首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over-reflection of propagating hydromagnetic planetary-gravity waves incident on the current sheets of the helmet streamers and magnetic sectors of the solar corona is investigated.It is shown that over-reflection arises only if the wavenumbers, or the energy fluxes per unit mass, perpendicular to the current sheet of the incident and the transmitted waves in both cases are in opposite directions. The over-reflected waves then draw magnetic energy from the sun's field and communicate it to the interplanetary magnetic field.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

2.
Hydromagnetic waves are of interest for heating the corona or coronal loops and for accelerating the solar wind. This paper enumerates some of the limitations that must be considered before hydromagnetic waves are taken seriously. In the lowest part of the corona, waves interact so that a significant fraction of the coronal wave flux should have periods as 10 s. If the problem of interest determines either a flux of wave energy or a dissipation rate, the distance that each wave mode can travel can be specified, and for at least one mode it must be consistent with the size and location of the region where the waves are to act. Heating of coronal loops observed by X-rays can be explained if the strength of the magnetic field along the loop lies within a rather narrow range and if the wave period is sufficiently short. In general, Alfvén waves travel furthest and reach high into the corona and into the solar wind. The radial variation of the magnetic field is the most important parameter determining where the waves are dissipated. Heating of coronal helmets by Alfvén waves is probable.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

3.
A general scheme is established to examine any magnetohydrodynamic (MHD) configuration for its acceleration potential including the effects of various types of plasma waves. The analysis is restricted to plasma waves in a magnetic field with electron cyclotron frequency less than, but comparable to, the electron plasma frequency (moderate field). The general role of electron plasma waves is examined in this paper independent of a specific MHD configuration or generating mechanism in the weak turbulence limit. The evolution of arbitrary wave spectra in a non-relativistic plasma is examined, and it is shown that the nonlinear, process of induced scattering on the polarization clouds of ions leads to the collapse of the waves to an almost one-dimensional spectrum directed along the magnetic field. The subsequent acceleration of non-relativistic and relativistic particles is considered. It is shown for non-relativistic particles that when the wave distribution has a negative slope the acceleration is retarded for lower velocities and enhanced for higher velocities compared to acceleration by an isotropic distribution of electron plasma waves in a magnetic field. This change in behavior is expected to affect the development of wave spectra and the subsequent acceleration spectrum.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

4.
Y. Nakagawa 《Solar physics》1973,33(1):87-101
Observations indicate modulations of the 5-min period of chromospheric oscillations in magnetically active regions of the Sun. Thee observations are examined on the basis of the diagnostic diagrams obtained previously in a theoretical study of trapped magnetoatmospheric waves, and it is shown that the observed results can be interpreted in terms of the modulations of characteristic period of the trapped magnetoatmospheric waves for various configurations and strengths of the magnetic field, such as the umbra and penumbra of a sunspot, plages, boundaries as well as inside of supergranulation cells. The physical significance of the results and the limitation of the present analysis are discussed together with the possible future direction of this type of study.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
I extend a previous paper which argued that Alfvén waves traveling up a large coronal loop may heat this loop at the top and increase its visibility. This heating is now evaluated more completely, taking into account the changes along the loop in field strength, gas density and flux of waves. The location and efficiency of the heating depend very non-linearly on the intensity of the waves, which allows rapid changes in the visibility of a loop. Observational and theoretical conditions for the applicability of the theory are summarized. Alfvén waves preferentially heat the upper portions of coronal helmets, but a measurable excess temperature on a loop requires somewhat implausibly high wave fluxes. Radiation losses from low-lying loops with strong magnetic fields cannot be explained without modifying the theory.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
The nonmagnetic interior of supergranulation cells has been thought since the 1940s to be heated by the dissipation of acoustic waves. But all attempts to measure the acoustic flux have failed to show sufficient energy for chromospheric heating. Recent space observations with TRACE, for example, have found 10% or less of the necessary flux. To explain the missing energy it has been speculated that the nonmagnetic chromosphere is heated mainly by waves related to the magnetic field. If that were correct, the whole chromosphere, magnetic as well as nonmagnetic, would be heated mainly by waves related to the magnetic field. But contrary to expectation, the radiation emerging from the nonmagnetic chromosphere shows none of the signatures of magnetic waves, only those of acoustic waves. Nearly all the heating of the nonmagnetic chromosphere must therefore be due to acoustic waves. In the magnetic network on the boundary of supergranulation cells, on the other hand, the small filling factor of the magnetic field in the photosphere implies that only a small fraction of the wave flux that travels upward to heat the chromosphere can be channeled by the magnetic field. Hence, while some of the energy that is dissipated in the magnetic network is in the form of magnetic waves, most of it must be in the form of acoustic waves. Thus, the quiet solar chromosphere, instead of being heated mainly by magnetic waves throughout, must be heated mainly by acoustic waves throughout. The full wave flux heating the quiet chromosphere must travel through the photosphere. In the nonmagnetic medium, this flux is essentially all in the form of acoustic waves; TRACE registers at most 10% of it, perhaps because of limited spatial resolution.  相似文献   

7.
It is generally believed that the heating of the solar corona is caused by waves originating in the photosphere and propagating into the corona where their energy is dissipated. The medium through which these waves propagate is in general permeated by magnetic fields complicating the behaviour of this propagation considerably. We have therefore analysed the wave motions in a plasma permeated by constant magnetic and gravitational fields. In general, three waves modes were found, which we called the + mode, –mode, and the Alfvén mode. Each mode was found to be strongly coupled to each of the three kinds of motion; acoustic, gravity, and hydromagnetic. However, the Alfvén mode was found to be separable from the dispersion relation, and therefore independent of compressibility and gravity. The local dispersion relation is derived and expressed in nondimensional form independent of the constants that describe a particular atmosphere. From the dispersion relation one can show that rising waves propagate either with a constant or a growing wave amplitude depending on the magnitudes and directions of the gravitational field, magnetic field, and the wave vector. The variation of the density with height is taken into account by a generalized W.K.B. method. Equations are found which give the height at which wave reflection occurs, giving the upper bound for possible wave propagation.Work supported by the National Aeronautics and Space Administration under Research Grant NGR-29-001-016.On leave of absence from the Desert Research Institute and Department of Physics, University of Nevada, Reno, Nevada, U.S.A.  相似文献   

8.
We study the generation of magnetosonic waves in galactic gaseous discs taking account of the magnetic field, differential rotation and self-gravity. The special case of perturbations is considered with the wavevector perpendicular to the magnetic field. The necessary condition of the amplification of seed perturbations is the presence of differential rotation and non-vanishing radial component of the magnetic field that can easily be satisfied in galactic discs. Differential rotation stretches the azimuthal field from the radial one and, therefore, we consider the generation of waves on the time-dependent background magnetic field. Basically, an amplification is rather efficient, and seed perturbations become non-linear already after several rotation periods for a wide range of wavelength. The generated magnetosonic waves can be either non-oscillatory or oscillatory depending on the parameters of gas. If perturbations are Jeans stable, then typically non-oscillatory waves are amplified. However, interplay between self-gravity, magnetic field and rotational shear can change qualitatively the classical Jeans instability, so that the latter becomes oscillatory and tends to be suppressed in galaxies.  相似文献   

9.
Y. Nakagawa 《Solar physics》1970,12(3):419-437
A comprehensive examination of the stability of prominences is presented, and the gross behavior of prominences is considered in terms of the stability of an optically thin plasma supported by a magnetic field against gravity, including thermal effects on the energy balance. It is shown that (1) hydromagnetic as well as hydrodynamic waves of short wavelengths could induce instability which leads to the formation of prominences, and (2) in quiescent prominences, the dominant factor which controls the instability is the shear between the permeated and the supporting magnetic fields. The dependence of these instabilities on the radiative loss and other hydromagnetic effects are discussed. The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

10.
A possible mechanism for the formation and heating of coronal loops through the propagation and damping of fast mode waves is proposed and studied in detail. Loop-like field structures are represented by a dipole field with the point dipole at a given distance below the solar surface. The density of the medium is determined by hydrostatic equilibrium along the field lines in an isothermal atmosphere. The fast mode waves propagating outward from the coronal base are refracted into regions with a low Alfvén speed and suffer collisionless damping when the gas pressure becomes comparable to the magnetic pressure. The propagation and damping of these waves are studied for three different cases: a uniform density at the coronal base, a density depletion within a given flux tube, and a density enhancement within a given flux tube. The fast mode waves are found to be important in the formation and heating of the loops if the wave energy flux density is of the order 105 ergs cm-2 s-1 at the coronal base.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

11.
An analysis of magneto-acoustic-gravity waves in the case of an isothermal atmosphere permeated by a uniform magnetic field is presented. The general solution is expressed in terms of generalized hypergeometric functions. It can be used in numerical simulation of oscillations in a magnetic atmosphere.

It is shown that the elliptically polarized magneto-acoustic-gravity waves consist of a pair of surface waves and a pair of body waves above the cut-off frequency. The body waves along the magnetic field are similar to acoustic waves in an atmosphere and their cut-off frequency is unaffected by magnetic field. The transverse oscillation decreases with height. For the usual boundary condition, the longitudinal oscillation decreases with height; however, in some cases, it may contain terms that increase with height. The solution is singular on a family of ellipses in the frequency - horizontal wave number plane. Near these ellipses, the wave components grow indefinitely.  相似文献   


12.
Discrete Alfvén waves in coronal loops and prominences are investigated in non-ideal magnetohydrodynamics. The non-ideal effects included are anisotropic, thermal conduction, and optically thin radiation. The classic ideal Alfvén continuum is not altered by these non-ideal effects, but the discrete Alfvén modes, which exist under certain conditions above or below the Alfvén continuum in ideal MHD, are shown to be influenced by non-adiabatic effects.The existence of discrete, non-adiabatic Alfvén waves, and their damping and overstability are examined for 1D cylindrical equilibrium states with twisted magnetic fields. First, analytic results are obtained for modes of high radial order by means of a WKB-analysis. The subspectrum of discrete Alfvén modes is computed with a numerical code, with particular emphasis on the modes of low radial order. The results show that discrete Alfvén waves are of potential importance for solar applications and also that the information obtained with the WKB-analysis is of limited use in this context.Research Assistant of the Belgian National for Scientific Research.  相似文献   

13.
在柱坐标下将黑子周围的环形区域(黑子除外)内的振荡分解为朝向黑子传播的(入射的)波和离开黑子传播的(出射的)波。对无黑子的环形区域内的振荡也进行了同样的分解。将黑子周围的入射波看成是被黑子磁流管磁化了的介质(介质内的磁场基本是水平的)中的波。而无黑子区的入射波看成是非磁化介质中的波。比较这两种波在固定波数下功率随频率的分布发现,在磁化介质中不同径向除n的声波(p模)频率系统降低,同时功率也降低,降低的功率最高达非磁化介质中波的功率的30%。而比较在固定频率下功率随波数的分布发现,磁场中f模及n=1,2,3的p模的脊向高波数方向位移,功率的降低受频率调制,即声波在某些有限的频带中被吸收。这些观测表明,在磁场中p模与磁声重力波(MAG)产生了模式混合或耦合。模式混合的存在支持了模式转换作为p模式被黑子吸收的机制的解释。此外,本文还分析了转换的MAG波进入黑子磁流管(其中的磁场基本上是垂直的)后进一步被吸收,吸收的功率最高达MAG波的20%。在磁流管内没有进一步观测到模式的转换  相似文献   

14.
Magnetohydrodynamic (MHD) equations are presented for the mixture of superfluid neutrons, superconducting protons and normal electrons believed to exist in the outer cores of neutron stars. The dissipative effects of electron viscosity and mutual friction resulting from electron-vortex scattering are also included. It is shown that Alfvén waves are replaced by cyclotron-vortex waves that have not been previously derived from MHD theory. The cyclotron-vortex waves are analogous to Alfvén waves with the tension arising from the magnetic energy density replaced by the vortex energy density. The equations are then put into a simplified form useful for studying the effect of the interior magnetic field on the dynamics. Of particular interest is the crust–core coupling time, which can be inferred from pulsar glitch observations. The hypothesis that cyclotron-vortex waves play a significant role in the core spin-up during a glitch is used to place limits on the interior magnetic field. The results are compared with those of other studies.  相似文献   

15.
We model the dynamical interaction between magnetic flux tubes and granules in the solar photosphere which leads to the excitation of transverse (kink) and longitudinal (sausage) tube waves. The investigation is motivated by the interpretation of network oscillations in terms of flux tube waves. The calculations show that for magnetic field strengths typical of the network, the energy flux in transverse waves is higher than in longitudinal waves by an order of magnitude. But for weaker fields, such as those that might be found in internetwork regions, the energy fluxes in the two modes are comparable. Using observations of footpoint motions, the energy flux in transverse waves is calculated and the implications for chromospheric heating are pointed out.  相似文献   

16.
We investigate the evolution of the magnetic flux density in a magnetically supported molecular cloud driven by Hall and Ohmic components of the electric field generated by the flows of thermal electrons. Particular attention is given to the wave transport of the magnetic field in a cloud whose gas dynamics is dominated by electron flows; the mobility of neutrals and ions is regarded as heavily suppressed. It is shown that electromagnetic waves penetrating such a cloud can be converted into helicons – weakly damped, circularly polarized waves in which the densities of the magnetic flux and the electron current undergo coherent oscillations. These waves are interesting in their own right, because for electron magnetohydrodynamics the low-frequency helicoidal waves have the same physical significance as the transverse Alfvén waves do for a single-component magnetohydrodynamics. The latter, as is known, are considered to be responsible for the widths of molecular lines detected in dark, magnetically supported clouds. From our numerical estimates for the group velocity and the rate of dissipation of helicons it follows that a possible contribution of these waves to the broadening of molecular lines is consistent with the conditions typical of dark molecular clouds.  相似文献   

17.
本文对充满垂直均匀磁场的等温大气内的磁声重力波做了严格的解析分析,并将其通解表述成广义超几何函数的形式。该解可用于对磁大气内振荡现象的进一步数值模拟研究。对解的分析澄清了若干磁声重力波的传播性质。  相似文献   

18.
Electromagnetic waves in the frequency range 0.2–11 Hz have been detected onboard the GEOS-1 and -2 satellites. The purpose of this paper is to report on these observations. The three orthogonal magnetic sensors allow us to determine the polarization of the waves. Two kinds of waves are commonly observed, which can easily be distinguished by their polarization.

(1) Waves with a magnetic field aligned with the DC magnetic field. These events often present a typical harmonic structure. The fundamental—which is not always observed—is often in the neighbourhood of the proton gyrofrequency FH+. These waves are generally observed above FH+. We will show that these emissions can be interpreted as magnetosonic waves destabilized by energetic protons (E 15 keV) with a ringlike distribution function.

(2) Waves with a magnetic field in a plane perpendicular to the DC magnetic field. These emissions are identified as Ion Cyclotron Waves (ICW's). These waves can, under certain conditions, propagate along the line of force of the magnetic field and reach the ground. They can be identified with the well-known Pcl oscillations, which generally have a clear periodic structure. In contrast these periodic structures are seldom observed onboard the satellites. At the geostationary orbit, these emissions exist in limited frequency domains, which are well organized by the helium gyrofrequency FHe+.  相似文献   


19.
This paper studies sonic waves in an optically thick medium under the influence of a magnetic field. The conductivity of the medium has been taken to be infinite. The effects of radiation, radiation energy density, radiative heat transfer and magnetic field have been taken into account. It has been obtained that the magnetic field has significant effect on sonic velocity. The fundamental differential equations governing the growth and decay of sonic waves are determined and solved.  相似文献   

20.
At the surface of the Sun, acoustic waves appear to be affected by the presence of strong magnetic fields in active regions. We explore the possibility that the inclined magnetic field in sunspot penumbrae may convert primarily vertically-propagating acoustic waves into elliptical motion. We use helioseismic holography to measure the modulus and phase of the correlation between incoming acoustic waves and the local surface motion within two sunspots. These correlations are modeled by assuming the surface motion to be elliptical, and we explore the properties of the elliptical motion on the magnetic-field inclination. We also demonstrate that the phase shift of the outward-propagating waves is opposite to the phase shift of the inward-propagating waves in stronger, more vertical fields, but similar to the inward phase shifts in weaker, more-inclined fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号