首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 426 毫秒
1.
《Marine Geology》2004,203(1-2):109-118
Spatial variations in sediment load in the swash uprush and textural properties of sediment in transport were evaluated to investigate the mechanisms responsible for sediment transport during wave uprush. Four streamer traps were deployed at 2.0-m intervals across the swash zone of a sheltered, microtidal sandy beach at Port Beach, Western Australia, over a 4-day period. During these trapping experiments, offshore significant wave heights were 0.3–0.5 m and wave periods were about 10 s. The average width of the uprush zone was 6.9 m and the average uprush duration was 5.9 s. Cross-shore distributions of sediment load for 70 uprush events reveal a maximum in sediment load landward of the base of the swash (at about 20% of swash width) during single events and a maximum closer to mid-swash (at about 40% of swash width) during multiple events characterized by swash interactions. Settling velocity distributions of trap samples during individual uprush events are similar to distributions found on the beach surface, with the lowest settling velocities (finest sediments) near the base of the swash zone and maximum settling velocities (coarsest sediments) around the mid-swash position. It was found that sediment transport during wave uprush occurs through two distinct mechanisms: (1) sediment entrainment during bore collapse seaward of the base of the swash zone and subsequent advection of this bore-entrained sediment up the beach by wave uprush; and (2) in situ sediment entrainment and transport induced by local shear stresses during wave uprush. Both mechanisms are considered important, but the first mechanism is considered most significant during the early stages of wave uprush when sediment is transported mainly in suspension, while the second mechanism is likely to dominate the mid- to later stages of wave uprush when sediment is transported mainly by sheet flow. The relative importance of the two mechanisms will vary between different beaches with the morphodynamic state of the beach (reflective versus dissipative) expected to play a major role.  相似文献   

2.
《Marine Geology》2005,216(3):169-189
Simultaneous high frequency field measurements of water depth, flow velocity and suspended sediment concentration were made at three fixed locations across the high tide swash and inner surf zones of a dissipative beach. The dominant period of the swash motion was 30–50 s and the results are representative of infragravity swash motion. Suspended sediment concentrations, loads and transport rates in the swash zone were almost one order of magnitude greater than in the inner surf zone. The vertical velocity gradient near the bed and the resulting bed shear stress at the start of the uprush was significantly larger than that at the end of the backwash, despite similar flow velocities. This suggests that the bed friction during the uprush was approximately twice that during the backwash.The suspended sediment profile in the swash zone can be described reasonably well by an exponential shape with a mixing length scale of 0.02–0.03 m. The suspended sediment transport flux measured in the swash zone was related to the bed shear stress through the Shields parameter. If the bed shear stress is derived from the vertical velocity gradient, the proportionality coefficient between shear stress and sediment transport rate is similar for the uprush and the backwash. If the bed shear stress is estimated using the free-stream flow velocity and a constant friction factor, the proportionality factor for the uprush is approximately twice that of the backwash. It is suggested that the uprush is a more efficient transporter of sediment than the backwash, because the larger friction factor during the uprush causes larger bed shear stresses for a given free-stream velocity. This increased transport competency of the uprush is necessary for maintaining the beach, otherwise the comparable strength and greater duration of the backwash would progressively remove sediment from the beach.  相似文献   

3.
《Coastal Engineering》2006,53(4):335-347
This paper investigates cross-shore profile changes of gravel beaches, with particular regard to discussing the tendency for onshore transport and profile steepening in the swash zone. The discussion includes observed morphological changes on a gravel beach from experimental investigations at the Large Wave Flume (GWK) in Hanover, Germany. During the tests all the profile changes occurred in the swash zone, resulting in erosion below the still water line (SWL) and formation of a berm above the SWL. We investigate the profile evolution evaluating the transport rates from a bed load sediment transport formulation coupled with velocities calculated from a set of Boussinesq equations that have been validated for its use in the surf and swash zones [Lynett, P.J., Wu, T.-R., and Liu, L.-F., P., 2002. Modelling wave runup with depth-integrated equations. Coastal Engineering, 46, 89–107; Otta, A.K., and Pedrozo-Acuña, A., 2004. Swash boundary and cross-shore variation of horizontal velocity on a slope. In: J.M. Smith (Editor), Proceedings 29th International Conference on Coastal Engineering. World Scientific, Lisbon, Portugal, pp. 1616–1628]. We discuss the influence of bottom friction on the predicted profiles, using reported friction factors from experimental studies. It is shown that the use of a different friction factor within a realistic range in each phase of the swash (uprush and backwash) improves prediction of the beach profiles, although quantitative agreement between the measured and computed profile evolutions is not satisfactory. Furthermore, if the friction factor and the transport efficiency (C) of the sediment transport formulation are kept the same in the uprush and backwash, accurate representation of profile evolution is not possible. Indeed, the features of the predicted profiles are reversed. However, when the C parameter is set larger during the uprush than during the backwash, the predicted profiles are closer to the observations. Differences between the predicted profiles from setting non-identical C-values and friction factors for the swash phase, are believed to be linked to both the infiltration effects on the flow above the beachface and the more accelerated flow in the uprush.  相似文献   

4.
Hydrodynamics and sediment transport in the nearshore zone were modeled numerically taking into account turbulent unsteady flow. The flow field was computed using the Reynolds Averaged Navier–Stokes equations with a kε turbulence closure model, while the free surface was tracked using the Volume-Of-Fluid technique. This hydrodynamical model was supplemented with a cross-shore sediment transport formula to calculate profile changes and sediment transport in the surf and swash zones. Based on the numerical solutions, flow characteristics and the effects of breaking waves on sediment transport were studied. The main characteristic of breaking waves, i.e. the instantaneous sediment transport rate, was investigated numerically, as was the spatial distribution of time-averaged sediment transport rates for different grain sizes. The analysis included an evaluation of different values of the wave friction factor and an empirical constant characterizing the uprush and backwash. It was found that the uprush induces a larger instantaneous transport rate than the backwash, indicating that the uprush is more important for sediment transport than the backwash. The results of the present model are in reasonable agreement with other numerical and physical models of nearshore hydrodynamics. The model was found to predict well cross-shore sediment transport and thus it provides a tool for predicting beach morphology change.  相似文献   

5.
《Coastal Engineering》2005,52(1):1-23
We develop solutions for the transport of suspended sediment by a single swash event following the collapse of a bore on a plane beach, and we investigate the morphodynamical role that such transport may play. Although the intrinsic asymmetry between uprush and backwash velocities tends to encourage the export of sediment, we find that swash events may be effective in distributing across the swash zone much or all of the sediment mobilised by bore collapse; additionally, settling lag effects may promote a weak onshore movement of sediment. We quantify both effects in terms of the properties of the sediment and of the swash event, and comment on the relationship between our findings and recent field studies of swash zone sediment transport.  相似文献   

6.
Simulating swash zone morphodynamics remains one of the major weaknesses of beach evolution models. One of the reasons is the limited availability of data on morphological changes at the temporal scales of individual swash events. This paper sets out to present a new hybrid system, consisting of 2D/3D laser scanners and several video cameras, which was designed to monitor swash zone topographic change on a wave-by-wave basis. A methodology is proposed consisting of sensor calibration and several data processing steps, allowing a fusion of different sensors. Such an approach can improve the performance of several field/laboratory, optical technique applications for nearshore hydro- and morpho-dynamic measurements. Digital Elevation Models from a 3D scanner were used in the extrinsic camera calibration procedure and reduced the geo-rectification errors from 0.035 m < RMSE < 0.071 m to 0.008 m < RMSE < 0.013 m. The 2D scanner provided instantaneous measurements of the water and dry beach surface elevation along a 10 m cross-shore section, and comparison with ultrasonic sensor measurements resulted in RMS errors within the 1.7 cm < RMSE < 3.2 cm range. The combination of 2D scanner and video data (i) reduced geo-rectification errors by more than one order of magnitude; and (ii) made 2D laser point cloud processing easier and more robust. The hybrid monitoring system recorded the morphological change of a replenished beach-face on a wave-by-wave basis, during large-scale, physical modeling experiments and the observations showed that individual swash events could result in elevation changes up to dz = ± 10 cm. The sediment transport direction and intensity of the monitored swash events was relatively balanced and sediment transport rates ranged between − 3.5 kg m 1 s 1 > Qt > 3.5 kg m 1 s 1. Extreme transport swash events became rarer as the morphology was reaching equilibrium.  相似文献   

7.
The influence of the seaward boundary condition on the internal swash hydrodynamics is investigated. New numerical solutions of the characteristics form of the nonlinear shallow-water equations are presented and applied to describe the swash hydrodynamics forced by breaking wave run-up on a plane beach. The solutions depend on the specification of characteristic variables on the seaward boundary of the swash zone, equivalent to prescribing the flow depth or the flow velocity. It is shown that the analytical solution of Shen and Meyer [Shen, M.C., Meyer, R.E., 1963. Climb of a bore on a beach. Part 3. Runup. J. Fluid Mech. 16, 113–125] is a special case of the many possible solutions that can describe the swash flow, but one that does not appear appropriate for practical application for real waves. The physical significance of the boundary conditions is shown by writing the volume and momentum fluxes in terms of the characteristic variables. Results are presented that illustrate the dependence of internal flow depth and velocity on the boundary condition. This implies that the internal swash hydrodynamics depend on the shape and wavelength of the incident bore, which differs from the hydrodynamic similarity inherent in the analytical solution. A solution appropriate for long bores is compared to laboratory data to illustrate the difference from the analytical solution. The results are important in terms of determining overwash flows, flow forces and sediment dynamics in the run-up zone.  相似文献   

8.
Novel laboratory experiments and numerical modelling have been performed to study the advection scales of suspended sediment in the swash zone. An experiment was designed specifically to measure only the sediment picked up seaward of the swash zone and during bore collapse. The advection scales and settling of this sediment were measured during the uprush along a rigid sediment-free beach face by a sediment trap located at varying cross-shore positions. Measurements were made using a number of repeated solitary broken waves or bores. Approximately 25% of the pre-suspended sediment picked up by the bores reaches the mid-swash zone (50% of the horizontal run-up distance), indicating the importance of the sediment advection in the lower swash zone. The pre-suspended sediment is sourced from a region seaward of the shoreline (still water line) which has a width of about 20% of the run-up distance. An Eulerian–Lagrangian numerical model is used to model the advection scales of the suspended sediment. The model resolves the hydrodynamics by solving the non-linear shallow water equations in an Eulerian framework and then solves the advection–diffusion equation for turbulence and suspended sediment in a Lagrangian framework. The model provides good estimates of the measured mass and distribution of sediment advected up the beach face. The results suggest that the correct modelling of turbulence generation prior to and during bore collapse and the advection of the turbulent kinetic energy into the lower swash is important in resolving the contribution of pre-suspended sediment to the net sediment transport in the swash zone.  相似文献   

9.
New laboratory and field data are presented on fluid advection into the swash zone. The data illustrate the region of the inner surf zone from which sediment can be directly advected into the swash zone during a single uprush, which is termed the advection length. Experiments were conducted by particle tracking in a Lagrangian reference frame, and were performed for monochromatic breaking waves, solitary bores, non-breaking solitary waves and field conditions. The advection length is normalised by the run-up length to give an advection ratio, A, and different advection ratios are identified on the basis of the experimental data. The data show that fluid enters the swash zone from a region of the inner surf zone that can extend a distance seaward of the bore collapse location that is approximately equal to half of the run-up length. This region is about eight times wider than the region predicted by the classical swash solution of Shen and Meyer [Shen, M.C., Meyer, R.E., 1963. Climb of a bore on a beach. Part 3. Runup. Journal of Fluid Mechanics 16, 113–125], as illustrated by Pritchard and Hogg [Pritchard, D., Hogg, A.J., 2005. On the transport of suspended sediment by a swash event on a plane beach. Coastal Engineering 52, 1–23]. Measured advection ratios for periodic waves show no significant trend with Iribarren number, consistent with self-similarity in typical swash flows. The data are compared to recent characteristic solutions of the non-linear shallow water wave (NLSW) equations and both finite difference and finite volume solutions of the NLSW equations.  相似文献   

10.
In this paper we present a process-based numerical model for the prediction of storm hydrodynamics and hydrology on gravel beaches. The model comprises an extension of an existing open-source storm-impact model for sandy coasts (XBeach), through the application of (1) a non-hydrostatic pressure correction term that allows wave-by-wave modelling of the surface elevation and depth-averaged flow, and (2) a groundwater model that allows infiltration and exfiltration through the permeable gravel bed to be simulated, and is referred to as XBeach-G. Although the model contains validated sediment transport relations for sandy environments, transport relations for gravel in the model are currently under development and unvalidated. Consequently, all simulations in this paper are carried out without morphodynamic feedback. Modelled hydrodynamics are validated using data collected during a large-scale physical model experiment and detailed in-situ field data collected at Loe Bar, Cornwall, UK, as well as remote-sensed data collected at four gravel beach locations along the UK coast during the 2012–2013 storm season. Validation results show that the model has good skill in predicting wave transformation (overall SCI 0.14–0.21), run-up levels (SCI < 0.12; median error < 10%) and initial wave overtopping (85–90% prediction rate at barrier crest), indicating that the model can be applied to estimate potential storm impact on gravel beaches. The inclusion of the non-hydrostatic pressure correction term and groundwater model is shown to significantly improve the prediction and evolution of overtopping events.  相似文献   

11.
响应季节性波候作用的泥沙输运特征是研究弧形海滩地貌变化及港工建筑的重要内容。基于南湾弧形海滩实际测量的冬、夏各11条剖面高程变化资料,将其划分为低潮间带、低中潮带、中潮带、高潮间带、低冲流带、中冲流带及其海滩后滨等7带,在此基础上利用经验正交函数(EOF)方法对各个带的体积变化进行分析,结果表明:1)南湾弧形海滩的泥沙以单向输运为主,并具有季节性变化特征,其中冬季泥沙在东南浪作用下,自陆向海输运,夏季泥沙在西南浪作用下自海向陆输运;2)南湾弧形海滩的泥沙分别在高潮带与中潮带、低冲流带与中冲流带之间存在频繁的双向输运;3)南湾弧形海滩不同岸段泥沙的横向输运因岬角的遮蔽能力、地形以及波浪作用的方向而有所差异。  相似文献   

12.
A critical review of conceptual and mathematical models developed in recent decades on sediment transport in the swash zone is presented. Numerous studies of the hydrodynamics and sediment transport in the swash zone in recent years have pointed out the importance of swash processes in terms of science advancement and practical applications. Evidently, the hydrodynamics of the swash zone are complex and not fully understood. Key hydrodynamic processes include both high-frequency bores and low-frequency infragravity motions, and are affected by wave breaking and turbulence, shear stresses and bottom friction. The prediction of sediment transport that results from these complex and interacting processes is a challenging task. Besides, sediment transport in this oscillatory environment is affected by high-order processes such as the beach groundwater flow. Most relationships between sediment transport and flow characteristics are empirical, based on laboratory experiments and/or field measurements. Analytical solutions incorporating key factors such as sediment characteristics and concentration, waves and coastal aquifer interactions are unavailable. Therefore, numerical models for wave and sediment transport are widely used by coastal engineers. This review covers mechanisms of sediment transport, important forcing factors, governing equations of wave-induced flow, groundwater interactions, empirical and numerical relations of cross-shore and longshore sediment transport in the swash zone. Major advantages and shortcomings of various numerical models and approaches are highlighted and reviewed. These will provide coastal modelers an impetus for further detailed investigations of fluid and sediment transport in the swash zone.  相似文献   

13.
14.
《Coastal Engineering》1999,36(3):219-242
This paper presents numerical simulations and analytical predictions of key aspects of swash oscillations on a steep beach. Simulations of the shoreline displacement based on bore run-up theory are found to give excellent agreement with recent experimental data for regular waves, wave groups and random waves. The theory is used to derive parameters that predict the onset of swash saturation and the spectral characteristics of the saturated shoreline motion. These parameters are again in good agreement with the measured laboratory data and are also consistent with previous experimental data. Simulation of irregular wave run-up using a series of overlapping monochromatic swash events is found to reproduce typical features of swash oscillations and can accurately describe both the low and high frequency spectral characteristics of the swash zone. In particular, the low frequency components of the run-up can be modelled directly using a sequence of incident short wave bores, with no direct long wave input to the numerical simulations. This suggests that wave groupiness must be accounted for when modelling shoreline oscillations.  相似文献   

15.
The aim of the investigation was to define the mechanisms of sediment transport in the swash zone of microtidal coarse-clastic beaches in the very short term by evaluating the displacement rates of marked pebbles under low-energy wave conditions. Tests were performed at two sites (Marina di Pisa, Ligurian Sea, and Portonovo, central Adriatic Sea) to check the consistency of the data over a range of different grain sizes. Two recovery campaigns were carried out at both sites, one 6 h and the other 24 h after the injection. During the experiments wave action was at a minimum (wave heights never exceeded 0.3 m). The results show that 20% of pebbles ranging in diameter from 30–90 mm moved significantly (more than 0.5 m) already 6 h after the injection, with some tracers being lost (3%). After 24 h, 40% of the pebbles were significantly displaced and 10% were lost. The preferential downslope movement of tracers, which suggests that coarse sediment movement under low-energy conditions is mainly controlled by gravity processes enhanced by steep beachface slopes, represents the novelty of the results reported here. It would appear that swash processes on low-energy beaches cause a significant rate of pebble displacement through the destabilization induced by wave uprush and backwash. Despite the microtidal range, the position of the mean water level plays a major role in changing the beach level at which swash processes can actually trigger pebble movement. The results of this study show that considerable, and mostly seaward-directed, coarse sediment transport takes place even during short fair-weather periods.  相似文献   

16.
《Coastal Engineering》2001,43(1):25-40
Video-based swash motions from three studies (on two separate beaches) were analyzed with respect to theoretical swash trajectories assuming plane beach ballistic motions under quadratic friction. Friction coefficient values for both the uprush and backwash were estimated by comparing measured swash space–time trajectories to these theoretical expectations given an initial velocity and beach slope. Observations were made spanning high tides, and in one case, during a light rain. Analysis of over 4500 individual swash events showed that the uprush friction coefficient was nearly constant during all three studies with a mean value of roughly 0.007 and showed no trends over a tidal cycle. In contrast, backwash friction coefficient values varied over the tidal cycles ranging between 0.01 and 0.07 with minimum values corresponding to the highest tides. Although these values are close to the theoretical estimates based on a Law of the Wall formulation and values commonly referenced in the literature, these observations show a consistent tendency for backwash friction estimates to greatly exceed uprush friction estimates. The disparity between uprush and backwash friction coefficients can be partially attributed to the exclusion of a pressure gradient term in the ballistic model. However, results indicate that backwash friction coefficients adjusted to account for this effect may be three times larger than the uprush friction values during lower tides. This tidal dependence for backwash friction coefficients is attributed to a complex interaction between swash infiltration and entrained sediment loads. These findings imply that friction estimates (necessary for sediment transport calculations and hydrodynamic predictions) based solely on grain roughness may not be correct for backwash flows.  相似文献   

17.
A numerical model, coupling an analysis of beach groundwater flow with an analysis of swash wave motion over a uniform slope, is presented. Model calculations are performed to investigate the variations of swash-induced filtration flows across the beach face for different input parameters. Swash zone sediment transport under the influence of such filtration flow across the beach face is investigated through modification of effective weight of sediment particle and modification of swash boundary layer thickness. These effects are quantified based on a bed load transport model with a modified Shields parameter.  相似文献   

18.
Direct bed shear stress measurements in bore-driven swash   总被引:1,自引:0,他引:1  
Direct measurements of bed shear in the swash zone are presented. The data were obtained using a shear plate in medium and large-scale laboratory bore-driven swash and cover a wide range of bed roughness. Data were obtained across the full width of the swash zone and are contrasted with data from the inner surf zone. Estimates of the flow velocities through the full swash cycle were obtained through numerical modelling and calibrated against measured velocity data. The measured stresses and calculated flow velocities were subsequently used to back-calculate instantaneous local skin friction coefficients using the quadratic drag law. The data show rapid temporal variation of the bed shear stress through the leading edge of the uprush, which is typically two–four times greater than the backwash shear stresses at corresponding flow velocity. The measurements indicate strong temporal variation in the skin friction coefficient, particularly in the backwash. The general behaviour of the skin friction coefficient with Reynolds number is consistent with classical theory for certain stages of the swash cycle. A spatial variation in skin friction coefficient is also identified, which is greatest across the surf-swash boundary and likely related to variations in local turbulent intensities. Skin friction coefficients during the uprush are approximately twice those in the backwash at corresponding Reynolds number and cross-shore location. It is suggested that this is a result of the no-slip condition at the tip leading to a continually developing leading edge and boundary layer, into which high velocity fluid and momentum are constantly injected from the flow behind and above the tip region. Finally, the measured stress data are used to determine the asymmetry and cross-shore variation in potential sediment transport predicted by three forms of sediment transport formulae.  相似文献   

19.
利用涌浪影响下短时段内的冲流带滩面高频高程数据和碎波带波流资料,在奇异谱分析(SSA)的基础上,对比研究了不同形态滩面的冲淤变化趋势、趋势分布形状、冲淤变化周期和冲淤变化强度,以及同一条剖面不同桩点间各因素间的变化关系;用交叉谱方法探索了每分钟滩面高频冲淤变化与碎波带长重力波间的作用关系。分析结果表明,滩角韵律地形引起的冲流分流作用促进了滩脊向滩谷的泥沙转运,冲流带滩面存在明显的长重力波频段的周期性冲淤振动,滩面冲淤振动强度由滩面下部向上部递减,碎波带长重力波对滩面高频冲淤变化起重要作用。  相似文献   

20.
The formation time of alongshore morphological variability in surf zone sand bars has long been known to differ from one beach to the other and from one post-storm period to another. Here we investigate whether the type of sea state, i.e. distant swell waves or locally generated short period wind sea, affects the formation time of the emerging alongshore topographic variability.A numerical modeling approach is used to examine the emergence of alongshore variability under different shore-normal wave forcing. A research version of Delft3D, operating on the time-scale of wave groups, is applied to a schematised bathymetry with a single bar. The model is then used to investigate several wave scenarios, examining the impact of peak period, frequency spread and directional spread on the formation time of alongshore variability.Results show that an increase in wave period has a large effect, changing the formation time up to O (250%) in case the wave period is changed from a representative value for the Dutch coast (Tp ~ 5–6 s) to an Australian South East coast value (Tp ~ 10–12 s). In contrast, modifications in the directional and frequency spread of the wave field result only in a minor change in the formation time.Examination of hydrodynamics and potential sediment transport shows that the variations in formation time are primarily related to changes in the magnitude of the time-averaged flow conditions. Variations in the magnitude of very low frequency (f < 0.004 Hz) or infragravity (0.004 < f < 0.04 Hz) surf zone flow velocities do not affect the mean sediment transport capacity. Consequently the formation speed of patterns is primarily governed by positive feedback between mean flow and morphology, and low frequency flow fluctuations are of minor importance.These findings indicate that the development of alongshore topographic variability may be faster at swell dominated open coasts, primarily due to the occurrence of longer period swell. Also, at a given site, the arrival of a long wave period swell after a storm can accelerate the emergence of variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号