorphic conditions, suggest thermal conditions persisting at least until the middle Tortonian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号