首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We constrain holographic dark energy (HDE) with time varying gravitational coupling constant in the framework of the modified Friedmann equations using cosmological data from type Ia supernovae, baryon acoustic oscillations, cosmic microwave background radiation and X-ray gas mass fraction. Applying a Markov Chain Monte Carlo (MCMC) simulation, we obtain the best fit values of the model and cosmological parameters within 1σ confidence level (CL) in a flat universe as: $\varOmega_{b}h^{2}=0.0222^{+0.0018}_{-0.0013}$ , $\varOmega_{c}h^{2}=0.1121^{+0.0110}_{-0.0079}$ , $\alpha_{G}\equiv \dot{G}/(HG) =0.1647^{+0.3547}_{-0.2971}$ and the HDE constant $c=0.9322^{+0.4569}_{-0.5447}$ . Using the best fit values, the equation of state of the dark component at the present time w d0 at 1σ CL can cross the phantom boundary w=?1.  相似文献   

2.
The quintessence dark energy model with a kinetic coupling to gravity within the Palatini formalism is studied in this paper. Two different coupling forms: $\hat{R}\partial^{\mu}\phi\partial_{\mu}\phi$ and $\hat {R}_{\mu\nu}\partial^{\mu}\phi\partial^{\nu}\phi$ are analyzed, respectively. We find that both the model with the $\hat{R}\partial^{\mu}\phi\partial_{\mu}\phi$ coupling and the one with the $\hat{R}_{\mu\nu}\partial^{\mu}\phi\partial^{\nu}\phi$ coupling can realize the phantom divide line crossing from phantom to quintessence at late time for its effective equation-of-state. Furthermore, the former can behave like phantom. These features are different from those found in the $\hat {R}\phi^{2}$ coupling case.  相似文献   

3.
Considering the host galaxy contribution, a spectral decomposition method is used to reanalyzed the archive data of optical spectra for a narrow line Seyfert 1 galaxy, NGC 4051. The light curves of the continuum f λ (5100 Å), and Hβ, He ii, Fe ii emission lines are given. We find strong flux correlations between line emissions of Hβ, He ii, Fe ii and the continuum f λ (5100 Å). These low-ionization lines (Hβ, Fe ii, He ii) have “inverse” intrinsic Baldwin effects. Using the methods of the cross-correlation function and the Monte Carlo simulation, we find the time delays, with respect to the continuum, are $3.45^{+12.0}_{-0.5}~\mbox{days}$ with the probability of 34 % for the intermediate component of Hβ, $6.45^{+13.0}_{-1.0}~\mbox{days}$ with the probability of 65 % for the intermediate component of He ii. From these intermediate components of Hβ and He ii, the calculated central black hole masses are $0.86^{+4.35}_{-0.33}\times 10^{6}$ and $0.82^{+3.12}_{-0.45}\times 10^{6}~M_{\odot }$ . We also find that the time delays for Fe ii are $9.7^{+3.0}_{-5.0}~\mbox{days}$ with the probability of 36 %, $8.45^{+1.0}_{-2.0}~\mbox{days}$ with the probability of 18 % for the total epochs and “subset 1” data, respectively. It seems that the Fe ii emission region is outside of the Hβ emission region.  相似文献   

4.
A statistical study is carried out on the photospheric magnetic nonpotentiality in solar active regions and its relationship with associated flares. We select 2173 photospheric vector magnetograms from 1106 active regions observed by the Solar Magnetic Field Telescope at Huairou Solar Observing Station, National Astronomical Observatories of China, in the period of 1988??C?2008, which covers most of the 22nd and 23rd solar cycles. We have computed the mean planar magnetic shear angle ( $\overline{\Delta\phi}$ ), mean shear angle of the vector magnetic field ( $\overline{\Delta\psi}$ ), mean absolute vertical current density ( $\overline{|J_{z}|}$ ), mean absolute current helicity density ( $\overline{|h_{\mathrm{c}}|}$ ), absolute twist parameter (|?? av|), mean free magnetic energy density ( $\overline{\rho_{\mathrm{free}}}$ ), effective distance of the longitudinal magnetic field (d E), and modified effective distance (d Em) of each photospheric vector magnetogram. Parameters $\overline{|h_{\mathrm{c}}|}$ , $\overline{\rho_{\mathrm{free}}}$ , and d Em show higher correlations with the evolution of the solar cycle. The Pearson linear correlation coefficients between these three parameters and the yearly mean sunspot number are all larger than 0.59. Parameters $\overline {\Delta\phi}$ , $\overline{\Delta\psi}$ , $\overline{|J_{z}|}$ , |?? av|, and d E show only weak correlations with the solar cycle, though the nonpotentiality and the complexity of active regions are greater in the activity maximum periods than in the minimum periods. All of the eight parameters show positive correlations with the flare productivity of active regions, and the combination of different nonpotentiality parameters may be effective in predicting the flaring probability of active regions.  相似文献   

5.
We recently found that the halo of the Milky Way contains a large reservoir of warm-hot gas that accounts for large fraction of the missing baryons from the Galaxy. The average physical properties of this circumgalactic medium (CGM) are determined by combining average absorption and emission measurements along several extragalactic sightlines. However, there is a wide distribution of both, the halo emission measure and the O?vii column density, suggesting that the Galactic warm-hot gaseous halo is anisotropic. We present Suzaku observations of fields close to two sightlines along which we have precise O?vii absorption measurements with Chandra. The column densities along these two sightlines are similar within errors, but we find that the emission measures are different: 0.0025±0.0006 cm?6?pc near the Mrk 421 direction and 0.0042±0.0008 cm?6?pc close to the PKS 2155-304 sightline. Therefore the densities and pathlengths in the two directions must be different, providing a suggestive evidence that the warm-hot gas in the CGM of the Milky Way is not distributed uniformly. However, the formal errors on derived parameters are too large to make such a claim. In the Mrk 421 direction we derive the density of \(1.6^{+2.6}_{-0.8} \times 10^{-4}~\mbox{cm}^{-3}\) and pathlength of \(334^{+685}_{-274}~\mbox{kpc}\) . In the PKS 2155-304 direction we measure the gas density of \(3.6^{+4.5}_{-1.8} \times10^{-4}~\mbox{cm}^{-3}\) and path-length of \(109^{+200}_{-82}~\mbox{kpc}\) . Thus the density and pathlength along these sightlines are consistent with each other within errors. The average density and pathlength of the two sightlines are similar to the global averages, so the halo mass is still huge, over 10 billion solar masses. With more such studies, we will be able to better characterize the CGM anisotropy and measure its mass more accurately. We can then compare the observational results with theoretical models and investigate if/how the CGM structure is related to the larger scale environment of the Milky Way. We also show that the Galactic disk makes insignificant contribution to the observed O?vii absorption; a similar conclusion was also reached by Henley and Shelton (2013) about the emission measure. We further argue that any density inhomogeneity in the warm-hot gas, be it from clumping, from the disk, or from a non-constant density gradient, would strengthen our result in that the Galactic halo path-length and the mass would become larger than what we estimate here. As such, our results are conservative and robust.  相似文献   

6.
The influence of free static spherically symmetric quintessence on particle motion in the Schwarzschild-quintessence space-time has been studied by numerical calculation. In the Schwarzschild space-time, the particle motion can be determined by an effective potential. However, this potential is dependent on the quintessence’s state parameter w q . We find that when the quintessence’s state parameter w q is in the range of $[-\frac{1}{3},0]$ , the massive particle’s motion is just like that in the Schwarzschild space-time. And when $-1\leqslant w_{q}<-\frac{1}{3}$ , a maximum unstable circular orbit exists for every L, and no matter how small L is, the scattering state exists, which leads to the accelerating expansion of our universe. The exists of the maximum orbit can even explain why galaxies is in a ball.  相似文献   

7.
B. Li  Iver H. Cairns 《Solar physics》2014,289(3):951-976
Detailed simulations based on quasi-linear theory are presented for fundamental ( $f_{\rm p}$ ) emission of type III bursts produced in non-Maxwellian, suprathermal, background coronal plasma by injection of energetic electrons during flares with a power-law or Maxwellian velocity distribution, where $f_{\rm p}$ is the electron plasma frequency. The background plasma is assumed to have a kappa (κ) distribution, as inferred from solar wind data and proposed by theories for the corona and solar wind. The predicted type III beam speeds, Langmuir wave levels, and the drift rate and flux of $f_{\rm p}$ emission are strongly sensitive to the presence of suprathermal background electrons in the corona. The simulations show the following results. i) Fast beams with speeds $v_{\rm b}>0.5c$ are produced for coronal background electrons with small κ (κ?5) by injected electrons with power-law spectra. ii) Moderately fast beams with $v_{\rm b} \approx0.3\,\mbox{--}\,0.5c$ are generated in coronal plasma with κ?8 by injections of power-law or Maxwellian electrons. iii) Slow beams with $v_{\rm b}<0.3c$ are produced for coronal background electrons with large κ (κ>8), including the asymptotic limit κ→∞ where the electrons are Maxwellian, for both power-law and Maxwellian injections. The observation of fast type III beams (with $v_{\rm b}>0.5c$ ) thus suggests that these beams are produced in coronal regions where the background electron distribution has small κ by injected electrons with power-law spectra, at least when such beams are observed. The simulations, from the viewpoint of type III bursts, thus support: i) the presence, at least sometimes, of suprathermal background electrons in the corona and the associated mechanisms for coronal heating and solar wind acceleration; ii) power-law spectra for injected energetic electrons, consistent with observations of such electrons in situ and of X-ray emission.  相似文献   

8.
We analyzed the luminosity-temperature-mass of gas (L X ?T?M g ) relations for a sample of 21 Chandra galaxy clusters. We used the standard approach (β?model) to evaluate these relations for our sample that differs from other catalogues since it considers galaxy clusters at higher redshifts (0.4<z<1.4). We assumed power-law relations in the form $L_{X} \sim(1 +z)^{A_{L_{X}T}} T^{\beta_{L_{X}T}}$ , $M_{g} \sim(1 + z)^{A_{M_{g}T}} T^{\beta_{M_{g}T}}$ , and $M_{g} \sim(1 + z)^{A_{M_{g}L_{X}}} L^{\beta_{M_{g}L_{X}}}$ . We obtained the following fitting parameters with 68 % confidence level: $A_{L_{X}T} = 1.50 \pm0.23$ , $\beta_{L_{X}T} = 2.55 \pm0.07$ ; $A_{M_{g}T} = -0.58 \pm0.13$ and $\beta_{M_{g}T} = 1.77 \pm0.16$ ; $A_{M_{g}L_{X}} \approx-1.86 \pm0.34$ and $\beta_{M_{g}L_{X}} = 0.73 \pm0.15$ , respectively. We found that the evolution of the M g ?T relation is small, while the M g ?L X relation is strong for the cosmological parameters Ω m =0.27 and Ω Λ =0.73. In overall, the clusters at high-z have stronger dependencies between L X ?T?M g correlations, than those for clusters at low-z. For most of galaxy clusters (first of all, from MACS and RCS surveys) these results are obtained for the first time.  相似文献   

9.
In a cosmological model developed by the author in previous articles the universe starts in a geometrical phase transition in Minkowski space. Here the source of the gravitational field is a Higgs-like scalar field $\bar{\phi}$ . A relation of this cosmological field $\bar{\phi}$ with the Higgs-field ? H in the gauge theory of electroweak interaction is established. This relation leads to two dimensionless constants. One of them is interpreted as a characteristic constant of the phase transition and is connected with the volume of huge bubbles of open universes.  相似文献   

10.
We examine the stability of the triangular Lagrange points L 4 and L 5 for secondary masses larger than the Gascheau??s value ${\mu_{\rm G}= (1-\sqrt{23/27}/2)= 0.0385208\ldots}$ (also known as the Routh value) in the restricted, planar circular three-body problem. Above that limit the triangular Lagrange points are linearly unstable. Here we show that between??? G and ${\mu \approx 0.039}$ , the L 4 and L 5 points are globally stable in the sense that a particle released at those points at zero velocity (in the corotating frame) remains in the vicinity of those points for an indefinite time. We also show that there exists a family of stable periodic orbits surrounding L 4 or L 5 for ${\mu \ge \mu_G}$ . We show that??? G is actually the first value of a series ${\mu_0 (=\mu_G), \mu_1,\ldots, \mu_i,\ldots}$ corresponding to successive period doublings of the orbits, which exhibit ${1, 2, \ldots, 2^i,\ldots}$ cycles around L 4 or L 5. Those orbits follow a Feigenbaum cascade leading to disappearance into chaos at a value ${\mu_\infty = 0.0463004\ldots}$ which generalizes Gascheau??s work.  相似文献   

11.
We study pilgrim dark energy model by taking IR cut-offs as particle and event horizons as well as conformal age of the universe. We derive evolution equations for fractional energy density and equation of state parameters for pilgrim dark energy. The phantom cosmic evolution is established in these scenarios which is well supported by the cosmological parameters such as deceleration parameter, statefinder parameters and phase space of ω ? and \(\omega'_{\vartheta}\) . We conclude that the consistent value of parameter μ is μ<0 in accordance with the current Planck and WMAP9 results.  相似文献   

12.
We compute the ultra-high energy (UHE) neutrino fluxes from plausible accreting supermassive black holes closely linking to the 377 active galactic nuclei (AGNs). They have well-determined black hole masses collected from the literature. The neutrinos are produced via simple or modified URCA processes, even after the neutrino trapping, in superdense proto-matter medium. The resulting fluxes are ranging from: (1) (quark reactions)— $J^{q}_{\nu\varepsilon}/(\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1})\simeq8.29\times 10^{-16}$ to 3.18×10?4, with the average $\overline{J}^{q}_{\nu\varepsilon}\simeq5.53\times 10^{-10}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ , where ε d ~10?12 is the opening parameter; (2) (pionic reactions)— $J^{\pi}_{\nu\varepsilon} \simeq0.112J^{q}_{\nu\varepsilon}$ , with the average $J^{\pi}_{\nu\varepsilon} \simeq3.66\times 10^{-11}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ ; and (3) (modified URCA processes)— $J^{URCA}_{\nu\varepsilon}\simeq7.39\times10^{-11} J^{q}_{\nu\varepsilon}$ , with the average $\overline{J}^{URCA}_{\nu\varepsilon} \simeq2.41\times10^{-20} \varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ . We conclude that the AGNs are favored as promising pure neutrino sources, because the computed neutrino fluxes are highly beamed along the plane of accretion disk, peaked at high energies and collimated in smaller opening angle θε d .  相似文献   

13.
The ratio between the Earth's perihelion advance (Δθ) E and the solar gravitational red shift (GRS) (Δø s e)a 0/c 2 has been rewritten using the assumption that the Newtonian constant of gravitationG varies seasonally and is given by the relationship, first found by Gasanalizade (1992b) for an aphelion-perihelion difference of (ΔG)a?p . It is concluded that $$\begin{gathered} (\Delta \theta )_E = \frac{{3\pi }}{e}\frac{{(\Delta \phi _{sE} )_{A_0 } }}{{c^2 }}\frac{{(\Delta G)_{a - p} }}{{G_0 }} = 0.038388 \sec {\text{onds}} {\text{of}} {\text{arc}} {\text{per}} {\text{revolution,}} \hfill \\ \frac{{(\Delta G)_{a - p} }}{{G_0 }} = \frac{e}{{3\pi }}\frac{{(\Delta \theta )_E }}{{(\Delta \phi _{sE} )_{A_0 } /c^2 }} = 1.56116 \times 10^{ - 4} . \hfill \\ \end{gathered} $$ The results obtained here can be readily understood by using the Parametrized Post-Newtonian (PPN) formalism, which predicts an anisotropy in the “locally measured” value ofG, and without conflicting with the general relativity.  相似文献   

14.
We present results based on the systematic analysis of Chandra archive data on the X-ray bright Abell Richness class-I type cluster Abell 1991 with an objective to investigate properties of the X-ray cavities hosted by this system. The unsharp masked image as well as 2-d β model subtracted residual image of Abell 1991 reveals a pair of X-ray cavities and a region of excess emission in the central ~12 kpc region. Both the cavities are of ellipsoidal shape and exhibit an order of magnitude deficiency in the X-ray surface brightness compared to that in the undisturbed regions. Spectral analysis of X-ray photons extracted from the cavities lead to the temperature values equal to $1.77_{-0.12}^{+0.19}~\mathrm{keV}$ for N-cavity and $1.53_{-0.06}^{+0.05}~\mathrm{keV}$ for S-cavity, while that for the excess X-ray emission region is found to be equal to $2.06_{-0.07}^{+0.12}~\mathrm{keV}$ . Radial temperature profile derived for Abell 1991 reveals a positive temperature gradient, reaching to a maximum of 2.63 keV at ~76 kpc and then declines in outward direction. 0.5–2.0 keV soft band image of the central 15′′ region of Abell 1991 reveals relatively cooler three different knot like features that are about 10′′ off the X-ray peak of the cluster. Total power of the cavities is found to be equal to ${\sim}8.64\times10^{43}~\mathrm{erg\,s}^{-1}$ , while the X-ray luminosity within the cooling radius is found to be $6.04 \times10^{43}~\mathrm{erg\,s}^{-1}$ , comparison of which imply that the mechanical energy released by the central AGN outburst is sufficient to balance the radative loss.  相似文献   

15.
The multi-band data covering optical, X-ray and γ-ray energy regions of 130 Fermi blazars in the First LAT AGN Catalog (1LAC) were collected to investigate the broadband spectral properties. The composite spectral indices show that HBLs have convex optical-to-X-ray continua and concave X-ray-to-γ-ray continua, α γX γ >0 and α XOX ?<?0, while FSRQs and LBLs have α γX γ ?<?0. The α XOX distribution of FSRQs and LBLs extends from negative to positive values. We suggest α γX γ ?>?0 and α XOX ?<?0 could be considered as a criterion for HBLs. Moreover, HBLs have narrow distribution of peak interval of $\log\nu_{\rm p}^{\rm ic}-\log\nu_{\rm p}^{\rm syn}$ , and FSRQs have significant anti-correlation between $\log\nu_{\rm p}^{\rm ic}-\log\nu_{\rm p}^{\rm syn}$ and $\log\nu_{\rm p}^{\rm syn}$ . This indicates that SSC model is responsible for high energy emission of HBLs, while EC for FSRQs. Our results also indicate that FSRQs with larger break energy of electrons have smaller bulk Lorentz factor of dissipation region.  相似文献   

16.
We propose a relativistic model for: quintessence stars with the combination of an anisotropic pressure corresponding to normal matter and a quintessence dark energy having a characteristic parameter ω q such that $-1<\omega_{q}< -\frac{1}{3}$ . We discuss various physical features of the model and show that the model satisfies all the regularity conditions and can provide stable equilibrium configurations.  相似文献   

17.
18.
We analyzed the X-ray data obtained by the Chandra telescope for the galaxy cluster CL0024+17 (z = 0.39). The mean temperature of the cluster is estimated (kT = 4.35 ?0.44 +0.51 keV) and the surface brightness profile is derived. We generated the mass and density profiles for dark matter and gas using numerical simulations and the Navarro-Frenk-White dark matter density profile (Navarro et al., 1995) for a spherically symmetric cluster in which gas is in hydrostatic equilibrium with the cluster field. The total mass of the cluster is estimated to be M 200 = 3.51 ?0.47 +0.38 × 10 Sun 14 within a radius of R 200 = 1.24 ?0.17 +0.12 Mpc of the cluster center. The contribution of dark matter to the total mass of the cluster is estimated as ${{M_{200_{DM} } } \mathord{\left/ {\vphantom {{M_{200_{DM} } } {M_{tot} }}} \right. \kern-0em} {M_{tot} }} = 0.89$ .  相似文献   

19.
We investigate the dynamics of two satellites with masses $\mu _s$ and $\mu '_s$ orbiting a massive central planet in a common plane, near a first order mean motion resonance $m+1{:}m$ (m integer). We consider only the resonant terms of first order in eccentricity in the disturbing potential of the satellites, plus the secular terms causing the orbital apsidal precessions. We obtain a two-degrees-of-freedom system, associated with the two critical resonant angles $\phi = (m+1)\lambda ' -m\lambda - \varpi $ and $\phi '= (m+1)\lambda ' -m\lambda - \varpi '$ , where $\lambda $ and $\varpi $ are the mean longitude and longitude of periapsis of $\mu _s$ , respectively, and where the primed quantities apply to $\mu '_s$ . We consider the special case where $\mu _s \rightarrow 0$ (restricted problem). The symmetry between the two angles $\phi $ and $\phi '$ is then broken, leading to two different kinds of resonances, classically referred to as corotation eccentric resonance (CER) and Lindblad eccentric Resonance (LER), respectively. We write the four reduced equations of motion near the CER and LER, that form what we call the CoraLin model. This model depends upon only two dimensionless parameters that control the dynamics of the system: the distance $D$ between the CER and LER, and a forcing parameter $\epsilon _L$ that includes both the mass and the orbital eccentricity of the disturbing satellite. Three regimes are found: for $D=0$ the system is integrable, for $D$ of order unity, it exhibits prominent chaotic regions, while for $D$ large compared to 2, the behavior of the system is regular and can be qualitatively described using simple adiabatic invariant arguments. We apply this model to three recently discovered small Saturnian satellites dynamically linked to Mimas through first order mean motion resonances: Aegaeon, Methone and Anthe. Poincaré surfaces of section reveal the dynamical structure of each orbit, and their proximity to chaotic regions. This work may be useful to explore various scenarii of resonant capture for those satellites.  相似文献   

20.
In this work, I consider the logarithmic-corrected and the power-law corrected versions of the holographic dark energy (HDE) model in the non-flat FRW universe filled with a viscous Dark Energy (DE) interacting with Dark Matter (DM). I propose to replace the infra-red cut-off with the inverse of the Ricci scalar curvature R. I obtain the equation of state (EoS) parameter ω Λ , the deceleration parameter q and the evolution of energy density parameter $\varOmega_{D}'$ in the presence of interaction between DE and DM for both corrections. I study the correspondence of the logarithmic entropy corrected Ricci Dark Dnergy (LECRDE) and power-law entropy corrected Ricci Dark Energy (PLECRDE) models with the the Modified Chaplygin Gas (MCG) and some scalar fields including tachyon, K-essence, dilaton and quintessence. I also make comparisons with previous results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号