首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sources and fate of nutrients in a subtropical reservoir   总被引:1,自引:0,他引:1  
This study examined the sources and fate of nutrient inputs from two principal tributaries to the eutrophic subtropical Wivenhoe reservoir: an unregulated river and a dammed river with regular releases, during a period of declining reservoir water levels. Nutrient budgets were constructed over a period of 6 years, and combined with short-term data on nutrient concentrations and forms, and δ15N stable isotope data. Our study found that over a 6 year period, there was net retention of phosphorus (P) in the reservoir, with 60% of inputs retained. Most of the P input load came from the unregulated river, with an agricultural catchment, during periods of high flow. During one event half of the total TP load from the unregulated river in the study period was delivered in only 12 days. Much of the P was dissolved inorganic P (DIP) and was derived from high P concentrations in soils and sediments. This highlights the importance of appropriate catchment management practices to reduce P losses from terrestrial systems because retention of P in reservoir sediments reduces the availability of this nutrient for agricultural production. In contrast, there was negligible retention of nitrogen (N). The unregulated river was an important source of N derived from N fixation in the river and adjacent soils, while the source from the dammed river was mostly reprocessed N. The high retention of P relative to N is consistent with relatively higher accumulation of P in sediments.  相似文献   

2.
Most ecosystems have a certain assimilative capacity regarding plant nutrient or biodegradable organic matter. Knowledge of the metabolizing processes of different ecosystems enable the use of natural systems for pollution abatement from agricultural, domestic and industrial sources. Such ecologically engineered natural systems are often very cost efficient. At the Centre for Soil and Environmental Research (JORDFORSK) studies of degradation processes and the fate of plant nutrients in small streams, ponds, wetlands, vegetative filter strips and soil are being conducted in order to gain experience with and develop self purifying methods. Preliminary results show that denitrification in streams remove only a minor part of the annual nitrogen (N) transport (1–15%), but that this process can remove a considerable part of the N transport during summer. Constructed ponds and wetlands in streams draining agricultural areas showed 10–56% retention of soil particles, 23–40% of phosphorous (P) and 5–13% of N. Narrow ponds had a higher efficiency than wide ponds per unit surface area. Short-term experiments with vegetative strips treating agricultural runoff show a sediment removal of over 95%, a P removal from 80–90% and N removal between 60 and 75%. A multistage subsurface constructed wetland treating domestic waste-water removed an average of 97% P, 91% BOD, 80% of suspended solids, 55% N and 99.9% E. coli over the first 18 months of operation. Preliminary results from a multistage plant with constructed ponds and wetlands treating landfill leachate show high treatment efficiency for the same parameters. A rapid infiltration plant in northern Norway showed an average removal of 99% P, 90% COD and 73% N after 4 years of operation. These results show that self purifying measures offer potential for design of pollution abatement systems for agricultural as well as domestic purposes in the Norwegian climate.  相似文献   

3.
Soil and nutrient loss play a vital role in eutrophication of water bodies. Several simulated rainfall experiments have been conducted to investigate the effects of a single controlling factor on soil and nutrient loss. However, the role of precipitation and vegetation coverage in quantifying soil and nutrient loss is still unclear. We monitored runoff, soil loss, and soil nutrient loss under natural rainfall conditions from 2004 to 2015 for 50–100 m2 runoff plots around Beijing. Results showed that soil erosion was significantly reduced when vegetation coverage reached 20% and 60%. At levels below 30%, nutrient loss did not differ among different vegetation cover levels. Minimum soil N and P losses were observed at cover levels above 60%. Irrespective of the management measure, soil nutrient losses were higher at high-intensity rainfall (Imax30>15 mm/h) events compared to low-intensity events (p < 0.05). We applied structural equation modelling (SEM) to systematically analyze the relative effects of rainfall characteristics and environmental factors on runoff, soil loss, and soil nutrient loss. At high-intensity rainfall events, neither vegetation cover nor antecedent soil moisture content (ASMC) affected runoff and soil loss. After log-transformation, soil nutrient loss was significantly linearly correlated with runoff and soil loss (p < 0.01). In addition, we identified the direct and indirect relationships among the influencing factors of soil nutrient loss on runoff plots and constructed a structural diagram of these relationships. The factors positively impacting soil nutrient loss were runoff (44%–48%), maximum rainfall intensity over a 30-min period (18%–29%), rainfall depth (20%–27%), and soil loss (10%–14%). Studying the effects of rainfall and vegetation coverage factors on runoff, soil loss, and nutrient loss can improve our understanding of the underlying mechanism of slope non-point source pollution.  相似文献   

4.
宜兴太湖防护林对农业面源污染的减源增汇作用浅析   总被引:1,自引:1,他引:0  
为探讨太湖沿岸防护林宜兴段对农业面源污染物的控制效果,通过在宜兴市太湖防护林采集土壤样品,测定其中营养元素含量,结合周边农业生产施肥概况,初步分析了该区域防护林对农业面源污染的减源—增汇效应.结果表明,2009年10月份防护林地上部分固定的C、N、P和K分别为2439.48、18.34、2.48和13.42 g/m2;2011年5月份固定量分别为3114.12、23.42、3.16和17.13 g/m2;而2013年8月份固定量分别为4722.46、35.53、4.81和25.99 g/m2.可见C、N、P和K的固定量是逐年增加的,相比2009年,分别增加了93.6%、93.7%、94.0%和93.7%.结果说明宜兴段太湖沿岸防护林对农业面源污染的控制效果较显著,有助于太湖水污染的治理.  相似文献   

5.
Increasing eutrophication in the coastal seas of China from 1970 to 2050   总被引:4,自引:0,他引:4  
We analyzed the potential for eutrophication in major seas around China: the Bohai Gulf, Yellow Sea and South China Sea. We model the riverine inputs of nitrogen (N), phosphorus (P) and silica (Si) to coastal seas from 1970 to 2050. Between 1970 and 2000 dissolved N and P inputs to the three seas increased by a factor of 2–5. In contrast, inputs of particulate N and P and dissolved Si, decreased due to damming of rivers. Between 2000 and 2050, the total N and P inputs increase further by 30–200%. Sewage is the dominant source of dissolved N and P in the Bohai Gulf, while agriculture is the primary source in the other seas. In the future, the ratios of Si to N and P decrease, which increases the risk of harmful algal blooms. Sewage treatment may reduce this risk in the Bohai Gulf, and agricultural management in the other seas.  相似文献   

6.
To improve quantitative understanding of mixed‐land‐use impacts on nutrient yields, a nested‐scale experimental watershed study design (n = 5) was applied in a 303(d), clean water act impaired urbanizing watershed of the lower Missouri River Basin, USA. From 2010 to 2013, water samples (n = 858 sample days per site) were analysed for total inorganic nitrogen (TIN‐N), nitrite (NO2–N) nitrate (NO3–N), ammonia (NH3–N), and total phosphorus (TP‐P). Annual, seasonal, and monthly flow‐weighted concentrations (FWCs) and nutrient yields were estimated. Mean nutrient concentrations were highest where agricultural land use comprised 58% of the drainage area (NH3 = 0.111 mg/l; NO2 = 0.045 mg/l; NO3 = 0.684 mg/l, TIN = 0.840 mg/l; TP = 0.127 mg/l). Average TP‐P increased by 15% with 20% increased urban land use area. Highly variable annual precipitation was observed during the study with highest nutrient yields during 2010 (record setting wet year) and lowest nutrient yields during 2012 (extreme drought year). Annual TIN‐N and TP‐P yields exceeded 10.3 and 2.04 kg ha?1 yr?1 from the agricultural dominated headwaters. Mean annual NH3–N, NO2–N, NO3–N, TIN‐N, and TP‐P yields were 0.742, 0.400, 4.24, 5.38, and 0.979 kg ha?1 yr?1, respectively near the watershed outlet. Precipitation accounted for the majority of the explained variance in nutrient yields (R2 values from 0.68 to 0.85). Nutrient yields were also dependent on annual precipitation of the preceding year (R2 values from 0.87 to 0.91) thus enforcing the great complexity of variable mixed‐land‐use mediated source‐sink nutrient yield relationships. Study results better inform land managers and best management practices designed to mitigate nutrient pollution issues in mixed‐land‐use freshwater ecosystems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Baseflow has become an important source of nitrate nonpoint source pollution in many intensive agricultural watersheds. Uncertainties in baseflow nutrient load separation are caused by the effects of hydrometeorological factors on both baseflow recession and baseflow nutrient load recession. These uncertainties have not been addressed well in the existing separating algorithms, which are based on simple baseflow rate–load relationships. In the present study, a recursive tracing source algorithm (RTSA) was developed based on a nonlinear reservoir algorithm and hydrometeorology-corrected baseflow nutrient load recession parameter. This approach was used to reduce the uncertainty of baseflow nitrate load estimation caused by variations in different load recessions under varying climate conditions. RTSA validation in a typical rainy agricultural watershed yielded Nash–Sutcliffe efficiency, root mean square error-observation standard deviation ratio, and R2 values of 0.91, 0.30, and 0.91, respectively. The baseflow nitrate–nitrogen (N─NO3) loads from 2003 to 2012 in the Changle River watershed of eastern China were estimated with the RTSA. The results indicated that baseflow nitrate export accounted for 62.0% of the mean total annual N─NO3 loads (18.0 kg/ha). The total baseflow N─NO3 export was highest in spring (3.6 kg/ha), followed by summer (3.2 kg/ha), winter (2.3 kg/ha), and autumn (2.1 kg/ha). The contribution of baseflow to total nitrate in the stream decreased in the order of winter (69.88%) >spring (66.59%) >autumn (60.36%) >summer (54.04%). The monthly baseflow N─NO3 loads and flow-weighted concentrations greatly increased during the research period (Mann–Kendall test, Zs > 2.56, p < .01). Without proper countermeasures, baseflow nitrate may represent a serious long-term risk for water surfaces in the future.  相似文献   

8.
Future catchment planning requires a good understanding of the impacts of land use and management, especially with regard to nutrient pollution. A range of readily usable tools, including models, can play a critical role in underpinning robust decision‐making. Modelling tools must articulate our process understanding, make links to a range of catchment characteristics and scales and have the capability to reflect future land‐use management changes. Hence, the model application can play an important part in giving confidence to policy makers that positive outcomes will arise from any proposed land‐use changes. Here, a minimum information requirement (MIR) modelling approach is presented that creates simple, parsimonious models based on more complex physically based models, which makes the model more appropriate to catchment‐scale applications. This paper shows three separate MIR models that represent flow, nitrate losses and phosphorus losses. These models are integrated into a single catchment model (TOPCAT‐NP), which has the advantage that certain model components (such as soil type and flow paths) are shared by all three MIR models. The integrated model can simulate a number of land‐use activities that relate to typical land‐use management practices. The modelling process also gives insight into the seasonal and event nature of nutrient losses exhibited at a range of catchment scales. Three case studies are presented to reflect the range of applicability of the model. The three studies show how different runoff and nutrient loss regimes in different soil/geological and global locations can be simulated using the same model. The first case study models intense agricultural land uses in Denmark (Gjern, 114 km2), the second is an intense agricultural area dominated by high superphosphate applications in Australia (Ellen Brook, 66 km2) and the third is a small research‐scale catchment in the UK (Bollington Hall, 2 km2). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, the bioremediation potentials of two seaweeds (Sargassum hemiphyllum and S. henslowianum) against pollution in a coastal mariculture area of Shenzhen, South China, were investigated by comparing the growth, nutrient bioaccumulation capacity of plants from the seaweed bed (control site) with plants from the fish farm. Results indicated that both species are potential candidates for bioremediation in the fish farm areas in terms of their high growth rates and high bioaccumulation capacities on inorganic nutrients. Both Sargassum spp. contain high levels of crude protein (11.7–14.0%) and crude fat (2.2–2.7%), suggesting high nutritional values. The S. hemiphyllum may serve as a good aquaculture fodder with high nutritional compositions and low heavy metal contents. However, heavy metals (Cr, Pb and Cd) of S. henslowianum exceed the maximum allowable concentrations as aquatic feed, which restricts its fodder application. In general, the results of this study may contribute to the marine pollution bioremediation in the coastal areas of South China, especially in mariculture zones.  相似文献   

10.
The large-scale flux of nitrogen and phosphorus in modern society is coupled to the exponentially growing world population. During the last three decades there has been a several-fold growth in use of nitrogen (N) and phosphorus (P), for example, for agriculture production, in chemical products such as in detergents, and as food additives. Feeding a growing population means increased human nutrient excretion.

The mobility of N differs from that of P. For the easily mobile nitrate ion, river exports are positively correlated to the size of local human populations. P on the other hand is fixed in different systems, at least temporarily. Modern agro-ecosystems accumulate about 60% of the annual input of P. The Stockholm region representing an urban ecosystem served by dephosphatation in sewage, accumulated about 80% of imported P during 1990. With increasing accumulation there is an apparent risk for increasing non-point source pollution.

In some shallow recipient lakes the sediments have been saturated with P. Even after the reduction of external loading these lakes are exporting more P than they are importing. Lakes normally are traps for P.

In order to prevent damage to natural resources and to stop the large-scale flux of nutrients from land to water, the world population growth rate must be decreased and a number of measures taken: agricultural structures must be changed including new concepts for the use of fertilizers; new municipal sewage treatment processes must be developed permitting high-degree recycling of nutrients; unnecessary use of nutrients must be stopped, for example, in detergents and by reducing nutrient additives in food and drinks. Cola drinks, for example, contain 180 mg P l−1, a concentration about 350 times higher than that of the effluent (0.5 mg P l−1) from modern sewage treatment plants operating with dephosphatation. Financial resources and effort are required to stop large-scale eutrophication of marine waters.  相似文献   


11.
Understanding the influence of complex interactions among hydrological factors, soil characteristics and biogeochemical functions on nutrient dynamics in overland flow is important for efficiently managing agricultural nonpoint pollution. Experiments were conducted to assess nutrient export from Ultisol soils in the Sunjia catchment, Jiangxi province, southern China, between 2003 and 2005. Four plots were divided into two groups: two peanut plots and two agroforestry (peanut intercropped with citrus) plots. During the study period, we collected water samples for chemical analyses after each rainfall event that generated overland flow to assess nutrient export dynamics. The concentrations of potassium (K) and nitrate‐N (NO3–N) in overland flow were higher during the wetting season (winter and early spring). This reflects the solubility of K and NO3–N, the accumulation of NO3–N during the dry season and an increase in desorption processes and mixing with pre‐event water caused by prolonged contact with soil in areas with long‐duration, low‐intensity rainfall. In contrast, concentrations of total nitrogen (TN) and total phosphorus (TP) were higher during the wet season (late March to early July) and during the dry season (mid‐July to the end of September or early October). This was due to the interaction between specific hydrological regimes, the properties of the Ultisol and particulate transport processes. Variations in nutrient concentrations during storm events further identified that event water was the dominant source of total nitrogen and total phosphorus, and pre‐event water was the dominant source of NO3–N. In addition, the results obtained for the different land uses suggest that agroforestry practices reduce nutrient loss via overland flow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A number of studies in north Queensland over the past two decades have concluded that large amounts of nutrients and sediments are exported from agricultural watersheds, particularly during wet season rainfall events. With the co-operation of a number of growers, runoff from Queensland Wet Tropics banana and cane farm paddocks in two distinct tropical river catchments was examined to provide an estimate of nutrient and sediment concentrations and export, with comparison to water quality of flow through a small urban lakes system. Median total nitrogen concentrations in cane drainage runoff (3110 microg N/L) were higher than for banana paddock drainage (2580 microg N/L), although the maximum concentration was recorded from a banana paddock (20,900 microg N/L). Nitrogen losses during post-event drainage flow were supplemented by high proportions of NO(X) (nitrate + nitrite) sourced from groundwater inputs. Banana paddocks had the highest maximum and median total phosphorus and TSS concentrations (5120 and 286 microg P/L, and 7250 and 75 mg/L respectively) compared to the cane farms (1430 and 50 microg P/L, and 1840 and 14 mg/L respectively). The higher phosphorus and TSS concentrations in the banana runoff were attributed to higher paddock slopes and a greater proportion of exposed ground surface during the wet season. Highest nutrient and TSS concentrations corresponded with samples collected near the peak discharge periods; however, the rising stage of the drainage flows, where the highest nutrient and TSS concentrations are often reported, were difficult to target because of the manual sampling strategy used. This study shows that high concentrations of nutrients and TSS occur in the runoff from cane and banana paddocks. Median total nitrogen, total phosphorus and TSS concentrations in flow through the urban lakes were 369 microg N/L, 16 microg P/L and 11 mg/L, respectively. Flux estimates of 9.2 kg N, 0.8 kg P and 126 kg TSS/ha were determined for drainage runoff from a banana paddock during a single intensive storm event.  相似文献   

13.
Daily variations in nutrients were monitored for 15 months (September 2007–November 2008) in the Godavari estuary, Andhra Pradesh, India, at two fixed locations. River discharge has significant influence on nutrients loading to the estuary, which peaks during June–August (peak discharge period; monsoon) whereas exchanges at the sediment–water interface, groundwater and rainwater contribute significantly during other period. Despite significant amount of nutrients brought by discharge to the study region, phytoplankton biomass, in terms of chlorophyll-a (Chl a), did not increase significantly due to high suspended load and shallow photic depth. Nutrients showed downward gradient towards downstream of the estuary from upstream due to dilution by nutrient poor seawater and biological uptake. The N:P ratios were higher than Redfield ratio in both upstream and downstream of the estuary during no discharge period suggesting PO4 to be a limiting nutrient for phytoplankton production, at levels <0.10 μmol L−1. On the other hand, Si:N ratios were always more than unity during entire study period at both the stations indicating that Si(OH)4 is not a limiting nutrient. Our results suggest that suspended matter limits phytoplankton biomass during peak discharge period whereas PO4 during no discharge period.  相似文献   

14.
Identifying nutrient sources, primarily nitrogen (N) and phosphorus (P), sufficient to support high biomass blooms of the red tide dinoflagellate, Karenia brevis, has remained problematic. The West Florida Shelf is oligotrophic, yet populations >106 cells L−1 frequently occur and blooms can persist for months. Here we examine the magnitude and variety of sources for N and P that are available to support blooms. Annual average in situ or background concentrations of inorganic N in the region where blooms occur range 0.02–0.2 μM while inorganic P ranges 0.025–0.24 μM. Such concentrations would be sufficient to support the growth of populations up to ∼3×104 cells L−1 with at least a 1 d turnover rate. Organic N concentrations average 1–2 orders of magnitude greater than inorganic N, 8–14 μM while organic P concentrations average 0.2–0.5 μM. Concentrations of organic N are sufficient to support blooms >105 cells L−1 but the extent to which this complex mixture of N species is utilizable is unknown. Other sources of nutrients included in our analysis are aerial deposition, estuarine flux, benthic flux, zooplankton excretion, N2-fixation, and subsequent release of organic and inorganic N by Trichodesmium spp., and release of N and P from dead and decaying fish killed by the blooms. Inputs based on atmospheric deposition, benthic flux, and N2-fixation, were minor contributors to the flux required to support growth of populations >2.6×104 cells L−1. N and P from decaying fish could theoretically maintain populations at moderate concentrations but insufficient data on the flux and subsequent mixing rates does not allow us to calculate average values. Zooplankton excretion rates, based on measured zooplankton population estimates and excretion rates could also supply all of the N and P required to support populations of 105 and 106 cells L−1, respectively, but excretion is considered as “regenerated” nutrient input and can only maintain biomass rather than contribute to “new” biomass. The combined estuarine flux from Tampa Bay, Charlotte Harbor, and the Caloosahatchee River can supply a varying, but at times significant level of N and P to meet growth and photosynthesis requirements for populations of approximately 105 cells L−1 or below. Estimates of remineralization of dead fish could supply a significant proportion of bloom maintenance requirements but the rate of supply must still be determined. Overall, a combination of sources is required to maintain populations >106 cells L−1.  相似文献   

15.
Being an essentially open system, cages are usually characterized by a high degree of interaction with environment and cage systems are highly likely to produce large bulk of wastes that are released directly into the environment. Therefore, large-scale cage aquaculture development has been put into question and concerns have been raised that cage aquaculture produces large bulk of wastes that are rich in organic matter and nutrients and are released into coastal and nearshore environment. Recent information on cage aquaculture nutrient budget is scarce and most published reports are dated. This paper reviews cage aquaculture nutrient budget and nutrient loadings and propose a model for nutrient (nitrogen, N and phosphorus, P) budget in a hypothetical cage aquaculture farm with values of feed loss, FCR (feed conversion ratio) and nutrient contents in feed and fish taken from published literature in order to calculate the amount (kg) of N and P produced and released to the environment for each ton of fish produced. The paper proposes, in addition, a critically analyzed nutrient budget based on the dry matter conversion rate instead of the usual feed conversion rate. The conceptual model shows that 132.5 kg N and 25.0 kg P are released to the environment for each ton of fish produced; these values are as high as 462.5 kg N and 80.0 kg P when calculated on the basis of dry matter conversion rate instead of usual feed conversion rate. Thus, the annual global N and P loadings from cage aquaculture (10,000 tons fish and 3000 tons dry matter) are 1325 tons N and 250 tons P and 1387.5 tons N and 240.0 tons P based on usual feed conversion rate and dry matter conversion rate respectively. The paper also proposes, by analyzing the existing data, an FCR-based regression model for predicting nutrient loadings for a given diet. Finally, attempt was made to calculate the annual global loading and release of N and P from cage aquaculture to the coastal and marine environment, the potential impacts of nutrient loading on the ecosystem were discussed and critical points to be considered for minimizing nutrient output in cage aquaculture were suggested.  相似文献   

16.
China is experiencing rapid urbanization that has changed the water quality of rivers, especially nutrient loads. In this study, a typical urban river located in a karst area, Chengguan River, was chosen to explore the influence of urbanization on river ecosystems based on nutrient concentration and nitrate isotopes. The results show monthly variability of water chemistry and nutrient concentration. Nutrient concentration in two tributaries and the mainstem showed significant spatial variability, with heavy N and P pollution in one tributary near a suburban area,indicating a response to different levels of urbanization.Measurements of nitrate dual isotopes suggest thatvolatilization, assimilation, nitrification, and denitrification all occur in the polluted river. Water chemistry and nitrate isotopes show that major nitrogen sources included domestic waste and agricultural input, such as chemical fertilizer and manure. The results suggest that urbanization increases nutrient concentrations and accelerates the riverine nitrogen dynamic, and point to the need to manage point sources of sewage effluents to improve the water quality of urban rivers in southwestern China.  相似文献   

17.
18.
The drainage channel network in Vojvodina,northern part of the Republic of Serbia,in total length of around 20,000 km,transfers excessive(under)ground waters from around 2.15 million ha of lowlands.Channels are mostly in direct connection with the surrounding arable agricultural land and are exposed to different run-off,leaching and/or wind erosion processes.Close to urban areas,some channel sections serve as recipients of unrefined sewage and industrial waste waters.Water flows and velocities,as well as the transportable capacity of fluvial materials(sediments) are relatively low.This,in combination with other natural and anthropogenic impacts,contributes to sediment generation in the drainage channel network.Based on around 100 sediment samples from 46 channels,concentrations of primary nutrients(N,P and K) were elaborated in this study.Detected concentrations of macronutrients in the channel sediments(e.g.N 1-1.2%,P 100-265 and K 100-380 mg 100 g~(-1)) exceeded their content in surrounding arable land by a few fold.Also,significantly higher nutrient concentrations(in average by 50%) were detected in downstream(vs.upstream) channel sections.An excessive presence of observed elements in channel sediments,due to interactive processes between water and sediment material,can adversely influence the water quality and life conditions for channel biota and caused other negative environmental impacts such as eutrophication.These results clearly confirm that the processes of nutrient accumulation in channel sediments are greater than those in the surrounding,mostly intensively arable land areas.The erosion of unprotected agricultural areas and sediment transport as the most important pollution pathways from the drainage basin to channel network may be essential factors responsible for detected condition of nutrient accumulation.  相似文献   

19.
Concentrations and loads of N and P fractions were examined for lowland rivers, the Wye and Avon, draining a range of representative agricultural land-use types in two major UK river basins. Data collected over a 2-year period demonstrated important diffuse agricultural source contributions to N and P loads in these rivers. Ground water provided a major source of total dissolved nitrogen (TDN) loads, whereas near-surface sources provided a major contribution to total phosphorus (TP) loads. In terms of aquatic ecology, concentrations of nutrients, at times of eutrophication risk (spring and summer low flows) were of key environmental and management significance. Agricultural diffuse sources provided the major source of long-term P loads across the two basins. However, the results demonstrated the dominance of point-source contributions to TP and SRP concentrations at times of ecological risk. Point sources typically ‘tip the balance’ of dissolved inorganic P (soluble reactive P, SRP) above the 100 μg l−1 guideline value indicative of eutrophication risk. The significance of point sources for TP and SRP concentrations was shown by (a) the strong correlations between TP, SRP and B concentrations, using B as a tracer of sewage effluent, (b) the dominant contribution of SRP to TP concentrations and (c) the predominant pattern of dilution of SRP and B with flow. The clean Chalk streams draining low intensity grassland in areas of the Avon with sparse human settlement were oligotrophic and P limited with low SRP concentrations under spring and summer baseflows attributable to groundwater sources. The data provide important insights into the ecological functioning of different lowland stream systems. There was evidence of greater SRP losses and N-limitation in a stream which drains a pond system, demonstrating the importance of longer water residence times for biological nutrient uptake.  相似文献   

20.
Nonpoint sources of nitrogen (N) and other nutrients are a major source of water pollution within the Chesapeake Bay watershed and other basins around the world. Human activities associated with agricultural practices can account for a large percentage of N loadings delivered to streams and rivers. This work aims to improve understanding of N transport from groundwater to surface waters, quantifying the principal hydrological processes driving water and N fluxes into and out of a headwater agricultural stream reach. The study site is a 175-m stream reach in a heavily cultivated 40-ha watershed in east-central Pennsylvania. This subwatershed is underlain by fractured shale bedrock, and receives most of its baseflow from groundwater, either by diffuse matrix discharge through the streambed or by localized discharge through riparian seeps. Samples of stream, seep, and shallow groundwater were collected approximately monthly under steady hydrologic conditions in 2017. Calculated matrix flow from hydraulic head and conductivity measurements paired with differential stream gauging was used to solve for the riparian seep flux using a mass balance approach. Riparian seep fluxes ranged from 45 to 217 m3/d, transporting 0.6–4.2 kg N d−1 of nitrate-N from the fractured bedrock aquifer to the stream. Hydrochemical data suggest that the stream is mainly disconnected from the underlying aquifer and that seeps supply essentially all water and N to the system. Seeps are likely sourced with N in nearby agricultural fields and accelerated through the system with shorter residence times than shallow groundwater. Water isotope data reinforced this notion. This study underscores the importance of agriculture as a source of N to ground and surface waters. Identifying source areas that are causing groundwater enrichment of N and seep areas where N discharges to streams is beneficial for developing N pollution mitigation strategies and implementing management practices that aim to reduce nutrient loads to the Chesapeake Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号