首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
地表比辐射率计算的不确定性,直接影响到卫星资料在数值预报中同化应用的效果。本文采用美国NOAA/NESDIS的Weng等[1,2]提出的复杂陆面比辐射率模式,同时用NOAA卫星AMSU-ACh1或Ch2反演的地表比辐射率来调整该模式所需的地表参数,从而在缺少详细地表参数的情况下,改进AMSU-A Ch3和Ch15的地表比辐射率计算精度。在积雪地表情况下,用NOAA卫星AMSU-A资料直接反演各通道的比辐射率,在GRAPES同化系统中的应用表明,结果有明显的改进。  相似文献   

2.
应用先进微波探测器AMSU资料遥感反演春季陆地表层湿度   总被引:2,自引:0,他引:2  
利用先进微波探测器(AMSU)正演快速微波辐射传输模型,完成了AMSU 窗区通道亮温与地表温湿特征的相关性分析,根据模拟计算结果改进了现有业务上反演地表微波辐射率的统计分析方法,得到适用于我国非冻土积雪覆盖地区地表微波辐射率反演的指数分析模型;进一步通过地表微波辐射传输模型迭代反演得到土壤体积含水量信息.2001年相互匹配的AMSU资料和地面农业气象观测站地表相对湿度观测结果的对比分析表明二者间具有一定的相关性.利用2002年3月和2003年3月的AMSU资料,反演了我国陆地区域地表湿度;连续两年春季地表湿度反演结果的对比分析表明,与2002年春季相比,2003年我国北方沙尘暴发生源区地表湿度反演值普遍偏高,潮湿的下垫面特征与沙尘暴发生频次的减少之间有一定的对应关系.试验结果表明,利用AMSU遥感资料可以获取大范围陆地表层湿度信息,进行区域尺度陆地表层湿度特征的动态分析,为我国沙尘暴监测分析提供陆地表层湿度基础信息.  相似文献   

3.
The ECMWF has been assimilating Feng-Yun-3B(FY-3B) satellite microwave humidity sounder(MWHS) data over ocean in an operational forecasting system since 24 September 2014. It is more difficult, however, to assimilate microwave observations over land and sea ice than over the open ocean due to higher uncertainties in land surface temperature, surface emissivity and less effective cloud screening. We compare approaches in which the emissivity is retrieved dynamically from MWHS channel 1 [150 GHz(vertical polarization)] with the use of an evolving emissivity atlas from 89 GHz observations from the MWHS onboard NOAA and EUMETSAT satellites. The assimilation of the additional data over land improves the fit of short-range forecasts to other observations, notably ATMS(Advanced Technology Microwave Sounder) humidity channels, and the forecast impacts are mainly neutral to slightly positive over the first five days. The forecast impacts are better in boreal summer and the Southern Hemisphere. These results suggest that the techniques tested allow for effective assimilation of MWHS/FY-3B data over land.  相似文献   

4.
The Weather Research and Forecasting (WRF-ARW) model and its three-dimensional variational data assimilation (3D-Var) system are used to investigate the impact of the Advanced Microwave Sounding Unit-A (AMSU-A) radiances on the prediction of Indian Ocean tropical cyclones. Three tropical cyclones are selected for this study: cyclone Mala (April 2006; Bay of Bengal), cyclone Gonu (June 2007; Arabian Sea), and cyclone Sidr (November 2007; Bay of Bengal). For each case, observing system experiments are designed, by producing two sets of analyses from which forecasts are initialized. Both sets of analyses contain all conventional and satellite observations operationally used, including, but not limited to, Quick Scatterometer (QuikSCAT) surface winds, Special Sensor Microwave/Imager (SSM/I) surface winds, Meteosat-derived atmospheric motion vectors (AMVs), and differ only in the exclusion (CNT) or inclusion (EXP) of AMSU-A radiances. Results show that the assimilation of AMSU-A radiances changes the large-scale thermodynamic structure of the atmosphere, and also produce a stronger warm core. These changes cause large forecast track improvements. In particular, without AMSU-A assimilation, most forecasts do not produce landfall. On the contrary, the forecasts initialized from improved EXP analyses in which AMSU-A data are included produce realistic landfall. In addition, intensity forecast is also improved. Even if the analyzed cyclone intensity is not affected by the assimilation of AMSU-A radiances, the predicted intensity improves substantially because of the development of warm cores which, through creation of stronger gradients, helps the model in producing intense low centre pressure.  相似文献   

5.
本文以2015年13号超强台风“苏迪罗”为个例,利用WRF模式及其3DVar同化系统对NOAA15、NOAA18和NOAA19的AMSU-A微波遥感资料分别同化及组合同化,探究同化不同卫星的同一种微波遥感资料对于台风路径模拟效果的影响。结果表明:同化不同卫星的同一种微波遥感资料对于台风路径模拟具有不同的调整,本文中NOAA15的同化效果最好,其次是NOAA18,最后是NOAA19;同时同化NOAA15、NOAA18和NOAA19的AMSU-A资料并没有取得最好的同化效果,而组合NOAA15和NOAA18则取得了最好的同化效果,即不是同化的卫星数量越多,同化效果越好;同化试验3个时刻的增量场表明同化不同卫星的同一种微波遥感资料对物理场具有不同的调整,这与其对台风模拟路径的调整有着较好的对应,相对于温度场、海平面气压场、位势高度场和风场的增量结构与模拟台风路径的调整更为密切。  相似文献   

6.
Observational and bogus satellite data are directly assimilated into the Weather Research and Forecasting (WRF) model in simulations of Typhoon Kalmaegi (2008). The data assimilation is performed using the Radiative Transfer for TIROS-N Operational Vertical Sounder (RTTOV) model and the three-dimensional variational data assimilation (3DVAR) technique, with satellite observations taken from the National Oceanic and Atmospheric Administration-16 (NOAA-16) Advanced TIROS Vertical Sounder (ATOVS) system composed of the High-resolution Infrared Radiation Sounder (HIRS), the Advanced Microwave Sounding Unit-A (AMSU-A), and the Advanced Microwave Sounding Unit-B (AMSU-B). Data assimilation experiments are initialized at three different times. Improvements in the numerical simulation of the typhoon are discussed in the context of wind, temperature, pressure, and geopotential fields. The results indicate that assimilation of satellite data can improve both the representation of the initial conditions and the subsequent simulation of the typhoon. Different satellite data have different impacts on the typhoon track. In these simulations, data from AMSU-A play a greater role in improving the simulation of the typhoon than data from AMSU-B or HIRS. Assimilation of satellite data significantly affects the simulation of the subtropical high and the steering of the typhoon by the environmental flow. The subtropical high is enhanced and extends westward in the data assimilation experiments. The background flow therefore steers the typhoon more westward, improving the simulated typhoon track. Although direct assimilation of satellite brightness temperature improves the simulated environmental conditions, it does not significantly improve the simulated intensity of the typhoon. By contrast, initializing the typhoon simulation using bogus data in tandem with satellite data improves not only the environmental conditions but also the simulated inner-core structure of the typhoon. Assimilation of both types of data therefore improves the simulation of both the typhoon track and the typhoon intensity. The results of these experiments offer new insight into improving numerical simulations of typhoons.  相似文献   

7.
吴莹  翁富忠 《气象学报》2014,72(4):749-759
首先运用先进微波扫描辐射仪(AMSR-E)资料反演了北非沙漠地区晴空条件下的地表微波发射率。然后根据不同的土壤类型,进一步分析了沙漠地表微波发射率频谱特性,并将增加土壤质地信息前、后的翁(Weng)氏微波地表发射率模型(2001)的模拟结果和反演结果进行了比较。结果表明,沙漠地表发射率与土壤质地密切相关,随土壤颗粒大小的不同变化明显。在沙漠土壤类型中,以大颗粒为主的土壤类型,其水平(垂直)极化的发射率通常随频率提高而增大(减小);而对于以较小粒子为主的沙漠土壤类型,地表发射率几乎为常数,或水平(垂直)极化的发射率随频率提高略有减小(增大)。并且,发射率的季节性特征明显,特别是以小颗粒组成的土壤,其水平极化的发射率比垂直极化的发射率表现出更强的季节性变化。以上这些发射率特征与翁氏模型模拟结果一致。此外,在翁氏模型的输入参数中增加土壤质地信息(土壤组分含量、粒径尺度)改善了翁氏模型在沙漠地区的模拟结果,特别是对于包含大量小粒子的沙漠土壤类型,如黏土和黏质壤土,模拟误差从6%9%降低至4%以下。由于翁氏模型是美国国家环境预报中心(NCEP)全球同化和预报系统的重要组成部分,对翁氏模型的改进将提高沙漠地区卫星资料的利用率并有望改进数值天气预报的准确度。  相似文献   

8.
The impact of assimilating radiances from the Advanced Microwave Sounding Unit-A (AMSU-A) on the track prediction of Typhoon Megi (2010) was studied using the Weather Research and Forecasting (WRF) model and a hybrid ensemble three-dimensional variational (En3DVAR) data assimilation (DA) system. The influences of tuning the length scale and variance scale factors related to the static background error covariance (BEC) on the track forecast of the typhoon were studied. The results show that, in typhoon radiance data assimilation, a moderate length scale factor improves the prediction of the typhoon track. The assimilation of AMSU-A radiances using 3DVAR had a slight positive impact on track forecasts, even when the static BEC was carefully tuned to optimize its performance. When the hybrid DA was employed, the track forecast was significantly improved, especially for the sharp northward turn after crossing the Philippines, with the flow-dependent ensemble covariance. The flow-dependent BEC can be estimated by the hybrid DA and was capable of adjusting the position of the typhoon systematically. The impacts of the typhoon-specific BEC derived from ensemble forecasts were revealed by comparing the analysis increments and forecasts generated by the hybrid DA and 3DVAR. Additionally, for 24 h forecasts, the hybrid DA experiment with use of the full flow-dependent background error substantially outperformed 3DVAR in terms of the horizontal winds and temperature in the lower and mid-troposphere and for moisture at all levels.  相似文献   

9.
This paper describes a new quality control (QC) scheme for microwave humidity sounder (MHS) data assimilation. It consists of a cloud detection step and an O–B (i.e., differences of brightness temperatures between observations and model simulations) check. Over ocean, cloud detection can be carried out based on two MHS window channels and two Advanced Microwave Sounding Unit-A (AMSU-A) window channels, which can be used for obtaining cloud ice water path (IWP) and liquid water path (LWP), respectively. Over land, cloud detection of microwave data becomes much more challenging due to a much larger emission contribution from land surface than that from cloud. The current MHS cloud detection over land employs an O–B based method, which could fail to identify cloudy radiances when there is mismatch between actual clouds and model clouds. In this study, a new MHS observation based index is developed for identifying MHS cloudy radiances over land. The new land index for cloud detection exploits the large variability of brightness temperature observations among MHS channels over different clouds. It is shown that those MHS cloudy radiances that were otherwise missed by the current O–B based QC method can be successfully identified by the new land index. An O–B check can then be employed to the remaining data after cloud detection to remove additional outliers with model simulations deviated greatly from observations. It is shown that MHS channel correlations are significantly reduced by the newly proposed QC scheme.  相似文献   

10.
AMSU资料变分同化及在暴雨数值模拟中的应用研究   总被引:7,自引:1,他引:7  
张利红  沈桐立  王洪利 《高原气象》2007,26(5):1004-1012
在中尺度数值模拟中,利用中国气象科学研究院数值天气预报创新基地开发的GRAPES三维变分同化系统,对AMSU-A/B微波遥感资料进行了同化试验,研究了这种资料在我国夏季暴雨数值预报中的作用。以2003年7月4日的一次暴雨过程为例,分析了同化结果及模拟结果,结果表明:(1)单独同化AMSU-A资料主要改进了初始温度场,而单独同化AMSU-B资料主要改进了初始湿度场;(2)无论是同化AMSU-A资料还是同化AMSU-B资料,对暴雨预报都有一定的改进作用,但是同化AMSU-B资料的改进作用更明显;(3)同时同化AMSU-A/B资料比只使用其中一种资料的模拟效果好,可以更好地改进模拟的暴雨落区及强度,使结果与实况更加接近。使用AMSU资料,对我国夏季暴雨数值预报有改进作用。  相似文献   

11.
The system of the cyclic assimilation of data on atmospheric conditions used in the West Siberian Administration for Hydrometeorology and Environmental Monitoring is described. It is based on the WRF-ARW mesoscale atmospheric model and on the WRF 3D-Var system of the three-dimensional variational analysis of data. The system is verified when the first approximation data (6-hour forecast) and WRF-ARW forecasts with the lead time up to 24 hours are compared with the observational data. The problems of assimilation of observations from the AMSU-A and AIRS satellite instruments are considered. The effect of using AMSU-A and AIRS for the analysis in the Novosibirsk region is estimated. The experiments demonstrated that the cyclic data assimilation system operates successfully. The AMSU-A observations improve the quality of analyses and forecasts in winter. In summer the impact of satellite observations on the forecast skill scores is ambiguous. Good short-term forecasts are provided by the initial conditions obtained using the system of detailing of the NCEP large-scale analysis.  相似文献   

12.
ATOVS 不同卫星资料在台风模拟中的同化试验研究   总被引:5,自引:1,他引:4  
利用美国国家大气研究中心(NCAR)开发的中尺度模式WRF(ARW)V3.2 及其三维变分同化系统WRF-3DVAR,以1011 号超强台风“ 凡亚比” 为个例,采用连续循环同化的方法对ATOVS 卫星资料进行同化试验,探讨了同化ATOVS 不同卫星资料对“ 凡亚比” 模拟的影响。结果表明,强度影响方面:同化ATOVS不同资料均可有效改善台风强度,台风中心海平面气压平均偏差从42 hPa 下降到18 hPa,但不同资料间的差异并不显著,平均在6 hPa 以内,这表明仅同化ATOVS 资料对台风强度的改善相对有限。路径影响方面:(1)不同卫星的同一种传感器资料效果略有不同,同化NOAA-18 和NOAA-15 的AMSU-A 资料效果较好,NOAA-16 的AMSU-A 效果较差;同化NOAA-15 和NOAA-16 的AMSU-B 资料效果相当,且均优于AMSU-A 资料。(2) 同一颗卫星不同传感器资料的差异较大,同化AMSU-B 资料的改善较为明显,HIRS-3 次之,AMSU-A较差,而同时同化不同资料并没有带来更为明显的改善。(3) 同时同化多颗卫星ATOVS 资料的试验表明,将多种资料引入到同化系统的同时,也带来相应的累积误差,因而仅同化一颗卫星可能比同时同化两颗或三颗卫星ATOVS 资料的效果要好。   相似文献   

13.
利用WRF模式选用不同的边界层参数化方案 (YSU、MRF) 结合三种陆面过程方案 (RUC、SLAB、Noah) , 模拟了2011年5月1~3日的四川东部暴雨过程, 对不同参数化方案结合不同陆面过程结果进行对比试验基础上发现, 模式对24h降水落区及强度有较强预报能力, 但对单站小时降水分布的预报能力还需改进;不同边界层方案与陆面过程的对比试验说明降水对于边界层物理过程有一定敏感性, 各试验的差异主要体现在对暴雨中心雨强以及降水峰值强度和峰值出现时段的预报上;WRF模式基本上能够模拟出边界层要素日变化特征。   相似文献   

14.
极轨卫星的高级微波温度计(Advanced Microwave Sounding Unit-A,简称AMSU-A)辐射资料对提高降水定量预报的水平有重要作用.但是极轨卫星的轨道特征导致乘载其上的微波温度计资料在区域同化系统中存在严重缺测.本研究重点分析了晨昏轨道卫星上微波温度计资料同化对墨西哥湾沿岸定量降水预报的重要影响.研究选取了早晨星NOAA-15、上午星MetOp-A和下午星NOAA-18,利用美国NCEP(National Centers for Environmental Prediction)的业务同化系GSI(Gridpoint Statistical Interpolation)资料同化系统,进行了加和不加NOAA-15 AMSU-A资料的两组资料同化和预报试验,来阐明晨昏轨道卫星上微波温度计资料同化对墨西哥湾沿岸降水预报的重要影响.试验结果分析表明如果仅同化NOAA-18和MetOp-A资料,在协调世界时00:00和12:00的同化时间,在墨西哥湾和美国西部大陆就是卫星观测资料缺测区,而早晨星NOAA-15资料正好可以填补这个资料空缺.模式预报也表明,同化NOAA-15的AMSU-A资料可以对墨西哥湾降水有持续的正影响.这一研究证明了保持有搭载着AMSU-A或者相似仪器的早晨星,对区域降水预报的重要性.由于目前NOAA-15是唯一的一颗正在运行的、已远超过其正常运行期的早晨星,通过技术手段维持NOAA-15的AMSU-A仪器更超长期运行也就特别重要.  相似文献   

15.
ATOVS资料同化方案对暴雨模拟效果的影响   总被引:4,自引:2,他引:2  
张斌  张立凤  熊春晖 《大气科学》2014,38(5):1017-1027
本文利用WRF 模式及其3DVar 同化系统,以2009 年6 月29 日00 时到30 日00 时的湖北鹤峰暴雨为研究个例,对ATOVS 探测器的AMSU-A、AMSU-B 和HIRS 三类资料进行了不同的同化方案试验。结果表明:同化ATOVS 三类资料对暴雨模拟的影响不同,HIRS 资料对暴雨模拟效果改进最大,AMSU-B 次之,AMSU-A 最小。同时同化ATOVS 三类资料时,AMSU-A 资料起主要作用,其同化效果与同时同化ATOVS 三类资料相近,优化组合同化AMSU-B 和HIRS 资料的效果最好。同化ATOVS 不同资料对初始要素场的影响不同,AMSU-A 资料主要影响大气温度场,AMSU-B 资料对中高空要素场的影响较大,HIRS 资料对低空湿度场及风场的协同改变最有利于降水模拟的改善。同时ATOVS 资料的稀疏分辨率也是影响同化效果的一个因子,在模式分辨率不变时,同化资料稀疏分辨率可能存在最佳选择。  相似文献   

16.
Back propagation neural networks are used to retrieve atmospheric temperature profiles from NOAA-16 Advanced Microwave Sounding Unit-A (AMSU-A) measurements over East Asia. The collocated radiosonde observation and AMSU-A data over land in 2002-2003 are used to train the network, and the data over land in 2004 are used to test the network. A comparison with the multi-linear regression method shows that the neural network retrieval method can significantly improve the results in all weather conditions. When an offset of 0.5 K or a noise level of ±0.2 K is added to all channels simultaneously, the increase in the overall root mean square (RMS) error is less than 0.1 K. Furthermore, an experiment is conducted to investigate the effects of the window channels on the retrieval. The results indicate that the brightness temperatures of window channels can provide significantly useful information on the temperature retrieval near the surface. Additionally, the RMS errors of the profiles retrieved with the trained neural network are compared with the errors from the International Advanced TOVS (ATOVS) Processing Package (IAPP). It is shown that the network-based algorithm can provide much better results in the experiment region and comparable results in other regions. It is also noted that the network can yield remarkably better results than IAPP at the low levels and at about the 250-hPa level in summer skies over ocean. Finally, the network-based retrieval algorithm developed herein is applied in retrieving the temperature anomalies of Typhoon Rananim from AMSU-A data.  相似文献   

17.
Experiments are performed in this paper to understand the influence of satellite radiance data on the initial field of a numerical prediction system and rainfall prediction. First, Advanced Microwave Sounder Unit A (AMSU-A) and Unit B (AMSU-B) radiance data are directly used by three-dimensional variational data assimilation to improve the background field of the numerical model. Then, the detailed effect of the radiance data on the background field is analyzed. Secondly, the background field, which is formed by application of Advanced Television and Infrared Observation Satellite Operational Vertical Sounder (ATOVS) microwave radiance assimilation, is employed to simulate some heavy rainfall cases. The experiment results show that the assimilation of AMSU-A (B) microwave radiance data has a certain impact on the geopotential height, temperature, relative humidity and flow fields. And the impacts on the background field are mostly similar in the different months in summer. The heavy rainfall experiments reveal that the application of AMSU-A (B) microwave radiance data can improve the rainfall prediction significantly. In particular, the AMSU-A radiance data can significantly enhance the prediction of rainfall above 10 mm within 48 h, and the AMSU-B radiance data can improve the prediction of rainfall above 50 mm within 24 h. The present study confirms that the direct assimilation of satellite radiance data is an effective way to improve the prediction of heavy rainfall in the summer in China.  相似文献   

18.
Based on the newly developed Weather Research and Forecasting model(WRF)and its three-dimensional variational data assimilation(3DVAR)system,this study constructed twelve experiments to explore the impact of direct assimilation of different ATOVS radiance on the intensity and track simulation of super-typhoon Fanapi(2010)using a data assimilation cycle method.The result indicates that the assimilation of ATOVS radiance could improve typhoon intensity effectively.The average bias of the central sea level pressure(CSLP)drops to 18 hPa,compared to 42 hPa in the experiment without data assimilation.However,the influence due to different radiance data is not significant,which is less than 6hPa on average,implying limited improvement from sole assimilation of ATOVS radiance.The track issue is studied in the following steps.First,the radiance from the same sensor of different satellites could produce different effect.For the AMSU-A,NOAA-15 and NOAA-18,they produce equivalent improvement,whereas NOAA-16 produces slightly poor effect.And for the AMSU-B,NOAA-15 and NOAA-16,they produce equivalent and more positive effect than that provided by the AMSU-A.Second,the assimilation radiance from different sensors of the identical satellites could also produce different effect.The assimilation of AMSU-B produces the largest improvement,while the ameliorating effect of HIRS/3assimilation is inferior to that of AMSU-B assimilation,while the AMSU-A assimilation exhibits the poorest improvement.Moreover,the simultaneous assimilation of different radiance could not produce further improvement.Finally,the experiments of simultaneous assimilation radiance from multiple satellites indicate that such assimilation may lead to negative effect due to accumulative bias when adding various radiance data into the data assimilation system.Thus the assimilation of ATOVS radiance from a single satellite may perform better than that from two or three satellites.  相似文献   

19.
Direct assimilation of cloud-affected microwave brightness temperatures from AMSU-A into the GSI three-dimensional variational(3D-Var) assimilation system is preliminarily studied in this paper. A combination of cloud microphysics parameters retrieved by the 1D-Var algorithm(including vertical profiles of cloud liquid water content, ice water content, and rain water content) and atmospheric state parameters from objective analysis fields of an NWP model are used as background fields. Three cloud microphysics parameters(cloud liquid water content, ice water content, and rain water content) are applied to the control variable. Typhoon Halong(2014) is selected as an example. The results show that direct assimilation of cloud-affected AMSU-A observations can effectively adjust the structure of large-scale temperature, humidity and wind analysis fields due to the assimilation of more AMSU-A observations in typhoon cloudy areas, especially typhoon spiral cloud belts. These adjustments, with temperatures increasing and humidities decreasing in the movement direction of the typhoon,bring the forecasted typhoon moving direction closer to its real path. The assimilation of cloud-affected satellite microwave brightness temperatures can provide better analysis fields that are more similar to the actual situation. Furthermore, typhoon prediction accuracy is improved using these assimilation analysis fields as the initial forecast fields in NWP models.  相似文献   

20.
WRF中土壤图及参数表的更新对华北夏季预报的影响研究   总被引:2,自引:0,他引:2  
卢冰  王薇  杨扬  仲跻芹  陈敏 《气象学报》2019,77(6):1028-1040
土壤质地及其物理性质的参数化对陆面过程模拟具有明显的影响。研究了土壤质地和土壤水文参数表的更新对WRF(Weather Research and Forecasting)模拟性能的影响。使用北京师范大学土壤属性数据集和修正后的土壤水文参数表替换WRF默认数据,对2017年6—8月华北地区开展数值模拟试验和评估验证。结果表明,模拟结果对土壤类型数据集和水文参数表的更新较为敏感,对地面要素预报有正效果。WRF默认土壤数据集中,中国东部以粘壤土为主,而在北京师范大学土壤数据集里则以壤土为主;修正后的土壤水文参数在Noah陆面过程中增强了裸土潜热蒸发能力。数值模拟试验表明,土壤输入数据和土壤水文参数的更新能够增强陆面向大气的潜热同时减弱感热输送,致使大气底层温度降低而湿度增大。利用华北区域748个地面气象观测站的2 m温度和2 m湿度对2017年夏季的模拟结果进行验证,结果显示更新试验对地面要素的预报偏差有较好的修正作用,能够将2 m温、湿度的预报技巧分别提高3.4%和2.9%。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号