首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The chemical reactivity of lunar dust is an important topic of inquiry, of fundamental scientific value and of practical relevance to human exploration of the Moon. Lunar specimens brought back to Earth by the Apollo astronauts provide a key resource for ground-based studies which help to define the initial avenues of inquiry. Even among the limited samples obtained from equatorial exploration sites, however, chemical reactivity analyses indicates that lunar dust is heterogeneous, a finding that parallels heterogeneity revealed by remote sensing studies. The region-to-region variability of lunar dust argues that a full understanding of its chemical reactivity will require in situ analysis, on a region-to-region basis. The data from such investigations will help to shape our understanding of the potential for lunar dust toxicity, and will provide insight into the types of reactions that may occur with when lunar dust interacts with organic molecules on the surface of the Moon.  相似文献   

2.
Each year the Moon is bombarded by about 106 kg of interplanetary micrometeoroids of cometary and asteroidal origin. Most of these projectiles range from 10 nm to about 1 mm in size and impact the Moon at 10–72 km/s speed. They excavate lunar soil about 1000 times their own mass. These impacts leave a crater record on the surface from which the micrometeoroid size distribution has been deciphered. Much of the excavated mass returns to the lunar surface and blankets the lunar crust with a highly pulverized and “impact gardened” regolith of about 10 m thickness. Micron and sub-micron sized secondary particles that are ejected at speeds up to the escape speed of 2300 m/s form a perpetual dust cloud around the Moon and, upon re-impact, leave a record in the microcrater distribution. Such tenuous clouds have been observed by the Galileo spacecraft around all lunar-sized Galilean satellites at Jupiter. The highly sensitive Lunar Dust Experiment (LDEX) onboard the LADEE mission will shed new light on the lunar dust environment. LADEE is expected to be launched in early 2013.Another dust related phenomenon is the possible electrostatic mobilization of lunar dust. Images taken by the television cameras on Surveyors 5, 6, and 7 showed a distinct glow just above the lunar horizon referred to as horizon glow (HG). This light was interpreted to be forward-scattered sunlight from a cloud of dust particles above the surface near the terminator. A photometer onboard the Lunokhod-2 rover also reported excess brightness, most likely due to HG. From the lunar orbit during sunrise the Apollo astronauts reported bright streamers high above the lunar surface, which were interpreted as dust phenomena. The Lunar Ejecta and Meteorites (LEAM) Experiment was deployed on the lunar surface by the Apollo 17 astronauts in order to characterize the lunar dust environment. Instead of the expected low impact rate from interplanetary and interstellar dust, LEAM registered hundreds of signals associated with the passage of the terminator, which swamped any signature of primary impactors of interplanetary origin. It was suggested that the LEAM events are consistent with the sunrise/sunset-triggered levitation and transport of charged lunar dust particles. Currently no theoretical model explains the formation of a dust cloud above the lunar surface but recent laboratory experiments indicate that the interaction of dust on the lunar surface with solar UV and plasma is more complex than previously thought.  相似文献   

3.
This is the first review of 3 Apollo experiments, which made the only direct measurements of dust on the lunar surface: (i) minimalist matchbox-sized 270 g Dust Detector Experiments (DDEs) of Apollo 11, 12, 14 and 15, produced 30 million Lunar Day measurements 21 July 1969–30 September, 1977; (ii) Thermal Degradation Samples (TDS) of Apollo 14, sprinkled with dust, photographed, taken back to Earth into quarantine and lost; and (iii) the 7.5 kg Lunar Ejecta and Meteoroids (LEAM) experiment of Apollo 17, whose original tapes and plots are lost. LEAM, designed to measure rare impacts of cosmic dust, registered scores of events each lunation most frequently around sunrise and sunset. LEAM data are accepted as caused by heavily-charged particles of lunar dust at speeds of <100 m/s, stimulating theoretical models of transporting lunar dust and adding significant motivation for returning to the Moon. New analyses here show some raw data are sporadic bursts of 1, 2, 3 or more events within time bubbles smaller than 0.6 s, not predicted by theoretical dust models but consistent with noise bits caused by electromagnetic interference (EMI) from switching of large currents in the Apollo 17 Lunar Surface Experiment Package (ALSEP), as occurred in pre-flight LEAM-acceptance tests. On the Moon switching is most common around sunrise and sunset in a dozen heavy-duty heaters essential for operational survival during 350 h of lunar night temperatures of minus 170 °C. Another four otherwise unexplained features of LEAM data are consistent with the “noise bits” hypothesis. Discoveries with DDE and TDS reported in 1970 and 1971, though overlooked, and extensive DDE discoveries in 2009 revealed strengths of adhesive and cohesive forces of lunar dust. Rocket exhaust gases during Lunar Module (LM) ascent caused dust and debris to (i) contaminate instruments 17 m distant (Apollo 11) as expected, and (ii) unexpectedly cleanse Apollo hardware 130 m (Apollo 12) and 180 m (Apollo 14) from LM. TDS photos uniquely document in situ cohesion of dust particles and their adhesion to 12 different test surfaces. This review finds the entire TDS experiment was contaminated, being inside the aura of outgassing from astronaut Alan Shepard's spacesuit, and applies an unprecedented caveat to all TDS discoveries. Published and further analyses of Apollo DDE, TDS and LEAM measurements can provide evidence-based guidance to theoretical analyses and to management and mitigation of major problems from sticky dust, and thus help optimise future lunar and asteroid missions, manned and robotic.  相似文献   

4.
T.V. Gudkova  Ph. Lognonné 《Icarus》2011,211(2):1049-1065
Meteoroid impacts are important seismic sources on the Moon. As they continuously impact the Moon, they are a significant contribution to the lunar micro-seismic background noise. They also were associated with the most powerful seismic sources recorded by the Apollo seismic network. We study in this paper the largest impacts. We show that their masses can be estimated with a rather simple modeling technique and that high frequency seismic signals have reduced amplitudes due to a relatively low (about 1 s) corner frequency resulting from the duration of the impact process and the crater formation. If synthetic seismograms computed for a spherical model of the Moon are unable to match the waveforms of the observations, they nevertheless provide an approximate measure of the energy of seismic waves in the coda. The latter can then be used for an estimation of the mass of the impactors, when the velocity of the impactor is known. This method, for the artificial impacts of the LM and SIVB Apollo upper stages, allows us to retrieve the mass within 20% of relative error. The estimated mass of the largest impacts observed during the 7 years of activity of the Apollo seismic network provides an explanation for the non-detection of surface waves on the seismograms. The specifications of future Moon seismometers, in order to provide the detection of surface waves, are given in conclusion.  相似文献   

5.
Long-term degradation of optical devices on the Moon   总被引:1,自引:0,他引:1  
Forty years ago, Apollo astronauts placed the first of several retroreflector arrays on the lunar surface. Their continued usefulness for laser ranging might suggest that the lunar environment does not damage optical devices. However, new laser ranging data reveal that the efficiency of the three Apollo reflector arrays is now diminished by a factor of 10 at all lunar phases and by an additional factor of 10 when the lunar phase is near full Moon. These deficits did not exist in the earliest years of lunar ranging, indicating that the lunar environment damages optical equipment on the timescale of decades. Dust or abrasion on the front faces of the corner-cube prisms may be responsible, reducing their reflectivity and degrading their thermal performance when exposed to face-on sunlight at full Moon. These mechanisms can be tested using laboratory simulations and must be understood before designing equipment destined for the Moon.  相似文献   

6.
One of the most exciting recent developments in the field of lunar science has been the unambiguous detection of water (either as OH or H2O) or water ice on the Moon through instruments flown on a number of orbiting spacecraft missions. At the same time, continued laboratory-based investigations of returned lunar samples by Apollo missions using high-precision, low-detection, analytical instruments have for the first time, provided the absolute abundance of water (present mostly as structurally bound OH in mineral phases) in lunar samples. These new results suggest that the Moon is not an anhydrous body, questioning conventional wisdom, and indicating the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. However, not all recent results point to a wet Moon and it appears that the distribution of water on the Moon may be highly heterogeneous. Additionally, a number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar-wind hydrogen with the lunar soil. Water on the Moon has implications for future astrobiological investigations as well as for generating resources in situ during future exploration of the Moon and other airless bodies in the Solar System.  相似文献   

7.
This paper presents a review of research findings on the various forms of water on the Moon. First, this is the water of the Moon’s interior, which has been detected by sensitive mass spectrometric analysis of basaltic glasses delivered by the Apollo 15 and Apollo 17 missions. The previous concepts that lunar magmas are completely dehydrated have been disproved. Second, this is H2O and/or OH in a thin layer (a few upper millimeters) of the lunar regolith, which is likely a result of bombardment of the oxygen contained in the lunar regolith with solar wind protons. This form of water is highly unstable and quite easily escapes from the surface, possibly being one of the sources of the water ice reservoirs at the Moon’s poles. Third, this is water ice associated with other frozen gases in cold traps at the lunar poles. Its possible sources are impacts of comets and meteorites, the release of gas from the Moon’s interior, and solar wind protons. The ice trapped at the lunar polars could be of practical interest for further exploration of the Moon.  相似文献   

8.
Possible models for the thermal evolution of the Moon are constrained by a wide assortment of lunar data. In this work, theoretical lunar temperature models are computed taking into account different initial conditions to represent possible accretion models and various abundances of heat sources to correspond to different compositions. Differentiation and convection are simulated in the numerical computational scheme.Models of the thermal evolution of the Moon that fit the chronology of igneous activity on the lunar surface, the stress history of the lunar lithosphere implied by the presence of mascons, and the surface concentrations of radioactive elements, involve extensive differentiation early in lunar history. This differentiation may be the result of rapid accretion and large-scale melting or of primary chemical layering during accretion. Differences in present-day temperatures for these two possibilities are significant only in the inner 1000 km of the Moon and are not resolvable with presently available data.If the Apollo 15 heat flow is a representative value, the average uranium concentration in the moon is 65±15 ppb. This is consistent with achondritic bulk composition (between howardites and eucrites) for the Moon.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

9.
Laboratory measurements of seismic wave velocities and electrical properties of Apollo lunar samples and similar material of terrestrial origin are discussed in this paper. Measurements of the electrical properties show that in the frequency range above a few hundred Hz the outer region of the Moon may be considered as a low loss dielectric. This observation supports a longstanding speculation that dry, powdered rocks in which the dielectric loss tangent is frequency-independent over a wide range of frequency are present in the uppermost lunar surface layers. The surface layers of the Moon are likely to have an extremely low electrical conductivity. Thus future electromagnetic probing of the Moon to a few hundred kilometer depth is possible in the few kHz frequency range. Based on ultrasonic experiments with pressure as a variable, we next present the elastic constants and equations of state of lunar materials and characteristic dispersion of seismic wave velocities of the Moon. We find thatP andS wave velocities increase sharply within the first 30 km depth and then level off gradually. Combining this observation with lunar seismic and geophone data, we believe that the first 30 km of the Moon may be interpreted as a scattering region. If H2O exists on the Moon, H2O may occur at some shallow depth beneath the outermost surface layer in solid ice interlocking cracks and pores and mineral grains. The rocks in this permafrost state have relatively low seismic velocity and highQ. If permafrost does exist, we would expect a wide range of electrical conductivity and dielectric constant. Future electromagnetic probing of the Moon should yield very usefull information on the physical state of the lunar interior; when this electrical information is combined with the seismic information, we should learn much more about the internal constitution and the state of the Moon than is known today.  相似文献   

10.
The ultraviolet and visible albedos of a number of terrestrial basalts, gabbros and anorthosites have been investigated over the wavelength range 800 Å to 8000 Å and compared with previously reported measurements of the lunar albedo. For most of the terrestrial samples the albedo changed only slightly between visible and middle ultraviolet wavelengths in striking contrast to the Moon where the ultraviolet albedo is about a factor of five or ten less than it is in the visible. Some of the lighter coloured terrestrial anorthositic samples were however found to have albedo curves that fairly closely approximate the ultraviolet darkening of the Moon. The general shape of the lunar ultraviolet albedo may be caused by a layer of anorthositic fragments on the Moon such as have been found to be a very abundant component of the Apollo ‘coarse-fines’.  相似文献   

11.
Abstract— We present new compositional data for 30 lunar stones representing about 19 meteorites. Most have iron concentrations intermediate to those of the numerous feldspathic lunar meteorites (3–7% FeO) and the basaltic lunar meteorites (17–23% FeO). All but one are polymict breccias. Some, as implied by their intermediate composition, are mainly mixtures of brecciated anorthosite and mare basalt, with low concentrations of incompatible elements such as Sm (1–3 μg/g). These breccias likely originate from points on the Moon where mare basalt has mixed with material of the FHT (Feldspathic Highlands Terrane). Others, however, are not anorthosite‐basalt mixtures. Three (17–75 μ/g Sm) consist mainly of nonmare mafic material from the nearside PKT (Procellarum KREEP Terrane) and a few are ternary mixtures of material from the FHT, PKT, and maria. Some contain mafic, nonmare lithologies like anorthositic norites, norites, gabbronorites, and troctolite. These breccias are largely unlike breccias of the Apollo collection in that they are poor in Sm as well as highly feldspathic anorthosite such as that common at the Apollo 16 site. Several have high Th/Sm compared to Apollo breccias. Dhofar 961, which is olivine gabbronoritic and moderately rich in Sm, has lower Eu/Sm than Apollo samples of similar Sm concentration. This difference indicates that the carrier of rare earth elements is not KREEP, as known from the Apollo missions. On the basis of our present knowledge from remote sensing, among lunar meteorites Dhofar 961 is the one most likely to have originated from South Pole‐Aitken basin on the lunar far side.  相似文献   

12.
Abstract– Sixty named lunar meteorite stones representing about 24 falls have been found in Oman. In an area of 10.7 × 103 km2 in southern Oman, lunar meteorite areal densities average 1 g km?2. All lunar meteorites from Oman are breccias, although two are dominated by large igneous clasts (a mare basalt and a crystalline impact‐melt breccia). Among the meteorites, the range of compositions is large: 9–32% Al2O3, 2.5–21.1% FeO, 0.3–38 μg g?1 Sm, and <1 to 22.5 ng g?1 Ir. The proportion of nonmare lunar meteorites is higher among those from Oman than those from Antarctica or Africa. Omani lunar meteorites extend the compositional range of lunar rocks as known from the Apollo collection and from lunar meteorites from other continents. Some of the feldspathic meteorites are highly magnesian (high MgO/[MgO + FeO]) compared with most similarly feldspathic Apollo rocks. Two have greater concentrations of incompatible trace elements than all but a few Apollo samples. A few have moderately high abundances of siderophile elements from impacts of iron meteorites on the Moon. All lunar meteorites from Oman are contaminated, to various degrees, with terrestrial Na, K, P, Zn, As, Se, Br, Sr, Sb, Ba, U, carbonates, or sulfates. The contamination is not so great, however, that it seriously compromises the scientific usefulness of the meteorites as samples from randomly distributed locations on the Moon.  相似文献   

13.
Contour maps of the Mooon have been compiled by photogrammetric methods that use stereoscopic combinations of all available metric photographs from the Apollo 15, 16, and 17 missions. The maps utilize the same format as the existing NASA shaded-relief Lunar Planning Charts (LOC-1, -2, -3, and -4), which have a scale of 1:2 750 000. The map contour interval is 500m. A control net derived from Apollo photographs by Doyle and others was used for the compilation. Contour lines and elevations are referred to the new topographic datum of the Moon, which is defined in terms of spherical harmonics from the lunar gravity field. Compilation of all four LOC charts was completed on analytical plotters from 566 stereo models of Apollo metric photographs that cover approximately 20% of the Moon. This is the first step toward compiling a global topographic map of the Moon at a scale of 1:5 000 000.  相似文献   

14.
Crystallization from the molten state has been an important process for the formation of rocks on the Moon; the phenomenon of fractional crystallization is therefore discussed. The principal chemical and mineralogical features of the Apollo 11, 12 and 14 basaltic crystalline rocks are described, and an account is given of other rock types and minerals which are represented among the coarser particles in the lunar soils. A comparison is made between the chemical compositions (major, minor and trace element concentrations) of rocks and soils.Based upon the above data, one possible model for the outer shell of the Moon is presented, which consists of an outer layer of Al-rich rocks underlain by a layer which is more ferromagnesian in character. Partial melting of the latter was probably responsible for the extrusion of lavas at the surface which spread to form the basalts (Apollo 11 and 12) of the non-circular maria. The Apollo 14 (Fra Mauro) basalts are relatively enriched in potassium, rare earth elements, zirconium, phosphorus and certain other elements and may derive from partial melting of the more aluminous upper layer.The separation of the outer Moon into two layers could have occurred through gravity-aided fractional crystallization at an early stage (first few hundred m yr) in lunar history.Paper presented to the NATO Advanced Study Institute on Lunar Studies, Patras, Greece, September 1971.  相似文献   

15.
Paleocratering of the Moon: Review of post-Apollo data   总被引:1,自引:0,他引:1  
As a result of the dating of lunar samples, we are in a position to utilize the lunar surface as a recorder of environmental conditions in the Earth-Moon neighborhood in the past. Plots of crater density vs rock age at different lunar landing sites can be used to date unexplored lunar provinces. These plots also demonstrate evolution in the population of planetesimals that struck the Moon. Prior to 4.1 aeons ago, the cratering rate on the Moon was at least 103 times the present rate, and the rate declined with a half-life less than 8×107 yr. During the interval from 4.1 to 3.2 aeons ago, the number of planetesimals showed an exponential decay with a half-life about 3×108 yr, corresponding to sweep-up of particles from solar orbits somewhat similar to those of Apollo asteroids. A more nearly constant cratering rate applied in the last three aeons. These data indicate that the Moon displays at least the final stages of an ancient accretion process; they also set certain conditions on possible capture processes relating to the Moon's origin. Pre-Apollo expectations that the Moon would provide a Rosetta Stone for interpreting solar system history and planet formation thus appear justified.Paper given at Philadelphia meeting of American Association for Advancement of Science, December, 1971.  相似文献   

16.
Lunar meteorites provide important new samples of the Moon remote from regions visited by the Apollo and Luna sample return missions. Petrologic and geochemical analysis of these meteorites, combined with orbital remote sensing measurements, have enabled additional discoveries about the composition and age of the lunar surface on a global scale. However, the interpretation of these samples is limited by the fact that we do not know the source region of any individual lunar meteorite. Here, we investigate the link between meteorite and source region on the Moon using the Lunar Prospector gamma ray spectrometer remote sensing data set for the elements Fe, Ti, and Th. The approach has been validated using Apollo and Luna bulk regolith samples, and we have applied it to 48 meteorites excluding paired stones. Our approach is able broadly to differentiate the best compositional matches as potential regions of origin for the various classes of lunar meteorites. Basaltic and intermediate Fe regolith breccia meteorites are found to have the best constrained potential launch sites, with some impact breccias and pristine mare basalts also having reasonably well‐defined potential source regions. Launch areas for highland feldspathic meteorites are much less well constrained and the addition of another element, such as Mg, will probably be required to identify potential source regions for these.  相似文献   

17.
We report new nitrogen and argon isotope and abundance results for single breccia clasts and agglutinates from four different sections of the Luna 24 drill core in order to re-evaluate the provenance of N trapped in lunar regolith, and to place limits on the flux of planetary material to the Moon’s surface. Single Luna 24 grains with 40Ar/36Ar ratios <1 show δ15N values between ?54.5‰ and +123.3‰ relative to terrestrial atmosphere. Thus, low-antiquity lunar soils record both positive and negative δ15N signatures, and the secular increase of the δ15N value previously postulated by Kerridge (Kerridge, J.F. [1975]. Science 188(4184), 162–164. doi:10.1126/science.188.4184.162) is no longer apparent when the Luna and Apollo data are combined. Instead, the N isotope signatures, corrected for cosmogenic 15N, are consistent with binary mixing between isotopically light solar wind (SW) N and a planetary N component with a δ15N value of +100‰ to +160‰. The lower δ15N values of Luna 24 grains compared to Apollo samples reflect a higher relative proportion of solar N, resulting from the higher SW fluence in the region of Mare Crisium compared to the central near side of the Moon. Carbonaceous chondrite-like micro-impactors match well the required isotope characteristics of the non-solar N component trapped in low-antiquity lunar regolith. In contrast, a possible cometary contribution to the non-solar N flux is constrained to be ?3–13%. Based on the mixing ratio of SW to planetary N obtained for recently exposed lunar soils, we estimate the flux of micro-impactors to be (2.2–5.7) × 103 tons yr?1 at the surface of the Moon. Our estimate for Luna 24 agrees well with that for young Apollo regolith, indicating that the supply of planetary material does not depend on lunar location. Thus, the continuous influx of water-bearing cosmic dust may have represented an important source of water for the lunar surface over the past ~1 Ga, provided that water removal rates (i.e., by meteorite impacts, photodissociation, and sputtering) do not exceed accumulation rates.  相似文献   

18.
Physical conditions in the near-surface layer of the Moon are overviewed. This medium is formed in the course of the permanent micrometeoroid bombardment of the lunar regolith and due to the exposure of the regolith to solar radiation and high-energy charged particles of solar and galactic origin. During a considerable part of a lunar day (more than 20%), the Moon is passing through the Earth’s magnetosphere, where the conditions strongly differ from those in the interplanetary space. The external effects on the lunar regolith form the plasma-dusty medium above the lunar surface, the so-called lunar exosphere, whose characteristic altitude may reach several tens of kilometers. Observations of the near-surface dusty exosphere were carried out with the TV cameras onboard the landers Surveyor 5, 6, and 7 (1967–1968) and with the astrophotometer of Lunokhod-2 (1973). Their results showed that the near-surface layer glows above the sunlit surface of the Moon. This was interpreted as the scattering of solar light by dust particles. Direct detection of particles on the lunar surface was made by the Lunar Ejects and Meteorite (LEAM) instrument deployed by the Apollo 17 astronauts. Recently, the investigations of dust particles were performed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) instrument at an altitude of several tens of kilometers. These observations urged forward the development of theoretical models for the lunar exosphere formation, and these models are being continuously improved. However, to date, many issues related to the dynamics of dust and the near-surface electric fields remain unresolved. Further investigations of the lunar exosphere are planned to be performed onboard the Russian landers Luna-Glob and Luna-Resurs.  相似文献   

19.
The problem of the origin of the enigmatic tektites is still unsolved. The two leading hypotheses - viz., ejecta from terrestrial impacts, and ejecta from lunar volcanoes or lunar impacts, each encounters serious difficulties. The former has ballistic and water content difficulties, while the latter has some compositional difficulties, especially in the trace elements, as determined from the returned samples. It is possible that the latter problem may be met through lunar volcanic ejecta from sites suggesting more differentiation than the majority of the Moon. That such features may exist is suggested from the identity of some granitic material in the returned rocks and soil samples implying fairly sizable source regions on the Moon. The rare terrestrial strewn tektite fields require restrictive ballistic trajectories from the Moon. Calculations reveal that ellipses of varying, decreasing sizes which depend on velocity of vertical ejection from which ejecta will intersect the earth at low-entrance angles occur on the nearside of the Moon. Reasonable velocities were chosen (2.55 to 3.0 km s?1) and these ellipses circumscribe areas with longitudes between 30 and 50° east and latitudes between 7° north and south of the Moon's equator. These areas were searched for evidence of volcanism. As tektites have compositions ranging from acidic (major tektites) to basic (micro-tektites) contents of silica (SiO2) both acidic and basic volcanic features were sought. Since tektites range in age from about 30 million to 700000 yr old, they imply recent volcanism. Lunar Transient Phenomena (LTP) and data from various Apollo missions indicate that mild internal activity may still be occurring on the Moon. LTP sites are logical sources to investigate, of which four occur within the above delimited regions. These and their surroundings were examined and a number of possible explosive volcanism sites were found. These sites are identified and discussed after a review of the manifestations found from the various kinds of terrestrial volcanism for which lunar counterparts were sought.  相似文献   

20.
A simplified model for the interaction of the cold solar wind with lunar magnetic anomalies is considered. Since on the illuminated side of the Moon the dynamic pressure of the solar wind significantly exceeds the magnetic pressure of the anomalies, upward propagation of the lunar field is possible only by means of diffusion. This process does not depend on the velocity but only on the concentration of the solar wind and the characteristic size of anomalies. Theoretical calculations are compared with the data of Apollo 12 and Explorer 35.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号