首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents a modeling framework for quantifying human impacts and for partitioning the sources of contamination related to water quality in the mixed-use landscape of a small tropical volcanic island. On Tutuila, the main island of American Samoa, production wells in the most populated region (the Tafuna-Leone Plain) produce most of the island’s drinking water. However, much of this water has been deemed unsafe to drink since 2009. Tutuila has three predominant anthropogenic non-point-groundwater-pollution sources of concern: on-site disposal systems (OSDS), agricultural chemicals, and pig manure. These sources are broadly distributed throughout the landscape and are located near many drinking-water wells. Water quality analyses show a link between elevated levels of total dissolved groundwater nitrogen (TN) and areas with high non-point-source pollution density, suggesting that TN can be used as a tracer of groundwater contamination from these sources. The modeling framework used in this study integrates land-use information, hydrological data, and water quality analyses with nitrogen loading and transport models. The approach utilizes a numerical groundwater flow model, a nitrogen-loading model, and a multi-species contaminant transport model. Nitrogen from each source is modeled as an independent component in order to trace the impact from individual land-use activities. Model results are calibrated and validated with dissolved groundwater TN concentrations and inorganic δ15N values, respectively. Results indicate that OSDS contribute significantly more TN to Tutuila’s aquifers than other sources, and thus should be prioritized in future water-quality management efforts.  相似文献   

2.
Despite the broad impact and importance of saltwater intrusion in coastal aquifers, little research has been directed towards forecasting saltwater intrusion in areas where the source of saltwater is uncertain. Saline contamination in inland groundwater supplies is a concern for numerous communities in the southern US including the city of Deltona, Florida. Furthermore, conventional numerical tools for forecasting saltwater contamination are heavily dependent on reliable characterization of the physical characteristics of underlying aquifers, information that is often absent or challenging to obtain. To overcome these limitations, a reliable alternative data-driven model for forecasting salinity in a groundwater supply was developed for Deltona using the fast orthogonal search (FOS) method. FOS was applied on monthly water-demand data and corresponding chloride concentrations at water supply wells. Groundwater salinity measurements from Deltona water supply wells were applied to evaluate the forecasting capability and accuracy of the FOS model. Accurate and reliable groundwater salinity forecasting is necessary to support effective and sustainable coastal-water resource planning and management. The available (27) water supply wells for Deltona were randomly split into three test groups for the purposes of FOS model development and performance assessment. Based on four performance indices (RMSE, RSR, NSEC, and R), the FOS model proved to be a reliable and robust forecaster of groundwater salinity. FOS is relatively inexpensive to apply, is not based on rigorous physical characterization of the water supply aquifer, and yields reliable estimates of groundwater salinity in active water supply wells.  相似文献   

3.
寻找地下水应急水源地、建立应急供水机制,是城市发生日常供水障碍时保障居民用水安全、维护社会稳定的重要措施。通过分析常德市规划区水文地质条件,圈定了5个地下水应急水源地,总结了同类型城市地下水应急水源地的选址原则,并从水量、水质、开采能力3个方面对水源地进行了可行性分析。结合现有城市供水管网及地下水开采井保留情况,分别考虑了人均用水量最低标准20 L/d和一般标准50 L/d两种状态下的应急供水方案。应急供水每人20 L/d状态下,保留井的现有供水能力可以满足应急供水需求,而应急供水每人50 L/d状态下,河洑水源地和芦荻山水源地保留井的现有供水能力不足,建议增加开采井以满足应急供水需求。  相似文献   

4.
寻找地下水应急水源地、建立应急供水机制,是城市发生日常供水障碍时保障居民用水安全、维护社会稳定的重要措施。通过分析常德市规划区水文地质条件,圈定了5个地下水应急水源地,总结了同类型城市地下水应急水源地的选址原则,并从水量、水质、开采能力3个方面对水源地进行了可行性分析。结合现有城市供水管网及地下水开采井保留情况,分别考虑了人均用水量最低标准20 L/d和一般标准50 L/d两种状态下的应急供水方案。应急供水每人20 L/d状态下,保留井的现有供水能力可以满足应急供水需求,而应急供水每人50 L/d状态下,河洑水源地和芦荻山水源地保留井的现有供水能力不足,建议增加开采井以满足应急供水需求。  相似文献   

5.
This study provides a solution for groundwater contamination problems. High anthopogenic loading on the water intake area makes it difficult to predict the migration of a contaminant to water supply wells, despite the known source location. Predictions were made using finite-difference grid models. The study provides an evaluation of the effects of the aquifer heterogeneity on the simulation results.  相似文献   

6.
Increasing pressure on water resources worldwide has resulted in groundwater contamination, and thus the deterioration of the groundwater resources and a threat to the public health. Risk mapping of groundwater contamination is an important tool for groundwater protection, land use management, and public health. This study presents a new approach for groundwater contamination risk mapping, based on hydrogeological setting, land use, contamination load, and groundwater modelling. The risk map is a product of probability of contamination and impact. This approach was applied on the Gaza Strip area in Palestine as a case study. A spatial analyst tool within Geographical Information System (GIS) was used to interpolate and manipulate data to develop GIS maps of vulnerability, land use, and contamination impact. A groundwater flow model for the area of study was also used to track the flow and to delineate the capture zones of public wells. The results show that areas of highest contamination risk occur in the southern cities of Khan Yunis and Rafah. The majority of public wells are located in an intermediate risk zone and four wells are in a high risk zone.  相似文献   

7.
The assessment of groundwater quality and its environmental implications in the region of the abandoned Cunha Baixa uranium mine (Central Portugal) was carried out from 1995 to 2004. Shallow groundwater is the major water supply source for irrigation in the neighbourhood of Cunha Baixa village. Water samples from the mine site as well as from private wells were collected in order to identify the mining impact on water composition, the extent of contamination and the seasonal and temporal groundwater quality variations. Some of the sampled private wells contain waters having low pH (<4.5–5) and high values of EC, TDS, SO4, F, Ca, Mg, Al, Mn, Ni, U, Zn and 226Ra. The wells located through the ESE–WSE groundwater flow path (1 km down gradient of the mining site) display the most contaminated water. In the summer season, the levels of SO4, Al, Mn, and U were 50–120 times higher than those registered for uncontaminated waters and exceeded the quality limits for irrigation purposes, presenting soil degradation risks. Nevertheless, this study indicates that groundwater contamination suffered a small decrease from 1999 to 2004. The bioaccumulation of toxic metals such as Al, Mn, and U within the food chain may cause a serious health hazard to the Cunha Baixa village inhabitants.  相似文献   

8.
Travel times and flow paths of groundwater from its recharge area to drinking-water production wells will govern how the quality of pumped groundwater responds to contaminations. Here, we studied the 180 km2 Ammer catchment in southwestern Germany, which is extensively used for groundwater production from a carbonate aquifer. Using a 3-D steady-state groundwater model, four alternative representations of discharge and recharge were systematically explored to understand their impact on groundwater travel times and flow paths. More specifically, two recharge maps obtained from different German hydrologic atlases and two plausible alternative discharge scenarios were tested: (1) groundwater flow across the entire streambed of the Ammer River and its main tributaries and (2) groundwater discharge via a few major springs feeding the Ammer River. For each of these scenarios, the groundwater model was first calibrated against water levels, and subsequently travel times and flow paths were calculated for production wells using particle tracking methods. These computed travel times and flow paths were indirectly evaluated using additional data from the wells including measured concentrations of major ions and environmental tracers indicating groundwater age. Different recharge scenarios resulted in a comparable fit to observed water levels, and similar estimates of hydraulic conductivities, flow paths and travel times of groundwater to production wells. Travel times calculated for all scenarios had a plausible order of magnitude which were comparable to apparent groundwater ages modelled using environmental tracers. Scenario with groundwater discharge across the entire streambed of the Ammer River and its tributaries resulted in a better fit to water levels than scenario with discharge at a few springs only. In spite of the poorer fit to water levels, flow paths of groundwater from the latter scenario were more plausible, and these were supported by the observed major ion chemistry at the production wells. We concluded that data commonly used in groundwater modelling such as water levels and apparent groundwater ages may be insufficient to reliably delineate capture zones of wells. Hydrogeochemical information relating only indirectly to groundwater flow such as the major ion chemistry of water sampled at the wells can substantially improve our understanding of the source areas of recharge for production wells.  相似文献   

9.
This paper, firstly, shows the distribution of arsenic-contaminated groundwater in Samta village. This village, which is in Jessore district in Bangladesh, was chosen as a model village for investigating the mechanism of groundwater contamination. 90% of the tube wells in this village had arsenic concentrations above the Bangladesh standard of 0.05 mg/l. Tube wells with arsenic concentrations of over 0.50 mg/l were distributed in the southern part of the village with a belt-like shape from east to west. Secondly, groundwater distribution is discussed with respect to its flow and the high arsenic zone (As≥0.50 mg/l) agrees well with the drifting zone of the groundwater. Furthermore, arsenic-free water supply systems suitable for a small area in the village have been developed. A pond sand filter (PSF) system which purifies pond water is discussed in this paper. Prior to the construction of the PSF, the water quality in ponds was examined for arsenic levels. The inflow of drainage from the tube wells was found to be the major cause of arsenic contamination of pond water. The PSF installed in Samta is working very well and produces a good quality of treated water.  相似文献   

10.
The simulation of non-point source pollution in agricultural basins is a computationally demanding process due to the large number of individual sources and potential pollution receptors (e.g., drinking water wells). In this study, we present an efficient computational framework for parallel simulation of diffuse pollution in such groundwater basins. To derive a highly detailed velocity field, we employed algebraic multigrid (AMG) preconditioners to solve the groundwater flow equation. We compare two variants of AMG implementations, the multilevel preconditioning provided by Trilinos and the BoomerAMG provided by HYPRE. We also perform a sensitivity analysis on the configuration of AMG methods to evaluate the application of these libraries to groundwater flow problems. For the transport simulation of diffuse contamination, we use the streamline approach, which decomposes the 3D transport problem into a large number of 1D problems that can be executed in parallel. The proposed framework is applied to a 2,600-km2 groundwater basin in California discretized into a grid with over 11 million degrees of freedom. Using a Monte Carlo approach with 200 nitrate loading realizations at the aquifer surface, we perform a stochastic analysis to quantify nitrate breakthrough prediction uncertainty at over 1,500 wells due to random, temporally distributed nitrate loading. The results show that there is a significant time lag between loading and aquifer response at production wells. Generally, typical production wells respond after 5–50 years depending on well depth and screen length, while the prediction uncertainty for nitrate in individual wells is very large—approximately twice the drinking water limit for nitrate.  相似文献   

11.
 Drilling of 15 boreholes at a disused liquid waste disposal site near Perth, Western Australia, has indicated that a contamination plume extends about 1000 m in a southerly direction from the site in the direction of groundwater flow. The plume is up to 600 m wide and 5–40 m thick. Chemical and microbiological analyses have indicated that contaminated groundwater contains high concentrations of ammonia, iron, and bacteria at levels that commonly exceed national drinking water guidelines. It is likely that a proposed water supply production well in the path of the contamination plume will have to be abandoned, and additional wells may have to be abandoned if the plume continues to extend in the direction of groundwater flow. There is currently insufficient information to indicate whether the plume is continuing to expand, but studies on similar plumes in the Perth metropolitan area have indicated that contaminated groundwater can move at rates up to 100 m yr–1. Several other liquid waste disposal sites are now located in residential areas of Perth where wells are used for garden irrigation. Further work is required to ensure that there is no potential impact of groundwater contamination on public health in these areas. Received: 31 July 1995 · Accepted: 18 September 1995  相似文献   

12.
This paper illustrates how sensitivity analysis and a worst-case scenario analysis can be useful tools in risk assessment of groundwater pollution. The approach is applied to a study area in Hungary with several known groundwater pollution sources and nearby drinking water production wells. The main concern is whether the contamination sources threaten the drinking water wells of the area. A groundwater flow and transport model is set up to answer this question. Due to limited data availability, the results of this model are associated with large uncertainty. Sensitivity analysis and a worst-case scenario analysis are applied to estimate this uncertainty and build confidence in the model results.  相似文献   

13.
The present study assesses groundwater resources in the semiarid central Sudan, where 20 deep productive wells were installed to supply a major city in the region, El Obeid. The wells, which has an average 20 L/s discharge each, are taping a deep semiconfined to confined aquifer of fluvial silisiclastics deposited in the Tertiary–Pleistocene. Groundwater modeling was used as a technique to interpret the hydrologic system in arid to semiarid central Sudan and to simulate the future influence of the project on the hydrogeologic system. The simulation confirmed that steady-state flow conditions have been currently reached as indicated by consistency of computed heads. It also calibrated the values of the conductivity and recharge and ensured the sustainability of the El Obeid water supply project. A total of 3.5 × 107 m3/year can be continually extracted from the deep aquifer to supply El Obeid city without endangering the groundwater resources in the region. The decline in water level will not exceed 25 m during the first 10 years, while indefinite continuous pumping will affect only the vicinity of the wells in a circle of 30 km diameter. Therefore, aquifer storage capacity and hydraulic properties encourage further groundwater exploitation. The present use of groundwater is extremely lower than the present demand, and it can potentially cover future demands without introducing significant changes to the system. The increase of pumping cost due to the decline in head subsequent to project operation was found to be minimal and of local effect.  相似文献   

14.
15.
A three-dimensional groundwater model was used to improve water resource management for a study area in north-west Switzerland, where drinking-water production is close to former landfills and industrial areas. To avoid drinking-water contamination, artificial groundwater recharge with surface water is used to create a hydraulic barrier between the contaminated sites and drinking-water extraction wells. The model was used for simulating existing and proposed water management strategies as a tool to ensure the utmost security for drinking water. A systematic evaluation of the flow direction between existing observation points using a developed three-point estimation method for a large number of scenarios was carried out. It is demonstrated that systematically applying the developed methodology helps to identify vulnerable locations which are sensitive to changing boundary conditions such as those arising from changes to artificial groundwater recharge rates. At these locations, additional investigations and protection are required. The presented integrated approach, using the groundwater flow direction between observation points, can be easily transferred to a variety of hydrological settings to systematically evaluate groundwater modelling scenarios.  相似文献   

16.
The role of different minerals in base cation release and thus the increase of buffering capacity of groundwater against acid deposition is controversially discussed in the literature. The 87Sr/86Sr ratios and base cation concentration were investigated in whole rock leachates, mineral separates, precipitation, soil solution, groundwater and stream water samples in the Lehstenbach catchment (Germany) to identify the weathering sequence of the granite bedrock. Three different approaches were followed in parallel. It was assumed that the contribution of different minerals to base cation supply of the groundwater with increasing weathering intensity would be observed by investigating (1) unweathered rock leachates, deep groundwater and shallow groundwater, (2) groundwater samples from new groundwater wells, reflecting the initial weathering of the drilled bedrock, and groundwater from wells that were drilled in 1988, (3) stream water during baseflow, dominated by deep groundwater, and stream water during high flow, being predominantly shallow groundwater. Whereas the first approach yielded consistent patterns, there was some evidence that groundwater from the new wells initially reflected contamination by the filter gravel rather than cation release in an initial stage of weathering. Time series samples of stream water and groundwater solute concentrations and isotope ratios turned out to reflect varying fractions of soil water and precipitation water at baseflow and high flow conditions rather than varying contributions of different minerals that prevail at different stages of granite weathering.  相似文献   

17.
Saltwater intrusion in coastal regions of North America   总被引:7,自引:3,他引:4  
Saltwater has intruded into many of the coastal aquifers of the United States, Mexico, and Canada, but the extent of saltwater intrusion varies widely among localities and hydrogeologic settings. In many instances, the area contaminated by saltwater is limited to small parts of an aquifer and to specific wells and has had little or no effect on overall groundwater supplies; in other instances, saltwater contamination is of regional extent and has resulted in the closure of many groundwater supply wells. The variability of hydrogeologic settings, three-dimensional distribution of saline water, and history of groundwater withdrawals and freshwater drainage has resulted in a variety of modes of saltwater intrusion into coastal aquifers. These include lateral intrusion from the ocean; upward intrusion from deeper, more saline zones of a groundwater system; and downward intrusion from coastal waters. Saltwater contamination also has occurred along open boreholes and within abandoned, improperly constructed, or corroded wells that provide pathways for vertical migration across interconnected aquifers. Communities within the coastal regions of North America are taking actions to manage and prevent saltwater intrusion to ensure a sustainable source of groundwater for the future. These actions can be grouped broadly into scientific monitoring and assessment, engineering techniques, and regulatory approaches.  相似文献   

18.
The main goal of the research was a detailed study of the consequences, caused by groundwater abstraction in the Neresnica brook catchment (Slovak Republic) since the water supply source Podzamcok was put in operation in 1973. This goal was supplemented by research of groundwater origin, groundwater chemical composition and its changes. Field measurements, analyses of water samples and statistical evaluation of hydrometeorological data were used to gain and process the data. It was showed that overexploitation of groundwater in the catchment resulted in distinct diminishing of stream flow discharges in low flow periods, groundwater level dropping and disturbance of hydraulic connection between surface and groundwater. Groundwater quality was quite stable during the whole period of observation. Groundwater modeling was proposed to be used for the re-estimation of utilizable groundwater amounts in the catchment.  相似文献   

19.
This study used optical brighteners (OB) released from septic systems to show that groundwater flow direction is largely controlled by the structural framework in a faulted karst groundwater system. Effective protection of groundwater resources requires that groundwater systems are adequately characterized and source water protection areas (SWPA) are developed for drinking water wells. Karst aquifers are among the most sensitive to contamination due to high recharge rates, and among the most difficult aquifers to characterize due to heterogeneity, and anisotropy. Because septic systems may be used to treat wastewater within SWPAs for karst aquifers there is a need to characterize these groundwater systems using tracers. The objective of this study was to characterize groundwater flow in a faulted portion of the Edwards aquifer in Bexar County, Texas using OB that are released as incidental tracers from septic systems. This study included measurement of water levels, sampling of groundwater and surface water, analysis for OB, and spatial analysis in a GIS. Results show that OB intensities were highest to the southwest of the septic area, a direction that is sub-parallel to the fault and fracture orientation and nearly perpendicular to the hydraulic gradient. This indicates that movement of OB, solutes, or non-aqueous liquids/solids in a faulted karst system can be largely controlled by fault/fracture orientation and structural relay ramps.  相似文献   

20.
《Applied Geochemistry》2006,21(1):83-97
Groundwater in the Gwelup groundwater management area in Perth, Western Australia has been enriched in As due to the exposure of pyritic sediments caused by reduced rainfall, increased groundwater abstraction for irrigation and water supply, and prolonged dewatering carried out during urban construction activities. Groundwater near the watertable in a 25–60 m thick unconfined sandy aquifer has become acidic and has affected shallow wells used for garden irrigation. Arsenic concentrations up to 7000 μg/L were measured in shallow groundwater, triggering concerns about possible health effects if residents were to use water from household wells as a drinking water source. Deep production wells used for public water supply are not affected by acidity, but trends of progressively increasing concentrations of Fe, SO4 and Ca over a 30-a period indicate that pyrite oxidation products extend to the base of the unconfined aquifer. Falling Eh values are triggering the release of As from the reduction of Fe(III) oxyhydroxide minerals near the base of the unconfined aquifer, increasing the risk that groundwater used as a drinking water source will also become contaminated with high concentrations of As.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号