首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss how different cosmological models of the Universe affect the probability that a background source has multiple images related by an angular distance, i.e., the optical depth of gravitational lensing. We examine some cosmological models for different values of the density parameter Ω i : (i) the cold dark matter model, (ii) the ΛCDM model, (iii) the Bose-Einstein condensate dark matter model, (iv) the Chaplygin gas model, (v) the viscous fluid cosmological model and (vi) the holographic dark energy model by using the singular isothermal sphere (SIS) model for the halos of dark matter. We note that the dependence of the energy-matter content of the universe profoundly modifies the frequency of multiple quasar images.  相似文献   

2.
We propose to use multiple-imaged gravitational lenses to set limits on gravity theories without dark matter, specifically tensor–vector–scalar (TeVeS) theory, a theory which is consistent with fundamental relativistic principles and the phenomenology of Modified Newtonian Dynamics (MOND) theory. After setting the framework for lensing and cosmology, we analytically derive the deflection angle for the point lens and the Hernquist galaxy profile, and study their patterns in convergence, shear and amplification. Applying our analytical lensing models, we fit galaxy-quasar lenses in the CfA-Arizona Space Telescope Lens Survey (CASTLES) sample. We do this with three methods, fitting the observed Einstein ring sizes, the image positions, or the flux ratios. In all the cases, we consistently find that stars in galaxies in MOND/TeVeS provide adequate lensing. Bekenstein's toy μ function provides more efficient lensing than the standard MOND μ function. But for a handful of lenses, a good fit would require a lens mass orders of magnitude larger/smaller than the stellar mass derived from luminosity unless the modification function μ and modification scale a 0 for the universal gravity were allowed to be very different from what spiral galaxy rotation curves normally imply. We discuss the limitation of present data and summarize constraints on the MOND μ function. We also show that the simplest TeVeS 'minimal-matter' cosmology, a baryonic universe with a cosmological constant, can fit the distance–redshift relation from the supernova data, but underpredicts the sound horizon size at the last scattering. We conclude that lensing is a promising approach to differentiate laws of gravity.  相似文献   

3.
Cluster lenses     
Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es)—understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects—probing the properties of the background lensed galaxy population—which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe—as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.  相似文献   

4.
We simulated both the matter and light (galaxy) distributions in a wedge of the Universe and calculated the gravitational lensing magnification caused by the mass along the line-of-sight of galaxies and galaxy groups identified in sky surveys. A large volume redshift cone containing cold dark matter particles mimics the expected cosmological matter distribution in a flat universe with low matter density and a cosmological constant. We generate a mock galaxy catalogue from the matter distribution and identify thousands of galaxy groups in the luminous sky projection. We calculate the expected magnification around galaxies and galaxy groups and then the induced quasi-stellar object (QSO)–lens angular correlation due to magnification bias. This correlation is observable and can be used both to estimate the average mass of the lens population and to make cosmological inferences. We also use analytical calculations and various analyses to compare the observational results with theoretical expectations for the cross-correlation between faint QSOs from the 2dF Survey and nearby galaxies and groups from the Automated Plate Measurement and Sloan Digital Sky Survey Early Data Release. The observed QSO–lens anticorrelations are stronger than the predictions for the cosmological model used. This suggests that there could be unknown systematic errors in the observations and data reduction, or that the model used is not adequate. If the observed signal is assumed to be solely due to gravitational lensing, then the lensing is stronger than expected, due to more massive galactic structures or more efficient lensing than simulated.  相似文献   

5.
Gravitational lensing deflects light. A single lens deflector can only shear images, but cannot induce rotations. Multiple lens planes can induce rotations. Such rotations can be observed in quadruply imaged sources, and can be used to distinguish between two proposed solutions of the flux anomaly problem: substructures in lensing galaxies versus large-scale structure. We predict the expected amount of rotation due to large-scale structure in strong lensing systems, and show how this effect can be measured using ∼mas very long baseline interferometry astrometry of quadruple lenses with extended source structures. The magnitude of rotation is around 1°. The biggest theoretical uncertainty is the power spectrum of dark matter on very small scales. This procedure can potentially be turned around to measure the dark matter power spectrum on very small scales. We list the predicted rms rotation angles for several quadruple lenses with known lens and source redshifts.  相似文献   

6.
We calculate the gravitational lensing probabilities by cold dark matter (CDM) halos with different density profiles, and compare them with current observations from the Cosmic Lens All-Sky Survey (CLASS) and the Jodrell-Bank VLA Astrometric Survey (JVAS). We find that the lensing probability is dramatically sensitive to the clumping of the dark matter, or quantitatively, the concentration parameter. We also find that our predicted lensing probabilities in most cases show inconsistency with the observations. It is argued that high lensing probability may not be an effective tool for probing the statistical properties of inner structures of dark matter halos.  相似文献   

7.
The cluster lens Cl 0024+1654 is undoubtedly one of the most beautiful examples of strong gravitational lensing, providing five large images of a single source with well-resolved substructure. Using the information contained in the positions and the shapes of the images, combined with the null space information, a non-parametric technique is used to infer the strong lensing mass map of the central region of this cluster. This yields a strong lensing mass of  1.60 × 1014 M  within a 0.5  arcmin radius around the cluster centre. This mass distribution is then used as a case study of the monopole degeneracy, which may be one of the most important degeneracies in gravitational lensing studies and which is extremely hard to break. We illustrate the monopole degeneracy by adding circularly symmetric density distributions with zero total mass to the original mass map of Cl 0024+1654. These redistribute mass in certain areas of the mass map without affecting the observed images in any way. We show that the monopole degeneracy and the mass-sheet degeneracy together lie at the heart of the discrepancies between different gravitational lens reconstructions that can be found in the literature for a given object, and that many images/sources, with an overall high image density in the lens plane, are required to construct an accurate, high-resolution mass map based on strong lensing data.  相似文献   

8.
The Jodrell Bank–VLA Astrometric Survey (JVAS) and the Cosmic Lens All Sky Survey (CLASS) have been systematically searched for multiple gravitational imaging of sources with image separations between 6 arcsec and 15 arcsec, associated with galaxy group and cluster lensing masses. The radio and optical follow-up observations of all candidates are presented. From a total of ∼15 000 sources only one weak candidate remains and this is not contained in the statistically complete sample of flat-spectrum JVAS/CLASS sources of 11 670 sources. A simple Press–Schechter analysis is performed. For singular isothermal sphere lenses the lack of multiple image systems is inconsistent with the currently favoured cosmologies with     at the 4.2 σ level. Cored isothermal lenses reduce the expected number of lens systems and we suggest that the most probable interpretation of our results is that the surface mass density of groups and clusters of galaxies is not high enough to cause multiple imaging and the presence of the mass concentrations associated with individual galaxies is required to produce image separations such as those in B0957+561.  相似文献   

9.
引力透镜效应是探测星系团物质分布的有效方法之一.目前,利用引力透镜数据重构星系团质量分布的主流方法可以分为两大类,即参数法和非参数法.在实际研究工作中,受限于质量模型假设和计算分辨率等方面的影响,现有的重构算法仍有诸多亟需解决的问题.基于Shapelets基函数的引力透镜质量重构方法通过基函数来实现引力透镜质量重构,使用Shapelets基函数分解引力透镜势,以引力透镜中多重像的位置和背景星系椭率畸变为限制条件来迭代求解基函数系数从而得到透镜体的质量分布.通过拟合一个模拟的NFW (Navarro,Frenk and White)透镜系统测试了新方法的可行性,结果表明新方法可以在整体上重构出透镜体的质量分布,并拟合出接近真实的源位置,能够为星系团质量测量提供一套灵活且高效的重构算法.  相似文献   

10.
In strong gravitational lensing, the multiple images we see correspond to light rays that leave the source in slightly different directions. If the source emission is anisotropic, the images may differ from conventional lensing predictions (which assume isotropy). To identify scales on which source anisotropy may be important, we study the angle δ between the light rays emerging from the source, for different lensing configurations. If the lens has a power-law profile   M ∝ R γ  , the angle δ initially increases with lens redshift and then either diverges (for a steep profile  γ < 1  ), remains constant (for an isothermal profile  γ= 1  ), or vanishes (for a shallow profile  γ > 1  ) as   z l→ z s  . The scaling with lens mass is roughly  δ∝ M 1/(2−γ)  . The results for an Navarro–Frenk–White (NFW) profile are qualitatively similar to those for a shallow power law, with δ peaking at about half the redshift of the source (not half the distance). In practice, beaming could modify the statistics of beamed sources lensed by massive clusters: for an opening angle  θjet  , there is a probability as high as   P ∼ 0.02–0.07(θjet/0.5°)−1  that one of the lensed images may be missed (for  2 ≲ z s≲ 6  ). Differential absorption within active galactic nuclei (AGNs) could modify the flux ratios of AGNs lensed by clusters; a sample of AGNs lensed by clusters could provide further constraints on the sizes of absorbing regions. Source anisotropy is not likely to be a significant effect in galaxy-scale strong lensing.  相似文献   

11.
We present the results of an unbiased radio search for gravitational lensing events with image separations between 15 and 60 arcsec, which would be associated with clusters of galaxies with masses >1013–14 M. A parent population of 1023 extended radio sources stronger than 35 mJy with stellar optical identifications was selected using the FIRST radio catalogue at 1.4 GHz and the APM optical catalogue. The FIRST catalogue was then searched for companions to the parent sources stronger than 7 mJy and with separation in the range 15 to 60 arcsec. Higher-resolution observations of the resulting 38 lens candidates were made with the VLA at 1.4 and 5 GHz, and with MERLIN at 5 GHz in order to test the lens hypothesis in each case. None of our targets was found to be a gravitational lens system. These results provide the best current constraint on the lensing rate for this angular scale, but improved calculations of lensing rates from realistic simulations of the clustering of matter on the relevant scales are required before cosmologically significant constraints can be derived from this null result. We now have an efficient, tested observational strategy with which it will be possible to make an order-of-magnitude larger unbiased search in the near future.  相似文献   

12.
We investigate gravitational lensing using a realistic model of disc galaxies. Most of the mass is contained in a large spherical isothermal dark matter halo, but the potential is modified significantly in the core by a gravitationally dominant exponential disc. The method used is adapted from a very general multilens ray-tracing technique developed by Mo¨ller. We investigate the effects of the disc-to-halo mass ratio, the disc scalelength, the disc inclination to the line of sight and the lens redshift on two strong-lensing cross-sections: the cross-section for multiple imaging and the cross-section for large magnifications, in excess of a factor of 10. We find that the multiple-imaging cross-section can be enhanced significantly by an almost edge-on Milky Way disc compared with a singular isothermal sphere (SIS) in individual cases; however, when averaged over all disc inclinations, the cross-section is only increased by about 50 per cent. These results are consistent with other recent work. The presence of a disc, however, increases the inclination-averaged high-magnification cross-section by an order of magnitude compared with a SIS. This result has important implications for magnification bias in future lens surveys, particularly those in the submillimetre waveband, where dust extinction in the lensing galaxy has no effect on the brightness of the images.  相似文献   

13.
There is growing evidence that the majority of the energy density of the Universe is not baryonic or dark matter, but rather it resides in an exotic component with negative pressure. The nature of this 'quintessence' influences our view of the Universe, modifying angular diameter and luminosity distances. Here, we examine the influence of a quintessence component upon gravitational lens time-delays. As well as a static quintessence component, an evolving equation of state is also considered. It is found that the equation of state of the quintessence component and its evolution influence the value of the Hubble constant derived from gravitational lenses. However, the differences between evolving and non-evolving cosmologies are relatively small. We undertake a suite of Monte Carlo simulations to examine the potential constraints that can be placed on the universal equation of state from the monitoring of gravitational lens systems, and demonstrate that at least an order of magnitude more lenses than currently known will have to be discovered and analysed to accurately probe any quintessence component.  相似文献   

14.
While the Hubble constant can be derived from observable time delays between images of lensed quasars, the result is often highly sensitive to assumptions and systematic uncertainties in the lensing model. Unlike most previous authors, we put minimal restrictions on the radial profile of the lens and allow for non-elliptical lens potentials. We explore these effects using a broad class of models with a lens potential     which has an unrestricted radial profile but self-similar iso-potential contours defined by     For these potentials, the lens equations can be solved semi-analytically. The axis ratio and position angle of the lens can be determined from the image positions of quadruple gravitational lensed systems directly, independent of the radial profile. We give simple equations for estimating the power-law slope of the lens density directly from the image positions and for estimating the time delay ratios. Our method greatly simplifies the numerics for fitting observations and is fast in exploring the model parameter space. As an illustration, we apply the model to PG1115+080. An entire one-parameter sequence of models fits the observations exactly. We show that the measured image positions and time delays do not uniquely determine the Hubble constant.  相似文献   

15.
We present the results of weak gravitational lensing statistics in four different cosmological N -body simulations. The data have been generated using an algorithm for the three-dimensional shear, which makes use of a variable softening facility for the N -body particle masses, and enables a physical interpretation for the large-scale structure to be made. Working in three dimensions also allows the correct use of the appropriate angular diameter distances.
Our results are presented on the basis of the filled-beam approximation in view of the variable particle softening scheme in our algorithm. The importance of the smoothness of matter in the Universe for the weak lensing results is discussed in some detail.
The low-density cosmology with a cosmological constant appears to give the broadest distributions for all the statistics computed for sources at high redshifts. In particular, the range in magnification values for this cosmology has implications for the determination of the cosmological parameters from high-redshift type Ia supernovae. The possibility of determining the density parameter from the non-Gaussianity in the probability distribution for the convergence is discussed.  相似文献   

16.
The statistics of multiple gravitational lensing in a locally inhomogeneous universe is taken into account, based on the expansion of the mean amplification into the summation of various lenses and the pointlike models for both background sources and lensing objects. By comparing the deviation of the effects of various lenses from mean amplification, the redshift ranges over which different lenses dominate are investigated. In particular, the accuracy of a single lensing approximation, which has been widely used in previous statistical lensing, is demonstrated. As the application of a single lensing approximation, the lowest correction to the Mattig's relation due to the inhomogeneities in universe and the lowest effect on the number counts of background sources due to amplification bias are reconsidered. It is emphasized the fact that the effect of statistical lensing, even in a single lensing approximation, is of significance for modern observational cosmology.  相似文献   

17.
High-resolution MERLIN observations of a newly discovered four-image gravitational lens system, B0128+437, are presented. The system was found after a careful re-analysis of the entire CLASS data set. The MERLIN observations resolve four components in a characteristic quadruple-image configuration; the maximum image separation is 542 mas and the total flux density is 48 mJy at 5 GHz. A best-fitting lens model with a singular isothermal ellipsoid results in large errors in the image positions. A significantly improved fit is obtained after the addition of a shear component, suggesting that the lensing system is more complex and may consist of multiple deflectors. The integrated radio spectrum of the background source indicates that it is a gigahertz peaked spectrum source. It may therefore be possible to resolve structure within the radio images with deep VLBI observations and thus to constrain the lensing mass distribution better.  相似文献   

18.
19.
In this study, we investigate the impact of a plasma environment on gravitational weak lensing around a black hole from the perspective of T-duality. Our results demonstrate that the deflection angle of light rays around the black hole is notably affected by the parameter l0, with an increase leading to a decrease in the deflection angle, while the effect of plasma on the deflection angle is the opposite. We also consider different types of plasma distributions, including uniform ωe=const, Singular Isothermal Sphere medium, and Non-Singular Isothermal gas sphere plasma. We have analyzed the total magnification of the image source due to gravitational weak lensing, taking into account the effect of parameter l0 related to T-duality in the presence of plasma around the black hole.  相似文献   

20.
In the gravitational lens system Q2237+0305 the cruciform quasar image geometry is twisted by 10c by the lens effect of a bar in the lensing galaxy. This effect can be used to measure the mass of the bar. We construct a new lensing model for this system with a power-law elliptical bulge and a Ferrers bar. The observed ellipticity of the optical isophotes of the galaxy leads to a nearly isothermal elliptical profile for the bulge, with a total quasar magnification of 16+5−4. We measure a bar mass of (7.5 ∼ 1.5) −108 h −175 M⊙ in the region inside the quasar images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号