首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The variation of the H, Z, and T components of the geomagnetic field at repeat stations on Romanian territory between 1964 and 1981 is discussed in terms of internal secular and solar cycle related variations. Their geographical distribution is accounted for by the magnetic and electric structure of the interior of the Earth. The effects of magnetic and electromagnetic induction caused by the solar cycle related variation were evaluated.  相似文献   

2.
The 40-year period of observations of short-term variations (with characteristic times of up to 1–2 days) in the critical frequency of the ionospheric F2 layer (foF2) is analyzed. The continuous (with a step of 1 h) series of fluctuations (F) of the foF2 critical frequency (with eliminated daily variations) has been calculated using the hourly variations in foF2 at Moscow stations. The fractal dimension (FRH) of the fluctuations, characterizing short-term variations in foF2, has been determined and analyzed on a 30-day interval, using the Higuchi method. It has been established that FRH estimates substantially change in time. The 11-year cycle, which is in antiphase with the solar cycle, and the total annual and semiannual variations, similar to the variations observed in the normalized critical frequency of the E region and in the electron density of the D region, are clearly defined in these changes. Thus, the parameters of fast variations in the ionospheric F2 layer are affected by the phase of the 11-year solar cycle and by the position of the Earth in the orbit or seasonal variations in the atmosphere.  相似文献   

3.
Global electron content (GEC) as a new ionospheric parameter was first proposed by Afraimovich et al. [2006]. GEC is equal to the total number of electrons in the near-Earth space. GEC better than local parameters reflects the global response to a change in solar activity. It has been indicated that, during solar cycle 23, the GEC dynamics followed similar variations in the solar UV irradiance and F 10.7 index, including the 11-year cycle and 27-day variations. The dynamics of the regional electron content (REC) has been considered for three belts: the equatorial belt and two midlatitude belts in the Northern and Southern hemispheres (±30° and 30°–65° geomagnetic latitudes, respectively). In contrast to GEC, the annual REC component is clearly defined for the northern and southern midlatitude belts; the REC amplitude is comparable with the amplitude of the seasonal variations in the Northern Hemisphere and exceeds this amplitude in the Southern Hemisphere by a factor of ~1.7. The dayside to nightside REC ratio, R(t), at the equator is a factor of 1.5 as low as such a GEC ratio, which indicates that the degree of nighttime ionization is higher, especially during the solar activity maximum. The pronounced annual cycle with the maximal R(t) value near 8.0 for the winter Southern Hemisphere and summer Northern Hemisphere is typical of midlatitudes.  相似文献   

4.
Present-day data on 14C and 10Be concentration in natural archives have been statistically analyzed. It has been established that it is difficult to extract information about solar activity variations on long (several Myr and longer) and, especially, short (to 30 years) time scales using radiocarbon data. It has been indicated that beryllium series bear reliable information about short-term, secular, and, probably, 1000-year variations in solar activity. Moreover, 10Be concentration in polar ice can also be used to study the internal dynamics of solar activity. It has been concluded that beryllium data are more promising than radiocarbon ones from the viewpoint of solar paleoastrophysics.  相似文献   

5.
Abstract

Changes in trend and quasi-periodicities are sought in the time series of river discharges in all major South American basins. The relationship between trends and quasi-periodicities found and climate variations on interannual and longer time scales are discussed. Consideration of multiple rivers gives insight into the geographical extent of hydrological signals and climate impacts. It is found that the streamflow of all major rivers of South America has experienced an increased trend since the early 1970s. It is suggested that this simultaneity may reflect the impact of a large-scale climate change. All the time series of river streamflows that were analysed show El Niño-like periodicities. Only for La Plata Basin do these explain a larger part of the total variance than the other quasi-periodicities. There are two other quasi-oscillations in the time series analysed: one of them with a longer period—around 17 years—and the other of about 9 years. Previous work has related these oscillations to sea-surface temperature anomalies in the Atlantic Ocean.  相似文献   

6.
The 11-year solar cycle effect in the geomagnetic components H and Z is made clear for Surlari Observatory and 19 repeat stations for the interval 1952–1974. The correlation with Wolf number and its time derivative is discussed in terms of the effects of the external and induced current systems.The H? data available for solar cycle 20 (1964–1976) were processed to give the geographical distribution of the secular variation impulse for epoch 1969.5 in Romania. It is suggested that this distribution might reflect the deep internal structure of the area considered.A qualitative correlation is noted between long-period solar activity and variation of the horizontal component of the geomagnetic field at some repeat stations.  相似文献   

7.
A comparison of the time variations in the geomagnetic field characteristics (the u and aa indices of geomagnetic activity) with the variation in the solar magnetic dipole inclination shows close agreement between these variations. The linear correlation coefficients between the u and aa indices, the u index and solar magnetic dipole inclination, and the aa index and solar magnetic dipole inclination are 0.93, 0.45, and 0.49, respectively. This makes it possible to extend studying the IMF evolution in the 11-year cycle of solar activity to the 170-year period beginning from 1835. It has been indicated that the time variation in the heliospheric current sheet (HCS) surface deviation from the solar magnetic equator plane, calculated based on the actual HCS configuration, is in good agreement with the time variation in the amplitude of the Fourier series second harmonics in a harmonic analysis of the series of daily data on the IMF sign in the vicinity of the Earth. The linear correlation coefficient is 0.9 in this case.  相似文献   

8.
The spatial-temporal model of the geomagnetic field has been constructed using the data of the high-accuracy survey of the CHAMP German satellite, obtained during its operation from May 2001 to September 2007. The daily average spherical harmonic models calculated at an interval of four days are used as initial data in order to expand these models by the method of natural orthogonal components (NOCs). It has been indicated that the obtained NOC series rapidly converges. The secular variations, secular acceleration, and Dst variation are distinguished as individual NOC components, which makes it possible to construct the spatial-temporal field model. In addition, the models-predictions have been constructed for the year 2008 based on the candidate models of the main field and the secular variation for the year 2005, which were used to obtain the IGRF2005 international model. A comparison of the models-predictions with the model constructed for the year 2008 using our method indicated that the accuracy of our model is not lower than that of the models, obtained by other scientific groups using the traditional method.  相似文献   

9.
A simple new method is described for extracting, from magnetic observations taken at Earth's surface, the vertical growth rate of vertical motion, ?u/?r, at special isolated points on the top surface of Earth's liquid core. The technique utilizes only the radial component of the frozen-flux induction equation and it requires information only on the radial magnetic field, Br, its horizontal gradient, and its secular variations, ?Br/?t, at the core-mantle boundary.  相似文献   

10.
Nighttime height profiles of the amplitudes of large-scale traveling ionospheric disturbances (LSTIDs) obtained from the data of vertical sounding in Almaty (76°55′ E, 43°15′ N) for the period 2000–2007 are analyzed. The height profiles are plotted using the time variations in electron density N h (t) at a series of heights for the F region in the ionosphere with a height step of 10 km. In total, observations were conducted during 1166 nights, among which 581 nights are characterized by wave activity. Nights with the maximum amplitude of variations in N h (t) exceeding 25% are selected for analysis. The total number of such nights is 63; LSTIDs have been recorded in both magnetically quiet and active periods. The regressive ratios between the height of the F-region maximum and the height that corresponds to the maximum absolute amplitude of a wave, as well as between the values of the maximum amplitude at a height profile and the value of the amplitude of variations in N m F(t) at the layer maximum, are obtained.  相似文献   

11.
Predictions of present day secular variations in the Earth's long wavelength geopotential driven by glacial isostatic adjustment (GIA) have previously been analyzed to infer the radial profile of mantle viscosity and to constrain ongoing cryospheric mass balance. These predictions have been based on spherically symmetric Earth models. We explore the impact of lateral variations in mantle viscosity using a new finite-volume formulation for computing the response of 3-D Maxwell viscoelastic Earth models. The geometry of the viscosity field is constrained from seismic-to-mographic images of mantle structure, while the amplitude of the lateral viscosity variations is tuned by a free parameter in the modeling. We focus on the zonal ? harmonics for degrees = 2,…,8 and demonstrate that large-scale lateral viscosity variations of two to three orders of magnitude have a modest, 5-10%, impact on predictions of 2. In contrast, predictions of higher degree harmonics show a much greater sensitivity to lateral variation in viscosity structure. We conclude that future analyses of secular trends (for degree ? > 2) estimated from ongoing (GRACE, CHAMP) satellite missions must incorporate GIA predictions based on 3-D viscoelastic Earth models.  相似文献   

12.
We analyzed the variations of the interplanetary plasma parameters, obtained from radio astronomical observations of scintillations of cosmic radio sources during four 11-year cycles of solar activity, from 1966 to present. It is shown that the state of the interplanetary plasma permanently changes in conformity with cyclicity in the solar activity. In the studied time period, besides the 11-year variations in the velocity and scintillation index, there is also an increasing linear trend of these variables, which is presumably due to a secular 80–90-year cycle of solar activity. The observed differences between the 11-year variations and trends in the solar wind velocity and interplanetary scintillation index suggest that the 11-year and secular cycles have different origins. It is found that these trends occur in this time period in each link of the Sun-Earth system: in the solar activity indices, in the characteristics of the interplanetary medium, and practically in all characteristics of the geophysical, demographical, medical, and other Earth’s processes. From the entire set of facts we can conclude that most of the analyzed Earth’s processes are dominated not by anthropogenic factors, but by the effects of the secular cyclic processes of the solar activity.  相似文献   

13.
We developed an objective method to define the aftershock areas of large earthquakes as a function of time after the main shock. The definition is based upon the amount of energy released by aftershocks, the spatial distribution of the energy release is first determined and is contoured. The 1-day aftershock area is defined by a contour line corresponding to the energy release level of 1015.6 ergs/(100 km2 · day). The 10-day, 100-day and 1-y aftershock areas are similarly defined by contour lines corresponding to 1014.8, 1014.0, and 1013.5 ergs/(100 km2 · day), respectively. We also define the expansion ratios at time t by the ratio of the aftershock area at t to that at 1 day.Using this method we study the aftershock area expansion patterns of 44 large (Ms ? 7.5) and five moderate shallow earthquakes which occurred from 1963 to 1980. Each aftershock sequence is examined at four different times, i.e., 1 day, 10 days, 100 days, and 1 y after the main event. We define the aftershock area expansion ratios η and ηe by S(100)/S(1) and L(100)/L(1), respectively: here S(t) and L(t) are the area and the length of the aftershock area, respectively, at time t. Our study suggests that a distinct regional variation of aftershock area expansion patterns is present; it is strongly correlated with the tectonic environment. In general, the subduction zones of the “Mariana” type have large expansion ratios, and those of the “Chilean” type have small expansion ratios. Some earthquakes that occurred in the areas of complex bathymetry such as aseismic ridges tend to have large expansion ratios.These results can be explained in terms of an asperity model of fault zones in which a fault plane is represented by a distribution of strong spots, called the asperities, and weak zones surrounding the asperities. The rupture immediately after the main shock mostly involves asperities. After the main rupture is completed, the stress change caused by the main shock gradually propagates outward into the surrounding weak zones. This stress propagation manifests itself as expansion of aftershock activity. In this simple picture, if the fault zone is represented by relatively large asperities separated by small weak zones (“Chilean” type), then little expansion of aftershock activity would be expected. On the other hand, if relatively small asperities are sparsely distributed (“Mariana” type), significant expansion occurs. The actual distribution of asperities is likely to be more complex than the two cases described above. However, we would expect that the expansion ratio is in general proportional to the spatial ratio of the total asperity area to the fault area.  相似文献   

14.
地磁场长期变化和日长十年尺度变化的周期特征   总被引:3,自引:2,他引:1       下载免费PDF全文
根据历史地磁场模型GUFM1、第10代国际参考地磁场(IGRF10)模型和日长资料,采用小波变换方法,分析了地磁场磁矩、能量、西向漂移等参数的长期变化和日长十年尺度变化的周期分量及其时变特征.结果表明,1800~2005年期间,偶极子磁场长期变化有82年和48年准周期分量,它们与日长变化的周期没有直接关系.非偶极子磁场参数的长期变化与日长变化有66年和32年准周期分量,66年准周期比32年准周期强.在66年准周期分量,西向漂移比日长变化超前8.8年,非偶极子磁场能量比日长变化滞后15.6年.日长十年尺度波动和地磁场长期变化的起源不存在因果关系.  相似文献   

15.
Relative variations in the number of sunspots and sunspot groups in activity cycles have been analyzed based on data from the Kislovodsk Mountain Astronomical Station and international indices. The following regularities have been established: (1) The relative fraction of small sunspots decreases linearly and that of large sunspots increase with increasing activity cycle amplitude. (2) The variation in the average number of sunspots in one group has a trend, and this number decreased from ~12 in cycle 19 to ~7.5 in cycle 24. (3) The ratio of the sunspot index (Ri) to the sunspot group number index (G gr) varies with a period of about 100 years. (4) An analysis of the sunspot group number index (G gr) from 1610 indicates that the Gnevyshev-Ohl rule reverses at the minimums of secular activity cycles. (5) Ratio of the total area to area of Ssp/Sum nuclei has long-term variation with a period approximately 8 cycles. Minimum ratio falls on 16–17 cycles of activity. (6) It has been indicated that the magnetic field intensity and sunspot area in the current cycle are related to the amplitude of the next activity cycle.  相似文献   

16.
In the later part of the Pleistocene, variations in global ice volume have been dominated by an approximate 100,000-year cycle. Analysis of 2-Myr-long oxygen isotope record from an equatorial Pacific core indicates that this is true only for the last 900,000 years. Prior to this time the amplitude of the 100,000-year cycle is much reduced, as is the variance of all oscillations with periods greater than 60,000 years. Based on results of time series analysis of this 2-Myr-long record, the Pleistocene glacial cycles can be divided into three sections: (1) the late Pleistocene (0–900 kyr B.P.) where the variations in the isotope record are dominated by the 100,000-year cycle; (2) the middle Pleistocene (900–1450 kyr B.P.) in which low-frequency components are not as important as in the later period of the Pleistocene, and (3) the early Pleistocene/late Pliocene (1450–2000 kyr B.P.) where general reductions of importance at all frequencies is seen as compared to the later intervals. Recent modeling efforts which describe variations in global ice volume show that the dominant low-frequency component observed in the late Pleistocene can result from different time constants for the rate of glacial growth and decay in response to variations in the Earth's orbital parameters. It is hypothesized that during the early Pleistocene the rate of growth and decay of glaciers were more similar and that continental erosion by successive glacial advances lowered the land surface in areas of ice-cap formation to below sea level. When the ice caps became marine-based, more rapid decay of the ice became possible.  相似文献   

17.
This paper investigates dynamics of a spherical bubble surrounded by a viscoelastic fluid. The purpose of the study is to understand the parameters which control expansion and fragmentation of bubbly magma by decompression. In particular, we focus on which occurs first, fragmentation or expansion. Supposing that rupture of the bubble wall occurs in a critical stress condition, we calculate the change of the bubble radius and tensile stress at the bubble wall for various decompression rates. Conditions in which tensile stress is stored in the shell are represented in terms of dimensionless parameters. The results are interpreted as follows: when magma viscosity is larger than a critical value, and the decompression time is shorter than viscous expansion time, tensile stress is stored before expansion; when magma viscosity is smaller than the critical value, tensile stress is not stored, no matter how rapid the decompression. Although it is a generally accepted theory that fragmentation is effected by stress conditions and decompression time, exactly how decompression time (t1) effects the fragmentation is not yet fully understood. This study demonstrates that the stress condition is controlled by the length of the decompression time not relative to the viscoelastic relaxation time (t1 / τ), but relative to the viscous expansion time (t1 / τlrlx). As suggested by recent experimental studies, the decompression time relative to viscoelastic relaxation time (t1 / τ) is also significant to the fragmentation process itself. It indicates that the decompression time effects the fragmentation not through the stress condition. However more work must be completed to fully understand the particular relationship between the decompression time and relaxation time in terms of its influence on fragmentation.  相似文献   

18.
主磁场长期变化十年至百年尺度的周期   总被引:1,自引:0,他引:1       下载免费PDF全文
本文运用小波变换技术,通过分析历史地磁场模型gufm1(时间跨度从1590~1990年),考察主磁场长期变化场(B场)的周期性.结果表明,B场总磁极强度存在三个主要的周期分量:稳定的30年周期,在偶极子场的赤道分量g11和非偶极子场中较常见;频散的准50年周期,主要是由轴向偶极子分量g01贡献的,此外,四极子场也有贡献;世纪尺度的110年周期,其强度会发生变化,主要来源于偶极子场的赤道分量以及八极子场.  相似文献   

19.
The continuous spatial-temporal model of variations in the main geomagnetic field in the 20th century has been elaborated. All available data—from the navigation to the satellite surveys at the beginning and end of the century, respectively—have been used to construct the model. Since the accuracy of measurements was different during the century and the data are nonuniformly distributed over the Earth’s surface, the methods for regulating solutions based on global parameters of the magnetic field and its secular variation, invariant on the simulation interval, have been used to correct the model. The secular variation model has been represented as the sum of the models obtained by means of expansion in terms of natural orthogonal components. The conclusions that the character of field variations is complex have been made and the spatial and temporal characteristics of the secular variations of different origin have been estimated based on the simulation results.  相似文献   

20.
To make a long-term prediction of the solar cycle in a standard way (GOST 25645.302-83), it is necessary to know the instant of the activity minimum onset, the determination of which is difficult during the decline stage of the previous cycle. The dependence of the long-term prediction error on the time of shift (t) relative to the solar activity minimum instant (i.e., the situation when a certain time before the minimum onset, rather than the time of this minimum, is the initial point of calculations) has been studied. It has been indicated that one should not know the exact time of the activity minimum onset in order to make prediction according to GOST, and such a prediction can be performed with an approximately identical error if the lead time is t ~ 1 year and more relative to the activity minimum onset. An analysis of the dependence of prognostic W max values on t for cycles 18–23 indicated that prognostic W max values are overestimated at small (to ~ 1 year) uncertainties in the time of activity minimum onset. It has been obtained that W max = 96 ± 13 for cycle 24 on the assumption that this cycle began in April 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号