首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
I. López 《Icarus》2011,213(1):73-85
Volcanoes on Venus are classified according to size with studies on the stratigraphic position of large volcanoes proposing that most of the large volcanoes postdate the regional volcanic materials. Some studies regarding intermediate volcanoes proposed that some of these volcanic features could be large volcanoes with embayed flow aprons, a situation that would alter the previous stratigraphic considerations about large volcanoes on Venus.In this work I analyze the global population of embayed intermediate-size volcanoes and compare their summits with that of other edifices classified as large volcanoes. Intermediate-size volcanoes are considered embayed when: (1) flows from another source clearly overlap the volcano slopes, and (2) display scarps related to flank-failure processes but with the associated collapse deposits being absent (i.e. interpreted as covered). As result of the survey 88 embayed intermediate-size volcanoes have been catalogued and integrated into a Geographic Information System. These embayed volcanoes have summit sizes and characteristics similar to large volcanoes and, therefore, could be interpreted as possible large volcanoes with their flow aprons embayed. Embayment materials for these volcanoes include all the units present in the history of the volcanic plains and would indicate that this type of central volcanic edifice would occur throughout the geologic history recorded in the venusian plains.  相似文献   

2.
P.M. Schenk  R.R. Wilson 《Icarus》2004,169(1):98-110
Stereo and photoclinometry derived topography of shield-like volcanoes on Io indicate little relief (<3 km) and very low slopes (0.2° to 0.6°). Several shield volcanoes appear to be associated with broad rises of 1 to 3 km, but only 5 shield volcanoes have been identified with steep flank slopes (between 4° and 10°). These steep slopes are restricted to within 20-30 km of the summit, but where discernable, most of the lava flows observed on these edifices occur on the outer flanks where slopes are less than a degree. Despite their abundance, ionian shield volcanoes are among the flattest in the Solar System. The steepest volcanoes on Io are most comparable to large venusian shield volcanoes. Using simplistic Bingham rheologies we estimate the viscosity and yield strengths of ionian lavas. Yield strengths are estimated at 101-102 Pa, lower than most basaltic lavas. Viscosity estimates range from 103 to 105 Pa s, although these are probably upper limits. Actual values may have been as low as 100 Pa s. Viscosity is sensitive to flow velocity, which is poorly known on Io. The best constraint on flow velocity comes from observations of the 1997 Pillan eruption, which bracket the eruptive phase to 132 day maximum, and more probably less than 50 days. Low slopes, long run-out distances and our estimated rheologic properties are consistent with (but not proof of) a low silica, low viscosity, high temperature composition for ionian lavas, supporting arguments for low-silica lava compositions such as basalt or komatiite. We cannot eliminate sulfur on rheologic grounds, however.  相似文献   

3.
I. López  J. Lillo 《Icarus》2008,195(2):523-536
Magellan data show that the surface of Venus is dominated by volcanic landforms including large flow fields and a wide range of volcanic edifices that occur in different magmatic and tectonic environments. This study presents the results from a comprehensive survey of volcano-rift interaction in the BAT region and its surroundings. We carried out structural mapping of examples where interaction between volcanoes and regional fractures results in a deflection of the fractures around the volcanic features and discuss the nature of the local volcano-related stress fields that might be responsible for the observed variations of the regional fracture systems. We propose that the deflection of the regional fractures around these venusian volcanoes might be related to volcanic spreading, a process recognized as of great importance in the tectonic evolution of volcanoes on Earth and Mars, but not previously described on Venus.  相似文献   

4.
The Tharsis rise on Mars with a diameter of about 8000 km and an elevation up to 10 km shows extensive volcanism and an extensional fracture system. Other authors explained this structure by (I) an uplift due to mantle processes and by (II) volcanic construction. Gravity models of four profiles are in accordance with a total Airy isostatic compensation of the whole rise with mean crustal thicknesses of 50 km and 100 km. But two regions exhibit significant mass deficits: (i) the area between Olympus Mons and the three large Tharsis volcanoes and (ii) central Tharsis. This can be explained by (1) a heated upper mantle, (2) a chemically modified upper mantle, (3) a crustal thickening, or (4) a combination of these three processes. Crustal thickening is mainly a constructional process, but the mass deficit should contribute to a certain degree of uplift causing the extensional area of Labyrinthus Noctis. Gravity modelling results in a different isostatic state of the three Tharsis volcanoes. Pavonis Mons is not compensated, Ascraeus Mons is highly or totally compensated, and Arsia Mons is medium or not compensated. The large, flat volcanic structure Alba Patera has been explained by a hot spot with an evolution of a mantle diapir.The results have shown that the Tharsis rise is a very complex structure. The central and eastern part of the rise is characterized by extensional features and a mass deficit (Extensional Province). The western part is dominated by many volcanic features and a central elongated mass deficit (Volcanic Province). The northern part consists of Alba Patera. It seems unlikely that the whole rise has been generated by one stationary large axisymmetric plume or hot spot. There could have been one or more active hot spots with an evolution in space and time.Contribution Nr. 421, Institut für Geophysik der Universität Kiel, Germany.  相似文献   

5.
HiRISE images of Mars with ground sampling down to 25 cm/pixel show that the dust-rich mantle covering the surfaces of the Tharsis Montes is organized into ridges whose form and distribution are consistent with formation by aeolian saltation. Other dusty areas near the volcanoes and elsewhere on the planet exhibit a similar morphology. The material composing these “reticulate” bedforms is constrained by their remote sensing properties and the threshold curve combined with the saltation/suspension boundary, both of which vary as a function of elevation (atmospheric pressure), particle size, and particle composition. Considering all of these factors, dust aggregates are the most likely material composing these bedforms. We propose that airfall dust on and near the volcanoes aggregates in situ over time, maybe due to electrostatic charging followed by cementation by salts. The aggregates eventually reach a particle size at which saltation is possible. Aggregates on the flanks are transported downslope by katabatic winds and form linear and “accordion” morphologies. Materials within the calderas and other depressions remain trapped and are subjected to multidirectional winds, forming an interlinked “honeycomb” texture. In many places on and near the volcanoes, light-toned, low thermal inertia yardangs and indurated surfaces are present. These may represent “duststone” formed when aggregates reach a particle size below the threshold curve, such that they become stabilized and subsequently undergo cementation.  相似文献   

6.
The OMEGA imaging spectrometer onboard the Mars Express spacecraft is particularly well suited to study in detail specific regions of Mars, thanks to its high spatial resolution and its high signal-to-noise ratio. We investigate the behavior of atmospheric water vapor over the four big volcanoes located on the Tharsis plateau (Olympus, Ascraeus, Pavonis and Arsia Mons) using the 2.6 μm band, which is the strongest and most sensitive H2O band in the OMEGA spectral range. Our data sample covers the end of MY26 and the whole MY27, with gaps only in the late northern spring and in northern autumn. The most striking result of our retrievals is the increase of water vapor mixing ratio from the valley to the summit of volcanoes. Corresponding column density is often almost constant, despite a factor of ∼5 decrease in air mass from the bottom to the top. This peculiar water enrichment on the volcanoes is present in 75% of the orbits in our sample. The seasonal distribution of such enrichment hints at a seasonal dependence, with a minimum during the northern summer and a maximum around the northern spring equinox. The enrichment possibly also has a diurnal trend, being the orbits with a high degree of enrichment concentrated in the early morning. However, the season and the solar time of the observations, due to the motion of the spacecraft, are correlated, then the two dependences cannot be clearly disentangled. Several orbits exhibit also spatially localized enrichment structures, usually ring- or crescent-shaped. We retrieve also the height of the saturation level over the volcanoes. The results show a strong minimum around the aphelion season, due to the low temperatures, while it raises quickly before and after this period. The enrichment is possibly generated by the local circulation characteristic of the volcano region, which can transport upslope significant quantities of water vapor. The low altitude of the saturation level during the early summer can then hinder the transport of water during this season. The influence of the coupling between atmosphere and surface, due mainly to the action of the regoliths, can also contribute partially to the observed phenomenon.  相似文献   

7.
Karl R. Blasius 《Icarus》1976,29(3):343-361
Mariner 9 images of the four great volcanic shields of the Tharsis region of Mars show many circular craters ranging in diameter from 100mm to 20 km. Previous attempts to date the volcanoes from their apparent impact crater densities yielded a range of results. The principal difficulty is sorting volcanic from impact craters for diameters ?1 km. Many of the observed craters are aligned in prominent linear and concentric patterns suggestive of volcanic origin. In this paper an attempt is made to date areas of shield surface, covered with high resolution images using only scattered small (?1 km) craters of probable impact origin. Craters of apparent volcanic origin are systematically excluded from the dating counts.The common measure of age, deduced for all surfaces studied, is a calculated “crater age” F′ defined as the number of craters equal to or larger than 1 km in diameter per 106km2. The conclusions reached from comparing surface ages and their geological settings are: (1) Lava flow terrain surfaces with ages, F′, from 180 to 490 are seen on the four great volcanoes. Summit surfaces of similar ages, F′ = 360 to 420, occur on the rims of calderas of Arsia Mons, Pavonis Mons, and Olympus Mons. The summit of Ascraeus Mons is possibly younger; F′ is calculated to be 180 for the single area which could be dated. (2) One considerably younger surface, F′ < 110, is seen on the floor of Arsia Mon's summit caldera. (3) Nearly crater free lava flow terrain surfaces seen on Olympus Mons are estimated to be less than half the age of a summit surface. The summit caldera floor is similarly young. (4) The pattern of surface ages on the volcanoes suggests that their eruption patterns are similar to those of Hawaiian basaltic shields. The youngest surfaces seem concentrated on the mid-to-lower flanks and within the summit calderas. (5) The presently imaged sample of shield surface, though incomplete, clearly shows a broad range of ages on three volcanoes—Olympus, Arsia, and Pavonis Mons.Estimated absolute ages of impact dated surfaces are obtained from two previously published estimates of the history of flux of impacting bodies on Mars. The estimated ranges of age for the observed crater populations are 0.5 to 1.2b.y. and 0.07 to 0.2b.y. Areas which are almost certainly younger, less than 0.5 or 0.07b.y., are also seen. The spans of surface age derived for the great shields are minimum estimates of their active lifetimes, apparently very long compared to those of terrestrial volcanoes.  相似文献   

8.
A number of Martian volcanoes, especially Ceraunius Tholus, Uranius Tholus, Uranius Patera, and Hecates Tholus, show morphological features strikingly different from those of shield volcanoes but analogous to those of terrestrial cones and composite volcanoes such as Barcena Volcano, Mexico. The most distinguishing overall features are steep slope angles, and Krakatoa-type caldera morphologies. Erosional features comprise numerous radial channels which extend from below the rim toward the base of the dome, and in some cases, patterns of anastamosing gullies which contribute to the main radial channels. Constructional features include blanketed flanks interpreted as dune or fan-like deposits of ash, and perhaps lava deltas. A possible explanation for the morphological features associated with these volcanoes is that they were formed by explosive volcanic density currents. Such eruptions would be expected on Mars where a rising magma came in contact with a thick layer of permafrost generating a base surge or after a Vulcanian explosion of a separate gas phase producing a nuée ardente. Crater age data from the surface of Martian domes and shields indicate that such explosive activity occurred more frequently early in Martian geologic history. This is more consistent with the view that the volcanic density flows were base surges rather than nuées ardentes, the melting of permafrost supplying the water required in base surge generation. If atmospheric conditions were more clement at the time, allowing the recycling of water back to the ground water, then the length of duration of phreatic activity would have been longer, not being limited by depletion time of the local permafrost reservoir.  相似文献   

9.
Building on previous studies of volcanoes around the Hellas basin with new studies of imaging (High-Resolution Stereo Camera (HRSC), Thermal Emission Imaging System (THEMIS), Mars Orbiter Camera (MOC), High-Resolution Imaging Science Experiment (HiRISE), Context Imager (CTX)), multispectral (HRSC, Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA)), topographic (Mars Orbiter Laser Altimeter (MOLA)) and gravity data, we define a new Martian volcanic province as the Circum-Hellas Volcanic Province (CHVP). With an area of >2.1 million km2, it contains the six oldest central vent volcanoes on Mars, which formed after the Hellas impact basin, between 4.0 and 3.6 Ga. These volcanoes mark a transition from the flood volcanism that formed Malea Planum ~3.8 Ga, to localized edifice-building eruptions. The CHVP volcanoes have two general morphologies: (1) shield-like edifices (Tyrrhena, Hadriaca, and Amphitrites Paterae), and (2) caldera-like depressions surrounded by ridged plains (Peneus, Malea, and Pityusa Paterae). Positive gravity anomalies are found at Tyrrhena, Hadriaca, and Amphitrites, perhaps indicative of dense magma bodies below the surface. The lack of positive-relief edifices and weak gravity anomalies at Peneus, Malea, and Pityusa suggest a fundamental difference in their formation, styles of eruption, and/or compositions. The northernmost volcanoes, the ~3.7–3.9 Ga Tyrrhena and Hadriaca Paterae, have low slopes, well-channeled flanks, and smooth caldera floors (at tens of meters/pixel scale), indicative of volcanoes formed from poorly consolidated pyroclastic deposits that have been modified by fluvial and aeolian erosion and deposition. The ~3.6 Ga Amphitrites Patera also has a well-channeled flank, but it and the ~3.8 Ga Peneus Patera are dominated by scalloped and pitted terrain, pedestal and ejecta flow craters, and a general ‘softened’ appearance. This morphology is indicative not only of surface materials subjected to periglacial processes involving water ice, but also of a surface composed of easily eroded materials such as ash and dust. The southernmost volcanoes, the ~3.8 Ga Malea and Pityusa Paterae, have no channeled flanks, no scalloped and pitted terrain, and lack the ‘softened’ appearance of their surfaces, but they do contain pedestal and ejecta flow craters and large, smooth, bright plateaus in their central depressions. This morphology is indicative of a surface with not only a high water ice content, but also a more consolidated material that is less susceptible to degradation (relative to the other four volcanoes). We suggest that Malea and Pityusa (and possibly Peneus) Paterae are Martian equivalents to Earth's giant calderas (e.g., Yellowstone, Long Valley) that erupted large volumes of volcanic materials, and that Malea and Pityusa are probably composed of either lava flows or ignimbrites. HRSC and OMEGA spectral data indicate that dark gray to slightly red materials (often represented as blue or black pixels in HRSC color images), found in the patera floors and topographic lows throughout the CHVP, have a basaltic composition. A key issue is whether this dark material represents concentrations of underlying basaltic material eroded by various processes and exposed by aeolian winnowing, or if the material was transported from elsewhere on Mars by regional winds. Understanding the provenance of these dark materials may be the key to understanding the volcanic diversity of the Circum-Hellas Volcanic Province.  相似文献   

10.
Possible sedimentary basins on Titan are potential sites for the formation of mud volcanoes. In order to constrain the appearance of such features in remotely sensed imagery being acquired by the Cassini spacecraft, we have modelled the formation of mud volcanoes on Titan for a series of plausible mud compositions, climatic conditions and geological settings, as well as addressing the full range of eruption variables; mud viscosity, conduit diameter and eruption duration. We find that for an acetylene mud source containing 20 wt% liquid methane in pore spaces, overlain by a sheet of water ice 500-m thick, a mud volcano can grow as high as 140 m. Assuming reasonable eruption parameters, such an edifice may develop into a pancake-like dome several kilometres in diameter. If observed and properly characterised, mud volcanoes would provide an important window on the subsurface distribution and dynamics of solids and liquids in sedimentary basins on Titan.  相似文献   

11.
Wudalianchi volcanic field, located in northeast China, consists of 14 Quaternary volcanoes with each volcano as a steep-sided scoria cone surrounded by gently sloping lava flows. Each cone is topped with a bowl-shaped or funnel-shaped crater. The volcanic cones are constructed by the accumulation of tephra and other ejecta. In this paper, their geologic features have been investigated and compared with some Martian volcanic features at Ascraeus Mons volcanoes observed on images obtained from High-Resolution Imaging Science Experiments (HiRISE), Mars Orbiter Camera (MOC), Context Imager (CTX) and Thermal Emission Imaging System (THEMIS). The results show that both Wudalianchi and Ascraeus Mons volcanoes are basaltic, share similar eruptive and geomorphologic features and eruptive styles, and have experienced multiple eruptive phases, in spite of the significant differences in their dimension and size. Both also show a variety of eruptive styles, such as fissure and central venting, tube-fed and channel-fed lava flows, and probably pyroclastic deposits. Three volcanic events are recognized at Ascraeus Mons, including an early phase of shield construction, a middle eruptive phase forming a low lava shield, and the last stage with aprons mantling both NE and SW flanks. We suggest that magma generation at both Wudalianchi and Ascraeus Mons might have been facilitated by an upwelling mantle plume or upwelling of asthenospheric mantle, and a deep-seated fault zone might have controlled magma emplacement and subsequent eruptions in Ascraeus Mons as observed in the Wudalianchi field, where the volcanoes are constructed along the northeast-striking faults. Fumarolic cones produced by water/magma interaction at the Wudalianchi volcanic field may also serve as an analogue for the pseudocraters identified at Isidis and Cerberus Planitia on Mars, suggesting existence of frozen water in the ground on Mars during Martian volcanic eruptions.  相似文献   

12.
This paper aims to aid understanding of the complicated interplay between construction and destruction of volcanoes, with an emphasis on the role of substrate tectonic heritage in controlling magma conduit geometry, lateral collapse, landslides, and preferential erosion pathways. The influence of basement structure on the development of six composite volcanoes located in different geodynamic/geological environments is described: Stromboli (Italy), in an island arc extensional tectonic setting, Ollagüe (Bolivia–Chile) in a cordilleran extensional setting, Kizimen (Russia) in a transtensional setting, Pinatubo (Philippines) in a transcurrent setting, Planchon (Chile) in a compressional cordilleran setting, and Mt. Etna (Italy) in a complex tectonic boundary setting. Analogue and numerical modelling results are used to enhance understanding of processes exemplified by these volcanic centres. We provide a comprehensive overview of this topic by considering a great deal of relevant, recently published studies and combine these with the presentation of new results, in order to contribute to the discussion on substrate tectonics and its control on volcano evolution. The results show that magma conduits in volcanic rift zones can be geometrically controlled by the regional tectonic stress field. Rift zones produce a lateral magma push that controls the direction of lateral collapse and can also trigger collapse. Once lateral collapse occurs, the resulting debuttressing produces a reorganization of the shallow-level magma migration pathways towards the collapse depression. Subsequent landslides and erosion tend to localize along rift zones. If a zone of weakness underlies a volcano, long-term creep can occur, deforming a large sector of the cone. This deformation can trigger landslides that propagate along the destabilized flank axis. In the absence of a rift zone, normal and transcurrent faults propagating from the substrate through the volcano can induce flank instability in directions respectively perpendicular and oblique to fault strike. This destabilization can evolve to lateral collapse with triggering mechanisms such as seismic activity or magmatic intrusion.  相似文献   

13.
Since before the beginning of the Galileo spacecraft’s Jupiter orbital tour, we have observed Io from the ground using NASA’s Infrared Telescope Facility (IRTF). We obtained images of Io in reflected sunlight and in-eclipse at 2.3, 3.5, and 4.8 μm. In addition, we have measured the 3.5 μm brightness of an eclipsed Io as it is occulted by Jupiter. These lightcurves enable us to measure the brightness and one-dimensional location of active volcanoes on the surface. During the Galileo era, two volcanoes were observed to be regularly active: Loki and either Kanehekili and/or Janus. At least 12 other active volcanoes were observed for shorter periods of time, including one distinguishable in images that include reflected sunlight. These data can be used to compare volcano types and test volcano eruption models, such as the lava lake model for Loki.  相似文献   

14.
Using Mars Global Surveyor Mars Orbiter Camera daily global maps, cloud areas have been measured daily for water ice clouds associated with the topography of the major volcanoes Olympus Mons, Ascraeus Mons, Pavonis Mons, Arsia Mons, Elysium Mons, and Alba Patera. This study expands on that of Benson et al. [Benson, J.L., Bonev, B.P., James, P.B., Shan, K.J., Cantor, B.A., Caplinger, M.A., 2003. Icarus 165, 34-52] by continuing their cloud area measurements of the Tharsis volcanoes, Olympus Mons and Alba Patera for an additional martian year (August 2001-May 2003) and by also including Elysium Mons measurements from March 1999 through May 2003. The seasonal trends in cloud activity established by Benson et al. [Benson, J.L., Bonev, B.P., James, P.B., Shan, K.J., Cantor, B.A., Caplinger, M.A., 2003. Icarus 165, 34-52] for the five volcanoes studied earlier are corroborated here with an additional year of coverage. For volcanoes other than Arsia Mons, interannual variations that could be associated with the large 2001 planet encircling dust storm are minimal. At Arsia Mons, where cloud activity was continuous in the first two years, clouds disappeared totally for ∼85° of LS (LS=188°-275°) due to the dust storm. Elysium Mons cloud activity is similar to that of Olympus Mons, however the peak in cloud area is near LS=130° rather than near LS=100°.  相似文献   

15.
Determining absolute surface ages for bodies in the Solar System is, at present, only possible for Earth and Moon with radiometric dating for both bodies and biologic proxies such as fossils for Earth. Relative ages through cratering statistics are recognized as one of the most reliable proxies for relative ages, calibrated by lunar geologic mapping and Apollo program sample returns. In this work, we have utilized the Mars Reconnaissance Orbiter’s ConTeXt Camera’s images which provide the highest resolution wide-scale coverage of Mars to systematically crater-age-date the calderas of 20 of Mars’ largest volcanoes in order to constrain the length of time over which these volcanoes - and major volcanic activity on the planet, by extension - were active. This constitutes the largest uniform and comprehensive research on these features to date, eliminating unknown uncertainties by multiple researchers analyzing different volcanoes with varied data and methods. We confirm previous results that Mars has had active volcanism throughout most of its history although it varied spatially and temporally, with the latest large-scale caldera activity ending approximately 150 ma in the Tharsis region. We find a transition from explosive to effusive eruption style occurring in the Hesperian, at approximately 3.5 Ga ago, though different regions of the planet transitioned at different times. Since we were statistically complete in our crater counts to sizes as small as ∼60 m in most cases, we also used our results to study the importance of secondary cratering and its effects on crater size-frequency distributions within the small regions of volcanic calderas. We found that there is no “golden rule” for the diameters secondaries become important in crater counts of martian surfaces, with one volcano showing a classic field of secondaries ∼2 crater diameters from the center of its primary but not affecting the size-frequency distribution, and another clearly showing an influence but from no obvious primary.  相似文献   

16.
G. Hulme 《Icarus》1976,27(2):207-213
A new technique for the interpretation of lava flow morphology was applied to a lava flow on Olympus Mons. The yield stress of the flowing lava was determined subject to uncertainties in the estimates of the slope of Olympus Mons. The lava is most probably more silicic than the basaltic lavas of the Hawaiian shield volcanoes and its effusion rate appears to have been greater than those of typical Hawaiian flows.  相似文献   

17.
《Planetary and Space Science》1999,47(3-4):411-431
We have constructed the complex geologic history of the Thaumasia region of Mars on the basis of detailed geologic mapping and relative-age dating of rock units and structure. The Thaumasia plateau dominates the region and consists of high lava plains partly surrounded by rugged highlands, mostly of Noachian and Hesperian age. Long-lived faulting centered near Syria Planum and at lesser sites produced radiating narrow grabens during the Noachian through Early Amazonian and concentric wrinkle ridges during the Late Noachian and Early Hesperian. Fault activity peaked during the Noachian and waned substantially during Late Hesperian and Amazonian time. Volcanism on the Thaumasia plateau was particularly active in comparison with other martian cratered highlands, resulting in fourteen volcanoes and numerous outcrops of smooth, ridged, and lobate plains materials. A particularly extensive set of overlapping lava-flow units was emplaced sequentially from Thaumasia Planum to Syria Planum, spanning from the Late Noachian to the Late Hesperian; lobate flows succeeded smooth flow at the beginning of the Late Hesperian. Deep crustal intrusion and a thickened, buoyant crust may have caused the uplift of the plateau during the Noachian and Early Hesperian, resulting in outward-verging fold-and-thrust plateau margins. This structural style appears similar to that of the young ranges of the Rocky Mountains in the western U.S. Within the plateau, several sites of volcanotectonic activity and valley erosion may be underlain by large and perhaps long-lived magmatic intrusions. One such site occurs at the headland of Warrego Valles. Here, at least two episodes of valley dissection from the Noachian to Early Hesperian occurred during the formation of two nearby rift systems. The site also is a locus of intersection for regional narrow grabens during the Late Noachian and Early Hesperian. However, at the site, such faults diverge or terminate, which suggests that a resistant body of rock occurs there. The overall volcanotectonic history at Thaumasia fits into a model for Tharsis as a whole in which long-lived Syria Planum-centered activity is ringed by a few significant, shorter-lived centers of activity like the Thaumasia plateau. Valley formation, like tectonism in the region, peaked during the Noachian and declined substantially during the Hesperian and Amazonian. Temporal and spatial associations of single erosional valleys and valley networks with volcanoes, rift systems, and large impact craters suggest that the majority of valleys formed by hydrothermal, deformational, and seismic-induced processes. The origin of scattered, mainly Noachian valleys is more conjectural; possible explanations include local precipitation, seismic disturbance of aquifers, or unrecognized intrusions.  相似文献   

18.
A model for the production of the Jovian ring is proposed. The ‘visible’ ring particles are micron-sized and produced by erosive collisions between an assumed population of km-sized parent bodies and sub-micron sized magnetospheric dust particles. These small dust particles are ejected by volcanoes from Io. The observed topology of the ring is described quite well with the theory, and properties of the parent bodies are deduced.  相似文献   

19.
Zamama, Culann, and Tupan Patera are three large, persistent volcanic centers on the jovian moon Io. As part of an ongoing project to quantify contributions from individual volcanic centers to Io’s thermal budget, we have quantified the radiant flux from all suitable observations made by the Galileo Near Infrared Mapping Spectrometer (NIMS) of these volcanoes, in some cases filling omissions in previous analyses. At Zamama, after a long period of cooling, we see a peak in thermal emission that corresponds with new plume activity. Subsequently, toward the end of the Galileo epoch, thermal emission from Zamama drops off in a manner consistent with a greatly reduced eruption rate and the cooling of emplaced flows. Culann exhibits possible episodic activity. We present the full Tupan Patera NIMS dataset and derive new estimates of thermal output and temporal behavior. Eruption rates at these three volcanoes are on the order of 30 m3 s−1, consistent with a previous analysis of NIMS observations of Prometheus, and nearly an order of magnitude greater than Kilauea volcano, Hawai’i, Earth’s most active volcano. We propose that future missions to the jovian system could better constrain activity at these volcanoes and others where similar styles of activity are taking place by obtaining data on a time scale of, ideally, at least one observation per day. Observations at similar or even shorter timescales are desirable during initial waxing phases of eruption episodes. These eruptions are identifiable from their characteristic spectral signatures and temporal behavior.  相似文献   

20.
A number of voluminous, fine-grained, friable deposits have been mapped on Mars. The modes of origin for these deposits are debated. The feasibility for an origin by volcanic airfall for the friable deposits is tested using a global circulation model to simulate the dispersal of pyroclasts from candidate source volcanoes near each deposit. It is concluded that the Medusae Fossae Formation and Electris deposits are easily formed through volcanic processes, and that the Hellas deposits and south polar pitted deposits could have some contribution from volcanic sources in specific atmospheric regimes. The Arabia and Argyre deposits are not well replicated by modeled pyroclast dispersal, suggesting that these deposits were most likely emplaced by other means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号