首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000.While the seasonal variation in sensible heat flux is found to be consistent between station observations and the two reanalysis datasets,both land-air temperatures difference and surface wind speed show remarkable systematic differences.The sensible heat flux displays obvious interdecadal variability that is season-dependent.In the ERA-40 data,the sensible heat flux in spring,fall,and winter shows interdecadal variations that are similar to observations.In the NCEP-NCAR reanalysis data,sensible heat flux variations are inconsistent with and sometimes even opposite to observations.While surface wind speeds from the NCEP-NCAR reanalysis data show interdecadal changes consistent with station observations,variations in land-air temperature difference differ greatly from the observed dataset.In terms of land-air temperature difference and surface wind speed,almost no consistency with observations can be identified in the ERA-40 data,apart from the land-air temperature difference in fall and winter.These inconsistencies pose a major obstacle to the application in climate studies of surface sensible heat flux derived from reanalysis data.  相似文献   

2.
Observations of surface-layer turbulence and turbulent fluxes were made over a desert in northwestern China as a part of HEIFE (HEIhe river Field Experiment). These show that the normalized variations of the vertical wind component and of the air temperature obey Monin-Obukhov similarity well, especially in free convective conditions. However, the variations of specific humidity do not obey Monin-Obukhov similarity.Mean bulk transfer coefficients of sensible heat and momentum flux are obtained as functions of stability over a wide stability range from the observed data of turbulent fluxes and mast profiles. However, the bulk transfer coefficient for water vapor could not be obtained because of the large scatter of the data. In free convective conditions, the sensible heat flux was found to be approximately proportional to the 1.4 power of temperature difference between the surface and 20m. The bulk transfer coefficient of sensible heat is also obtained as a function of the bulk Richardson number for practical convenience.  相似文献   

3.
塔克拉玛干沙漠腹地大气边界层参数化方案的模拟评估   总被引:1,自引:0,他引:1  
沙尘起沙、沉降、传输均受到沙漠地区大气边界层条件的制约。沙漠地区观测资料匮乏,限制大气边界层模拟效果的检验和评估。利用WRFV3.7.1中尺度数值模式中5种边界层参数化方案(ACM2、BL、MYJ、MYNN2.5、YSU),模拟2014年4月塔克拉玛干沙漠大气边界层特征,并与塔中80 m塔及风廓线雷达晴朗天气下的观测资料对比分析。结果表明:5种方案均能模拟出近地面气温及地表温度,边界层高度,感热、潜热、地表热通量的变化趋势,但未能模拟出边界层风速的日变化趋势,温风湿廓线能较好的反映晴日沙漠地区边界层结构的变化特征,但未模拟出风速随高度变化趋势。沙漠地区下垫面干燥,热容量低,晴天极易形成对流不稳定边界层,非局地湍流参数化方案,ACM2方案是沙漠地区大气边界层模拟较为合理的选择。  相似文献   

4.
本文简要介绍了青藏高原东坡理塘大气综合观测站的情况。利用该站20072008年观测资料, 分析比较了青藏高原东坡地区高原草甸下垫面情况下近地层气象要素及能量输送的季节变化特征。结果表明:理塘地区近地层气象要素及能量输送的季节变化显著, 具有明显的水热同期特点。各个季节近地层气象要素和湍流通量, 如风、气温、感热通量、潜热通量等, 日变化显著。风速、动量通量、摩擦速度等要素的平均日最大值和最小值分别出现在下午和日出前。比湿的峰值出现在日出前。辐射和热平衡分量的日均最大值与最小值分别出现在正午及日出前。地表热源强度分析表明, 理塘白天为热源, 在春夏秋三季夜间为弱的热源与冷源交替出现。在雨季, 潜热输送在陆气间热量交换过程中占主导作用, 感热输送是次要的;干季的结果与雨季相反, 感热是首要的。   相似文献   

5.
Spectral analysis was performed on aircraft observations of a convective boundary layer (CBL) that developed over a thermally inhomogeneous, well-marked mesoscale land surface. The observations, part of the GAME-Siberia experiment, were recorded between April and June 2000 over the Lena River near Yakutsk City. A special integral parameter termed the ‘reduced depth of the CBL’ was used to scale the height of the mixed layer with variable depth. Analysis of wavelet cospectra and spectra facilitated the separation of fluxes and other variables into small-scale turbulent fluctuations (with scales less than the reduced depth of the CBL, approximately 2 km) and mesoscale fluctuations (up to 20 km). This separation approach allows for independent exploration of the scales. Analyses showed that vertical distributions obeyed different laws for small-scale fluxes and mesoscale fluxes (of sensible heat, water vapour, momentum and carbon dioxide) and for other variables (wind speed and air temperature fluctuations, coherence and degree of anisotropy). Vertical profiles of small-scale turbulent fluxes showed a strong decay that differed from generally accepted similarity models for the CBL. Vertical profiles of mesoscale fluxes and other variables clearly showed sharp inflections at the same relative (with respect to the reduced depth of the CBL) height of approximately 0.55 in the CBL. Conventional similarity models for sensible heat fluxes describe both small-scale turbulent and mesoscale flows. The present results suggest that mesoscale motions that reach up to the relative level of 0.55 could be initiated by thermal surface heterogeneity. Entrainment between the upper part of the CBL and the free atmosphere may cause mesoscale motions in that region of the CBL.  相似文献   

6.
The Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer (PBL) scheme is a second-order turbulence closure model that is an improved version of the Mellor–Yamada scheme based on large-eddy simulation data. It simulates PBL structure and evolution well, particularly over the ocean surface. However, when used with various underlying surfaces in China, the scheme overestimates the turbulent momentum flux and the sensible heat flux. Based on observations of surface fluxes in China, we attempt to improve the MYNN model by modifying the parameters and representation of the turbulence scale. Closure constants and empirical expressions in the diagnostic equation are chosen first, and an additional component of the turbulent heat flux is considered in the potential temperature prognostic equation to improve the surface heat-flux modelling. The modified MYNN scheme is incorporated into a three-dimensional mesoscale model and is evaluated using various underlying surface observations. Amelioration of the surface turbulent fluxes is confirmed at five observational sites in China over different land-use types.  相似文献   

7.
Wind-turbine-wake evolution during the evening transition introduces variability to wind-farm power production at a time of day typically characterized by high electricity demand. During the evening transition, the atmosphere evolves from an unstable to a stable regime, and vertical stratification of the wind profile develops as the residual planetary boundary layer decouples from the surface layer. The evolution of wind-turbine wakes during the evening transition is examined from two perspectives: wake observations from single turbines, and simulations of multiple turbine wakes using the mesoscale Weather Research and Forecasting (WRF) model. Throughout the evening transition, the wake’s wind-speed deficit and turbulence enhancement are confined within the rotor layer when the atmospheric stability changes from unstable to stable. The height variations of maximum upwind-downwind differences of wind speed and turbulence intensity gradually decrease during the evening transition. After verifying the WRF-model-simulated upwind wind speed, wind direction and turbulent kinetic energy profiles with observations, the wind-farm-scale wake evolution during the evening transition is investigated using the WRF-model wind-farm parametrization scheme. As the evening progresses, due to the presence of the wind farm, the modelled hub-height wind-speed deficit monotonically increases, the relative turbulence enhancement at hub height grows by 50%, and the downwind surface sensible heat flux increases, reducing surface cooling. Overall, the intensifying wakes from upwind turbines respond to the evolving atmospheric boundary layer during the evening transition, and undermine the power production of downwind turbines in the evening.  相似文献   

8.
Abstract

The effects of small‐scale surface inhomogeneities on the turbulence structure in the convective boundary layer are investigated using a high‐resolution large‐eddy simulation model. Surface heat flux variations are sinusoidal and two‐dimensional, dividing the total domain into a checkerboard‐like pattern of surface hot spots with a 500‐m wavelength in the x and y directions, or 1/4 of the domain size. The selected wind speeds were 1 and 4 m s‐l, respectively. As a comparison, a simulation of the turbulence structure was performed over a homogeneous surface.

When the wind speed is light, surface heat flux variations influence the horizontally averaged turbulence statistics, including the higher moments despite the small characteristic length of the surface perturbation. Stronger mean wind speeds weaken the effects of inhomogeneous surface conditions on the turbulence structure in the convective boundary layer.

Results from conditional sampling show that when the mean wind speed is small, weak mean circulations occur, with updraft branches above the high heat flux regions and down‐draft branches above the low heat flux regions. The inhomogeneous surface induces significant differences in the turbulence statistics between the high and low heat flux regions. However, the effect of the surface perturbations weaken rapidly when the mean wind speed increases. This research has implications in the explanation of the large‐scale variability commonly encountered in aircraft observations of atmospheric turbulence.  相似文献   

9.
Summary An aircraft-based experimental investigation of the atmospheric boundary layer (ABL) structure and of the energy exchange processes over heterogeneous land surfaces is presented. The measurements are used for the validation of the mesoscale atmospheric model “Lokal-Modell” (LM) of the German Weather Service with 2.8 km resolution. In addition, high-resolution simulations using the non-hydrostatic model FOOT3DK with 250 m resolution are performed in order to resolve detailed surface heterogeneities. Two special observation periods in May 1999 show comparable convective boundary layer (CBL) conditions. For one case study vertical profiles and area averages of meteorological quantities and energy fluxes are investigated in detail. The measured net radiation is highly dependent on surface albedo, and the latent heat flux exhibits a strong temporal variability in the investigation area. A reduction of this variability is possible by aggregation of multiple flight patterns. To calculate surface fluxes from aircraft measurements at low altitude, turbulent energy fluxes were extrapolated to the ground by the budget method, which turned out to be well applicable for the sensible heat flux, but not for the latent flux. The development of the ABL is well captured by the LM simulation. The comparison of spatiotemporal averages shows an underestimation of the observed net radiation, which is mainly caused by thin low-level clouds in the LM compared to observed scattered CBL clouds. The sensible heat flux is reproduced very well, while the latent flux is highly overestimated especially above forests. The realistic representation of surface heterogeneities in the investigation area in the FOOT3DK simulations leads to improvements for the energy fluxes, but an overestimation of the latent heat flux still persists. A study of upscaling effects yields more structures than the LM fields when averaged to the same scale, which are partly caused by the non-linear effects of parameter aggregation on the LM scale.  相似文献   

10.
This paper extends previous large-eddy simulations of the convective boundary layer over a surface with a spatially varying sensible heat flux. The heat flux variations are sinusoidal and one-dimensional. The wavelength is 1500 or 4500 m (corresponding to 1.3 and 3.8 times the boundary-layer depth, respectively) and the wind speed is 0, 1 or 2 m s-1.In every case the heat flux variation drives a mean circulation. As expected, with zero wind there is ascent over the heat flux maxima. The strength of the circulation increases substantially with an increase in the wavelength of the perturbation. A light wind weakens the circulation drastically and moves it downwind. The circulation has a significant effect on the average concentration field from a simulated, elevated source.The heat flux variation modulates turbulence in the boundary layer. Turbulence is stronger (in several senses) above or downwind of the heat flux maxima than it is above or downwind of the heat flux minima. The effect remains significant even when the mean circulation is very weak. There are effects too on profiles of horizontal-average turbulence statistics. In most cases the effects would be undetectable in the atmosphere.We consider how the surface heat flux variations penetrate into the lower and middle boundary layer and propose that to a first approximation the process resembles passive scalar diffusion.The research reported in this paper was conducted while the first author was on study leave at Colorado State University.  相似文献   

11.
Vertical heat fluxes induced by mesoscale thermally driven circulations maycontribute significantly to the subgrid-scale fluxes in large-scale models (e.g.,general circulation models). However, they are not considered in these modelsyet. To gain insight into the importance and possible parameterisation of themesoscale flux associated with slope winds, an analytical (conceptual) modelis developed to describe the relationship between the mesoscale heat flux andatmospheric and land-surface characteristics. The analytical model allows usto evaluate the mesoscale flux induced by slope winds from only a few profilemeasurements within a domain. To validate the analytical model the resultingheat flux profiles are compared to profiles of highly resolved wind and temperaturefields obtained by simulations with a mesoscale numerical model.With no or moderate synoptic wind the mesoscale heat flux generated by the slopewind circulation may be as large as, or even larger than, the turbulent fluxes at thesame height. At altitudes lower than the crest of the hills the mesoscale flux is alwayspositive (upward). Generally it causes cooling within the boundary layer and heatingabove. Despite the simplifications made to derive the analytical model, it reproducesthe profiles of the mesoscale flux quite well. According to the analytical model, themesoscale heat flux is governed by the temperature deviation at the slope surface, thedepth of the slope-wind layer, the large-scale lapse rate, and the wavelength of thetopographical features.  相似文献   

12.
The kinetic energy variations of mean flow and turbulence at three levels in the surface layer were calculated by using eddy covariance data from observations at Jinta oasis in 2005 summer.It is found that when the mean horizontal flow was stronger,the turbulent kinetic energy was increased at all levels,as well as the downward mean wind at the middle level.Since the mean vertical flow on the top and bottom were both negligible at that time,there was a secondary circulation with convergence in the upper half and divergence in the lower half of the column.After consideration of energy conversion,it was found that the interaction between turbulence and the secondary circulation caused the intensification of each other.The interaction reflected positive feedback between turbulence and the vertical shear of the mean flow.Turbulent sensible and latent heat flux anomaly were also analyzed.The results show that in both daytime and at night,when the surface layer turbulence was intensified as a result of strengthened mean flow,the sensible heat flux was decreased while the latent heat flux was increased.Both anomalous fluxes contributed to the cold island effect and the moisture island effect of the oasis.  相似文献   

13.
Synthetic wind speed and air temperature profiles based on the sensible heat flux density and stress at the surface are averaged for the four possible ways in which the suface stress and heat flux density can vary maintaining the same average values. The analysis of the averaged wind and temperature profiles shows that, when the surface stress and/or heat flux density are time-variable, and wind speed and air temperature are averaged linearly, an erroneous estimate of surface roughness, surface stress, heat flux density and profile structure parameters will result.  相似文献   

14.
Renewable energy sources, especially wind power, were believed to be able to slow down global warming; however, evidence in recent years shows that wind farms may also induce climate change. With the rapid development of wind power industry, the number of wind farms installed in mountains has gradually increased. Therefore, it is necessary to study the impact of wind farms in mountainous areas on local climate. The Suizhou and Dawu wind farms in northern Hubei Province were chosen for the present study on the impact of wind farm operations on the local climate in mountainous areas. The mesoscale meteorological numerical model Weather Research and Forecasting Model (WRF) and the Fitch model, together with turbulence correction factor, were used to simulate wind farm operations and study their effects on local climate. The results showed the characteristics of wind speed attenuation in mountainous wind farms: the amplitude and range of wind speed attenuation were stronger in the nighttime than in the daytime, and stronger in summer than in winter. The surface temperature increased and became more significant in summer. However, a cooling variation was observed above the surface warming center. The height of this center was higher in the daytime than it was in the nighttime. The latent heat flux in the wind farms decreased at night, accompanied by an increase in sensible heat flux. However, these changes were not significant. Some differences were observed between the impact of wind farms on the climate in the plains and the mountains. Such differences are more likely to be related to complex terrain conditions, climate conditions, and the density of wind turbines. The present study may provide support for the development and construction of wind farms in mountainous areas.  相似文献   

15.
Summary  The Bowen Ratio-Energy Balance (BREB) and the aerodynamic method were used to estimate turbulent fluxes of sensible and latent heat flux over an irrigated agricultural area (IAA) and over two dry agricultural areas (DAA1 and DAA2). These turbulent fluxes were analysed and particular attention paid to two specific areas. First, a quantitative analysis of sensible and latent heat fluxes obtained by the BREB method was carried out, taking into account different soil type, vegetation and surface conditions. The results showed that in IAA latent heat flux was higher than sensible heat flux, except in summer months, while in DAA1 and DAA2, sensible heat flux was higher except in the months when the vegetation was at the stage of maximum development. Second, sensible and latent heat fluxes estimates from the BREB method were compared with those obtained from the aerodynamic method. In this comparison factors such as soil type, soil vegetation cover, homogeneity or inhomogeneity of terrain and mesoscale effects such as orography and wind patterns were taken into account. The results show that in conditions of light wind, the two methods only concur if the condition of horizontal homogeniety is fulfilled. The influence of inhomogeneity seems to decrease and agreement between methods improves, if the wind is stronger and the effects of meso and synoptic scales are predominant. Received May 18, 1999/Revised March 15, 2000  相似文献   

16.
The difficulties associated with the parameterization of turbulence in the stable nocturnal planetary boundary layer (PBL) have been a great challenge for the nighttime predictions from mesoscale meteorological models such as MM5. As such, there is a general consensus on the need for better stable boundary-layer parameterizations. To this end, two new turbulence parameterizations based on the measurements of the Vertical Transport and Mixing (VTMX) field campaign were implemented and evaluated in MM5. A unique aspect of this parameterization is the use of a stability-dependent turbulent Prandtl number that allows momentum to be transported by the internal waves, while heat diffusion is impeded by the stratification. This improvement alleviates the problem of over-prediction of heat diffusion under stable conditions, which is a characteristic of conventional atmospheric boundary-layer schemes, such as the Medium Range Forecast (MRF) and Blackadar schemes employed in MM5. The predictions made with the new PBL scheme for the complex terrain airshed of Salt Lake City were compared with those made with a default scheme of MM5, and with observations made during the VTMX campaign. The new schemes showed an improvement in predictions, particularly for the nocturnal near-surface temperature. Surface wind predictions also improved slightly, but not to the extent of temperature predictions. The default MRF scheme showed a significantly higher surface temperature than observed, which could be attributed to the enhanced vertical heat exchange brought about by its turbulence parameterization. The modified parameterizations reduced the surface sensible heat flux, thus enhancing the strength of the near-surface inversion and lowering the temperature towards the observed values.  相似文献   

17.
Mesoscale surface turbulent fluxes over a complex terrain surrounded by oceans have been investigated using a 3-D numerical mesoscale model, under conditions with and without synoptic flows. The study indicated that under synoptically calm condition, the allocation and intensity of mesoscale surface turbulent fluxes (MSTFs) were greatly impacted by the thermally forced mesoscale circulation (TFMC) over mesoscale heterogeneous landscape. The max-imum values of sensible (Hs) and latent (LE) heat fluxes were located over the convergent zones and considerably im-pacted by the soil wetness (M), but did not depend strongly on the atmospheric background thermal stability (β0). The simulated results suggested that the sensible heat flux was closely proportional to the square of wind speed in the surface layer. By the action of synoptic flow, the allocation of LE was shifted to downwind, its intensity increased.  相似文献   

18.
Variability of Surface Sensible Heat Flux over Northwest China   总被引:2,自引:0,他引:2       下载免费PDF全文
The present study documents the variability of surface sensible heat flux over Northwest China using station observations for the period 1961 2000.It is found that the afternoon and nighttime sensible heat flux variations are remarkably different.The variability of the instant flux in the afternoon is much larger than in the nighttime.The afternoon and nighttime flux anomalies tend to be opposite.The diurnal and seasonal dependence of sensible heat flux variations is closely related to the diurnal cycle of mean land-air temperature difference.The relationship of sensible heat flux with land-air temperature difference based on the instant value differs from that based on the daily mean.The present study indicates the importance for the models to properly simulate mean land-air temperature difference and its diurnal and seasonal variations in order to capture surface sensible heat flux variability over Northwest China and predicts its plausible impacts on climate.  相似文献   

19.
We investigate the impact of observed surface heterogeneities during the LITFASS-2003 experiment on the convective boundary layer (CBL). Large-eddy simulations (LES), driven by observed near-surface sensible and latent heat fluxes, were performed for the diurnal cycle and compare well with observations. As in former studies of idealized one- and two-dimensional heterogeneities, secondary circulations developed that are superimposed on the turbulent field and that partly take over the vertical transport of heat and moisture. The secondary circulation patterns vary between local and roll-like structures, depending on the background wind conditions. For higher background wind speeds, the flow feels an effective surface heat-flux pattern that derives from the original pattern by streamwise averaging. This effective pattern generates a roll-like secondary circulation with roll axes along the mean boundary-layer wind direction. Mainly the upstream surface conditions control the secondary circulation pattern, where the fetch increases with increasing background wind speed. Unlike the entrainment flux that appears to be slightly decreased compared to the homogeneously-heated CBL, the vertical flux of sensible heat appears not to be modified in the mixed layer, while the vertical flux of latent heat shows different responses to secondary circulations. The study illustrates that sufficient time averaging and ensemble averaging is required to separate the heterogeneity-induced signals from the raw LES turbulence data. This might be an important reason why experiments over heterogeneous terrain in the past did not give any clear evidence of heterogeneity-induced effects.  相似文献   

20.
Aircraft turbulence data from the Autonomous Ocean Sampling Network project were analyzed and compared to the Coupled Ocean–Atmosphere Response Experiment (COARE) bulk parametrization of turbulent fluxes in an ocean area near the coast of California characterized by complex atmospheric flow. Turbulent fluxes measured at about 35 m above the sea surface using the eddy-correlation method were lower than bulk estimates under unstable and stable atmospheric stratification for all but light winds. Neutral turbulent transfer coefficients were used in this comparison because they remove the effects of mean atmospheric conditions and atmospheric stability. Spectral analysis suggested that kilometre-scale longitudinal rolls affect significantly turbulence measurements even near the sea surface, depending on sampling direction. Cross-wind sampling tended to capture all the available turbulent energy. Vertical soundings showed low boundary-layer depths and high flux divergence near the sea surface in the case of sensible heat flux but minimal flux divergence for the momentum flux. Cross-wind sampling and flux divergence were found to explain most of the observed discrepancies between the measured and bulk flux estimates. At low wind speeds the drag coefficient determined with eddy correlation and an inertial dissipation method after corrections were applied still showed high values compared to bulk estimates. This discrepancy correlated with the dominance of sea swell, which was a usually observed condition under low wind speeds. Under stable atmospheric conditions measured sensible heat fluxes, which usually have low values over the ocean, were possibly affected by measurement errors and deviated significantly from bulk estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号