首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The dynamic strain and strength of frozen silt under long-term dynamic loading are studied based on creep tests. Three groups of tests are performed (Groups I, II, and III). The initial deviator stresses of Groups I and II are same and the dynamic stress amplitude of Group II is twice as that of Group I. The minimum value of dynamic stress in Group III is near zero and its dynamic stress amplitude is larger than those of Groups I and II. In tests of all three groups there are similar change trends of accumulative strain, but with different values. The accumulative strain curves consist of three stages, namely, the initial stage, the steady stage, and the gradual flow stage. In the tests of Groups I and II, during the initial stage with vibration times less than 50 loops the strain amplitude decreased with the increase of vibration times and then basically remained constant, fluctuating in a very small range. For the tests of Group III, during the initial and steady stages the strain amplitude decreased with the increase of vibration times, and then increased rapidly in the gradual flow stage. The dynamic strength of frozen silt decreases and trends to terminal dynamic strength as the vibration times of loading increase.  相似文献   

2.
Numerical simulation is known as an effective method for mechanical properties during frozen soil excavation. In order to reveal the development of cutting force, effective stress and cutting fragments in frozen silt during the cutting process, we introduce an explicit finite element program LS-DYNA to establish a two-dimensional numerical model of the frozen soil cut. We also use the Holmquist-Johnson-Cook(HJC) damage constitutive model for simulating the variation of soil mechanical properties according to the strong dependence between the cutting tool and frozen silt during the process with different cutting depths, angles and velocities. Meanwhile, a series of experimental results are acquired of frozen silt cutting to prove the application of the HJC model during simulation of cutting force variations. The result shows that the cutting force and fragment size are strongly influenced by cutting depths and cutting velocities increased, and the maximum effective stress at points where the tool contacts frozen soil during the cutting process. In addition, when the cutting angle is 52°, the cutting force is the smallest, and the cutting angle is optimum. Thus, the prediction of frozen soil mechanical properties on the cutting process by this model is conducive to selecting machinery equipment in the field.  相似文献   

3.
Freezing and thawing during the winter season change soil properties such as density. The density change in the particulate media influences soil stiffness. In addition, freezing of partially or fully saturated soils changes the soil matrix from a particulate media to a continuum. The goal of this study is to investigate the cyclic freezing and thawing effects on elastic waves. Sand-silt mixtures with 10% silt fraction in weight and 40% saturation are prepared. The sand-silt mixtures are placed in a nylon cell, onto which a pair of bender elements and a pair of piezoelectric disk elements are installed for the measurement of shear and compressional waves, respectively. The temperature of the mixtures decreases from 20°C to 10°C to freezing. The frozen sample is gradually thawed at room temperature (20°C). These freezing-thawing processes are repeated three times. The test result shows that the shear and compressional wave velocities significantly increase when the specimen is frozen. When the temperature is greater than 0°C, the elastic wave velocities are lower during thawing than during freezing due to soil structure change. This study demonstrates that soil structure change during the winter season may be effectively estimated from elastic waves.  相似文献   

4.
Aboveground biomass in Tibetan grasslands   总被引:2,自引:0,他引:2  
This study investigated spatial patterns and environmental controls of aboveground biomass (AGB) in alpine grasslands on the Tibetan Plateau by integrating AGB data collected from 135 sites during 2001–2004 and concurrent enhanced vegetation index derived from MODIS data sets. The AGB was estimated at 68.8 g m?2, with a larger value (90.8 g m?2) in alpine meadow than in alpine steppe (50.1 g m?2). It increased with growing season precipitation (GSP), but did not show a significant overall trend with growing season temperature (GST) although it was negatively correlated with GST at dry environments (<200 mm of GSP). Soil texture also influenced AGB, but the effect was coupled with precipitation; increased silt content caused a decrease of AGB at small GSP, and generated a meaningful increase under humid conditions. The correlation between AGB and sand content indicated an opposite trend with that between AGB and silt content. An analysis of general linear model depicted that precipitation, temperature, and soil texture together explained 54.2% of total variance in AGB. Our results suggest that moisture availability is a critical control of plant production, but temperature and soil texture also affect vegetation growth in high-altitude regions.  相似文献   

5.
The soil-freezing characteristic curve (SFCC), which represents the relationship between unfrozen water content and sub-freezing temperature (or suction at ice-water interface) in a freezing soil, can be used for understanding the transportation of heat, water, and solute in frozen soils. In this paper, the soil freezing process and the similarity between the SFCC of saturated frozen soil and soil-water characteristic curve (SWCC) of unfrozen unsaturated soil are reviewed. Based on similar characteristics between SWCC and SFCC, a conceptual SFCC is drawn for illustrating the main features of soil freezing and thawing processes. Various SFCC expressions from the literature are summarized. Four widely used expressions (i.e., power relationship, exponential relationship, van Genuchten 1980 equation and Fredlund and Xing 1994 equation) are evaluated using published experimental data on four different soils (i.e., sandy loam, silt, clay, and saline silt). Results show that the exponential relationship and van Genuchten (1980) equation are more suitable for sandy soils. The simple power relationship can be used to reasonably best-fit the SFCC for soils with different particle sizes; however, it exhibits limitations when fitting the saline silt data. The Fredlund and Xing (1994) equation is suitable for fitting the SFCCs for all soils studied in this paper.  相似文献   

6.
To investigate the mechanical properties of ice-saturated frozen soil, a series of triaxial tests under various confining pressures(0.5 to 9.0 MPa) on ice-saturated frozen loess with ice content of 23.7% were carried out at a temperature-6 °C, and at 1.25 mm/min of loading rate. The triaxial tests include two loading modes, one with monotonic loading(i.e., triaxial compression), and another with static cycle loading. The test results under triaxial compression show that the strength and deformation behaviors of ice-saturated frozen loess are affected by confining pressure. According to the test results of triaxial loading-unloading cycle test, the elastic modulus evolution with the number of cycles under different confining pressures are analyzed.  相似文献   

7.
Ultrasonic detection technology is of great significance in the detection and evaluation of physical and mechanical properties of frozen soil, but wave propagation characteristics in frozen soil are unclear. Based on the three-phase composition of frozen saturated soil and the mixture theory, considering Bishop's effective stress formula, the wave propagation equations are establish for frozen saturated soil. In wave propagation, an entropy inequality was introduced to describe the coupling of different phases. The analytic expressions of propagation velocity and attenuation law of waves in frozen soil are obtained, and wave propagation characteristics in frozen saturated soil are discussed. Results show that four types of waves(i.e., P1, P2, P3 and S) are found in frozen saturated soil and all four wave types are dissipative waves, in which the attenuation of P3 is the maximum. The velocity of four waves increases sharply at the excitation frequency range of 10~3–10~9 Hz,but the wave velocity at high-frequency and low-frequency is almost constant. When volume ice content increases, the wave propagation velocity of P1 and S decreases dramatically, and the velocity of P2 increases gradually, but P3 velocity increases first and then decreases to zero with increasing saturation. The attenuation coefficients of P1 and S waves begins to increase gradually when the volume ice content is about 0.4, P2 increases first and then decreases with an increase of volume ice content and P3 increases with the volume ice content and decreases rapidly from extreme to zero.  相似文献   

8.
Dynamic characteristics of heavy-haul railway subgrade under vibratory loading in cold regions are investigated via low-temperature dynamic triaxial tests with multi-stage cyclic loading process. The relationship between dynamic shear stress and dynamic shear strain of frozen soil of subgrade under train loading and the influence of freezing temperatures on dynamic constitutive relation, dynamic shear modulus and damping ratio are observed in this study. Test results show that the dynamic constitutive relations of the frozen soils with different freezing temperatures comply with the hyperbolic model, in which model parameters a and b decrease with increasing freezing temperature. The dynamic shear modulus of the frozen soils decreases with increasing dynamic shear strains initially, followed by a relatively smooth attenuation tendency, whereas increases with decreasing freezing temperatures. The damping ratios decrease with decreasing freezing temperatures. Two linear functions are defined to express the linear relationships between dynamic shear modulus (damping ratio) and freezing temperature, respectively, in which corresponding linear coefficients are obtained through multiple regression analysis of test data.  相似文献   

9.
基于起跳初速度分布的沙颗粒浓度廓线的数值模拟   总被引:1,自引:1,他引:0  
黄新成  刘博  王旭峰  熊英 《中国沙漠》2015,35(3):534-541
跃移层内沙颗粒浓度分布是风沙两相流相互作用的结果,准确的沙颗粒浓度分布有助于弄清风沙互馈机制及沙颗粒间相互作用机制。由于沙颗粒浓度分布与沙颗粒起跳初速度分布以及气流运动密切相关,本文基于特定的沙颗粒起跳初速度分布函数,通过构建的沙颗粒在气流中运动的物理模型,并利用四阶精度的Adams-Bashforth-Moulton方法对所构建运动模型进行求解,统计分析稳定状态下两相流中沙颗粒运动轨迹的分布,分析其浓度廓线的垂向分布规律。计算结果表明跃移层内沙颗粒浓度分布廓线与高程呈负指数或伽马分布关系;高度一定时沙颗粒浓度廓线随摩阻风速的增大而减小,随颗粒直径的增大而增大。  相似文献   

10.
干旱区绿洲不同土地利用方式和强度对土壤粒度分布的影响   总被引:22,自引:3,他引:19  
以干旱区三工河流域下游绿洲作为研究区,应用SPSS数理统计软件,选择12种土地利用系统,采集上层(0~20cm)和下层土壤(20-40cm)样品,分析出不同土地利用系统对土壤粒度分布的影响。研究结果表明:(1)研究区土壤主要由砂和粉砂组成,土地利用系统对砂、粉砂和粘土粒度分布的影响显著,无论上层还是下层,不同土地利用系统土壤砂、粉砂和粘土含量差异明显。(2)绿洲土壤砂含量随着土地种植年限增加有降低的趋势,而粉砂和粘土含量有增加的趋势。在不同的土地利用强度下土壤粒度分布表现出了不同的特征。土地利用强度大的一年生作物和多年生作物土壤粉砂和粘土含量较高。土壤质量得到了逐步改善;而受人类活动干扰较小的土地利用系统土壤砂和粉砂含量高,土壤质地差。说明干旱区绿洲的人类农业活动基本趋于合理。绿洲生态环境正逐步得到改善并持续发展。  相似文献   

11.
In a blowing sand system,the wind provides the driving forces for the particle movement while the moving particles exert the opposite forces to the wind by extracting its momentum.The wind-sand interaction that can be characterized by shear stress and force exerted on the wind by moving particles results in the modification of wind profiles.Detailed wind pro-files re-adapted to blown sand movement are measured in a wind tunnel for different grain size populations and at differ-ent free-stream wind velocities.The shear stress with a blowing sand cloud and force exerted on the wind by moving par-ticles are calculated from the measured wind velocity profiles.The results suggest that the wind profiles with presence of blowing sand cloud assume convex-upward curves on the u(z)-ln(z) plot compared with the straight lines characterizing the velocity profiles of clean wind,and they can be better fitted by power function than log-linear function.The exponent of the power function ranging from 0.1 to 0.17 tends to increase with an increase in wind velocity but decrease with an increase in particle size.The force per unit volume exerted on the wind by blown sand drift that is calculated based on the empirical power functions for the wind velocity profiles is found to decrease with height.The particle-induced force makes the total shear stress with blowing sand cloud partitioned into air-borne stress that results from the wind velocity gradient and grain-borne stress that results from the upward or downward movement of particles.The air-borne stress in-creases with an increase in height,while the grain-borne stress decreases with an increase in height.The air-borne shear stress at the top of sand cloud layer increases with both wind velocity and grain size,implying that it increases with sand transport rate for a given grain size.The shear stress with a blowing sand cloud is also closely related to the sand transport rate.Both the total shear stress and grain-borne stress on the grain top is directly proportional to the squ  相似文献   

12.
Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae between the safe conveyance distance (SCD) of a water pipeline and six influencing factors are established based on the lowest water temperature (LWT) along the pipeline axis direction. With reference to the current widely used anti-freeze design approaches for underground pipelines in seasonally frozen areas, this paper first analyzes the feasibility of applying the maximum frozen penetration (MFP) instead of the mean annual ground surface temperature (MAGST) and soil water content (SWC) to calculate the SCD. The results show that the SCD depends on the buried depth if the MFP is fixed and the variation of the MAGST and SWC combination does not significantly change the SCD. A comprehensive formula for the SCD is established based on the relationships between the SCD and several primary influencing factors and the interaction among them. This formula involves five easy-to-access parameters: the MFP, buried depth, pipeline diameter, flow velocity, and inlet water temperature. A comparison between the analytical method and the numerical results based on the Quasi-3D method indicates that the two methods are in good agreement overall. The analytic method can be used to optimize the anti-freeze design parameters of underground water pipelines in seasonally frozen areas under the condition of a 1.5 safety coefficient.  相似文献   

13.
This study presents detailed lithostratigraphy and stable carbon and nitrogen isotopic variations in a 520-cm-long sediment core from a cirque basin in the Labsky důl Valley, Krkonoše Mountains, Czech Republic. Detailed study of the core reveals five major periods of sedimentation during the last 7600 years: silt and sand deposition during ~7.6–5.1 ka cal BP, Sphagnum peat accumulation during ~5.1–4.0 ka cal BP, sandy silt and sand during ~4.0–2.8 ka cal BP, raised peat bog during ~2.8–2.0 ka cal BP (Sphagnum peat), and sedimentation of sandy silt since ~2.0 ka cal BP. The δ13C values of the organic matter in the core vary in the range typical for C3 plants, from −24.35 to −27.68‰, whereas the δ15N values vary from −2.65 to +4.35‰. Core sections having ash contents ≥70% have δ15N > 1‰ and δ13C < −26‰, whereas those having ≤70% ash content have δ15N < 1‰ and δ13C > −26‰. Strong linear correlations are observed between δ13C and δ15N values as well as between C:N ratios and δ15N values in the horizons with ash content >10%, primarily for sand and silt horizons. On the other hand, poor correlations between δ13C and C:N ratio, as well as δ15N and C:N ratio, were observed in Sphagnum peat layers (45–125 and 185–265 cm). We conclude that the primary stable isotope variations are not preserved in the layers where significant correlation between δ15N and C:N ratio is observed. The relatively small δ13C variation in the uppermost Sphagnum peat layer suggests stable temperature during ~2.8–2.0 ka cal BP.  相似文献   

14.
Detailed wind tunnel tests were carried out to establish the mean downwind velocity and transport rate of different-sized loose dry sand at different free-stream wind velocities and heights, as well as to investigate the vertical variation in the concentration of blowing sand in a cloud. Particle dynamic analyzer (PDA) technology was used to measure the vertical variation in mean downwind velocity of a sand cloud in a wind tunnel. The results reveal that within the near-surface layer, the decay of blown sand flux with height can be expressed using an exponential function. In general, the mean downwind velocity increases with height and free-stream wind velocity, but decreases with grain size. The vertical variation in mean downwind velocity can be expressed by a power function. The concentration profile of sand within the saltation layer, calculated according to its flux profile and mean downwind profile, can be expressed using the exponential function: cz=ae−bz, where cz is the blown sand concentration at height z, and a and bare parameters changing regularly with wind velocity and sand size. The concentration profiles are converted to rays of straight lines by plotting logarithmic concentration values against height. The slope of the straight lines, representing the relative decay rate of concentration with height, decreases with an increase in free-stream wind velocity and grain size, implying that more blown sand is transported to greater heights as grain size and wind speed increase.  相似文献   

15.
沙坡头铁路防护体系内风沙沉积的粒度特征   总被引:6,自引:2,他引:4  
包兰铁路沙坡头段铁路防护体系内,由于下垫面性质发生变化,流沙区至人工植被带地表沉积物中表层土壤的黏粒和粉沙含量显著增大,平均粒径减小,颗粒分选性显著变差。防护体系内表层沉积物中的粉沙含量与地表相对高程反相关,黏粒含量与地形起伏没有直接关系,颗粒平均粒径、分选性与地表相对高程正相关。在土层垂直方向上,表层0~5cm内土壤粉沙含量较高,颗粒分选性差;5cm以下深度内土壤粉沙含量减少,颗粒分选性变好。在防护体系内沙丘地貌的不同部位,沙尘沉积速率不同。据此估算表明防护体系内固定沙丘迎风坡顶部沉积速率为0.147 cm/a左右;背风坡和丘间地平均堆积速率大于0.588cm/a。  相似文献   

16.
利用1960-2015 年新疆塔什库尔干河谷季节性冻土的冻结始日、冻结终日、年冻结日数、年累积冻土厚度、最大冻土深度等特征指标资料,采用气候倾向率、气候突变、气候变化趋势的持续性等方法,分析近56 a该地区季节性冻土的年际、年代际变化特征。研究发现:(1)在全球变暖的背景下,1960-2015 年新疆塔什库尔干河谷气温变化亦呈上升趋势,升温趋势的持续性较强,升温幅度0.03 ℃·a-1、0.29 ℃·(10 a)-1、0.74 ℃·(30 a)-1。(2)在1960-2015年期间,该地区季节性冻土呈退化趋势,具体表现为;冻结始日推迟,冻结终日提前,年冻结日数减少,年累积冻土厚度减小,最大冻土深度减小。(3)在1960-2015年期间,该地区季节性冻土持续退化趋势持续性强。(4)1960-2015 年新疆塔什库尔干河谷季节性冻土对气温变暖的具体响应呈现为退化状态。(5)按气候升温率Gt;0.034~0.046 ℃·a-1 计算,在气候变暖背景下,该地区季节性冻土到2050 年(较2000 年)的冻结始日将推迟12~15 d、年冻结日数将减少21~27 d、年累积冻土厚度将减少36.3%~46.7%。  相似文献   

17.
前山河水力排污冲淤联合调度试验及效果分析   总被引:3,自引:1,他引:2  
黎坤  曾彩华  江涛  陈军 《地理科学》2006,26(1):101-106
以排污冲淤为目的,改变原有水利工程设施的常规调度方式,通过水利工程设施的联合调度,大量引入西江磨刀门水道丰富和干净的水源,加大前山河河道内水流流速和流量,对河道进行排污冲淤,达到改善河道水质的目的。试验结果表明,试验排污效果好,水质得到明显改善;经过大流量冲刷,河床主槽加深,但在下游水闸关闭后,水流携带的泥沙在下游沉积,出口附近河床反而出现淤积;河道底质的变化与与河床的冲淤有很大关联,试验后,河道上游底泥受到冲刷,底质明显改善,下游出口段发生淤积,底质指标恶化。试验具有冲污效果好、见效快、投资省、运行成本低等优点。  相似文献   

18.
沙漠地区春季近地层气象要素分布规律的观测研究   总被引:7,自引:2,他引:5  
程穆宁  牛生杰 《中国沙漠》2008,28(5):955-961
利用2005年1月至2006年4月朱日和地区20 m气象塔的风向、风速、气温、相对湿度的观测资料,分析沙漠地区春季近地层气象要素的分布规律。结果表明: 春季温度回升,风速最大,相对湿度最小,利于起沙,故沙尘天气频繁。风速满足幂指数率分布规律,并且幂指数m能够很好的反映出风速梯度的变化情况;在沙尘暴、扬沙、背景、浮尘的天气条件下,春季近地面层风速梯度依次增大,湍流动量、热量交换系数依次减小;风向以西南为主。浮尘、扬沙天气各气层平均增温率分别大于或小于同时段的背景大气;沙尘暴期间温度下降,平均降温率为0.61 ℃\5h-1。春季相对湿度的平均递减率(递增率)与平均增温率(降温率)的大小正相关。浮尘天气相对湿度的平均递减率大于同时段的背景大气;扬沙天气相对湿度的平均递减率小于同时段的背景大气;沙尘暴天气相对湿度增大,平均增大率为2.80%\5h-1。  相似文献   

19.
河北坝上高原土壤风蚀物垂直分布的初步研究   总被引:31,自引:4,他引:27  
哈斯 《中国沙漠》1997,17(1):9-14
根据河北坝上高原农田土壤风蚀物的观测与采样分析结果,风蚀物含量随高度的增加,在0~20 cm高度内以指数函数规律递减,反映了以跃移质为主的风沙流结构;在20~100 cm高度内以幂函数规律递减,反映的是悬移质为主的风沙流结构。在风蚀物粒度组成中,随高度增加,砂级颗粒含量减少而粉砂及粘土含量增多;随风速与输沙率的增加,砂级颗粒含量增多而粉砂及粘土含量减少。对风蚀物各粒级含量与高度的相关分析表明:易以迁移形式运动的粒径0.25~0.1 mm土粒百分量以幂函数形式向上递减;沉降速度较低的粒径<0.1 mm土粒百分含量成幂函数形式向上递增。此外,风蚀物平均粒径随高度变细且在50 cm处细于0.1 mm,因此,土壤颗粒成为悬移物质而上升到50 cm以上高度时可能搬运到较远的地区。  相似文献   

20.
冻土对沙尘暴的影响研究   总被引:5,自引:1,他引:4  
利用1951-2000年中国大陆685个沙尘暴站、412个冻土深度及706个气温站的观测资料,分析了近50a来沙尘暴与冻土深度的时空分布特征。结果表明:沙尘暴多发中心总与当月的冻深极小值或相对低值区对应,且冻深越小(大),沙尘暴日数越大(小);气温是冻深与沙尘暴反相关关系的纽带。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号