首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial distribution of 15 polyfluoroalkyl compounds (PFCs) in surface water was investigated in the North Sea, Baltic Sea and Norwegian Sea. In addition, an interlaboratory comparison of the sampling techniques and analysis was conducted. Highest concentration in the North Sea was found near the coast, whereas the ∑PFC concentration decreased rapidly from 18.4 to 0.07 ng l−1 towards the open North Sea. The river Elbe could identify as a local input source for PFCs into the North Sea, whereas perfluorobutanoic acid (PFBA) was transported into the sampling area with the easterly current. In contrast to the North Sea, the distribution of PFCs in the Baltic Sea was relatively homogenous, where diffuse sources dominated. In general, the composition profile was influenced from local sources caused by human activities, whereas atmospheric depositions of here analysed PFCs were negligible, but it could have possibly an influence on low contaminated sites like the open North Sea or Norwegian Sea.  相似文献   

2.
We present data on the average sedimentation rates (ranging from 1.6 cm/kyr to 3 cm/kyr) for the last 300.000 years based on δ18O analyses of foraminifera in a core from the Norwegian Sea and 230Thex measurements in cores from the Norwegian Sea and the Fram Strait (Arctic Ocean). Furthermore, we relate 230Thex variations downcore to the various oxygen isotope stages. This correlation is tentatively interpreted as being a result of the paleoceanographic and paleoclimatic control of bioproductivity. It is shown that based on the average sedimentation rates and characteristic 230Thex variations carbonate-poor sediment cores from northern latitudes can be correlated.  相似文献   

3.
Patterns and levels of chlorinated aromatic contaminants (DDTs, PCBs, non-ortho PCBs and PCDD/Fs) in blubber tissue were compared among six sample groups of male harbour porpoises (Phocoena phocoena) from the Baltic Sea, the Kattegat-Skagerrak Seas and the west coast of Norway. A principal component and classification analysis showed that mature harbour porpoises from the Baltic had significantly different contaminant patterns than animals from the Kattegat-Skagerrak and Norway. ANOVAs showed that mature porpoises from the Baltic had higher levels of ΣPCB and several individual PCBs and PCDD/Fs than the Kattegat-Skagerrak and the Norwegian samples and higher ΣDDT than the Norwegian. A comparison between immature porpoises showed that Baltic animals had higher levels of ΣPCDD/F than the corresponding sample from the Kattegat-Skagerrak. The levels of ΣDDT, ΣPCB and Σnon-ortho PCB were significantly higher in animals collected during 1978–81 compared to animals collected in 1988–90 indicating a temporal decline of these organochlorines in the Kattegat-Skagerrak Seas. The contaminant levels recorded in the Baltic Sea are a serious cause for concern and could have management implications for the already threatened harbour porpoises in this area.  相似文献   

4.
Sediments deposited during glacial-interglacial cycles through the Early to Mid-Pleistocene in the North Sea are chronologically poorly constrained. To contribute to the chronology of these units, amino acid racemization (AAR) and strontium (Sr) isotope analyses have been performed on samples from four shallow borings and one oil well along a transect in the northern North Sea. D/L Asp (aspartic acid) values obtained through reverse-phase liquid chromatography in the benthic foraminiferal species Elphidium excavatum is focused on because of consistent results and a good stratigraphic distribution of this benthic species. For the Early Pleistocene, an age model for the well 16/1–8, from the central part of the northern North Sea based on Sr ages allows for dating of the prograding wedges filling the pre-Quaternary central basin. A regional calibration curve for the racemization of Asp in Elphidium excavatum is developed using published ages of radiocarbon-dated samples and samples associated with the previously identified Bruhnes/Matuyama (B/M) paleomagnetic boundary and a Sr age from this study. Based on all the available geochronological evidence, samples were assigned to marine oxygen isotope stages (MIS) with uncertainties on the order of 10–70 ka.Sr ages suggest a hiatus of <2 million years (Ma) possibly due to non-deposition or low sedimentation between the Utsira Formation (Pliocene) and the Early Pleistocene. An increase in sedimentation rates around 1.5 ± 0.07 Ma (∼MIS 51) may partly be due to sediment supply from rivers from the south-east and partly due to the extension of ice sheet around 1.36 ± 0.07 Ma from the Norwegian coast to the central North Sea. A possible basin-wide glaciation occurred around 1.1 Ma (∼ MIS 32) (upper regional unconformity/top of unit Q4 in this study), resulting in erosion and regional unconformity. Two interglacials in the Norwegian Channel have been dated: the Radøy Interglacial to 1.07 ± 0.01 Ma (possibly MIS 31, the ‘super interglacial’), and the Norwegian Trench Interglacial to 0.50 ± 0.02 Ma (possibly MIS 13). A massive till unit identified at the same stratigraphic level in all shallow borings may partly represent an extensive MIS 12 glaciation. This study shows that the combined use of amino acid racemization data and Sr isotope chronology can refine the chronological ambiguities of Quaternary North Sea sediments related partly to the impact of glacial processes.  相似文献   

5.
Using a high resolution14C chronology, β13C values and organic carbon content, from loess/paleosol and peat profiles in China, we can demonstrate century scale warm-cold East Asian monsoon paleoclimatic fluctuation events and significant precipitation variability within the last deglaciation. The major climatic events recognized are the Bolling (1 300-12 500 a B.P.), Older Dryas (12 500-11 750 a B. P.), Allerod (11 750-11 200 aB.P.) and Younger Dryas (11 200-10 000 aB.P.). The stratigraphic structure of the last deglaciation sediments is characterized by frequent changes in sedimentation phases reflecting climatic instability. These high frequency, rapid climatic events can correlate with fluctuations recorded by sea surface temperatures in the Norwegian Sea. This indicates a pale-oclimate teleconnection between polar, high latitude areas and East Asian monsoon areas through westerlies and the related atmospheric pressure system. Project supported by the National Natural Science Foundation of China, the Foundation of Chinese Academy of Sciences and the National Science Foundation of U.S.A.  相似文献   

6.
7.
Trace elements (TEs) and stable isotope ratios (δ15N and δ13C) were analyzed in fish from deep-water of the Sulu Sea, the Celebes Sea and the Philippine Sea. Concentrations of V and Pb in pelagic fish from the Sulu Sea were higher than those from the Celebes Sea, whereas the opposite trend was observed for δ13C. High concentrations of Zn, Cu and Ag were found in non-migrant fish in deep-water, while Rb level was high in fish which migrate up to the epipelagic zone, probably resulting from differences in background levels of these TEs in each water environment or function of adaptation to deep-water by migrant and non-migrant species. Arsenic level in the Sulu Sea fish was positively correlated with δ15N, indicating biomagnification of arsenic. To our knowledge, this is the first study on relationship between diel vertical migration and TE accumulation in deep-water fish.  相似文献   

8.
Free-Air Anomalies (FAA) for the Norwegian marine area including some parts of the North Sea, the Norwegian Sea and the Barents Sea are computed from satellite altimetry data. A total of 84 cycles of ERS2 along-track data, 25 cycles of ENVISAT along-track data and high density ERS1 data during its geodetic mission are used. The new geopotential model from the Gravity Recovery and Climate Experiment (GRACE) mission, GGM02S (Tapely et al., 2005) is used to compute the long wavelength contributions of the geoid and the FAA. To correct data for mean dynamic topography, the available Levitus climatology model (Levitus and Boyer, 1994) is used. Corrected data are then used to compute along-track gradients in each cycle-pass to suppress the orbital and the atmospheric errors below the noise level of the altimeter. Resulted gradients are then stacked and the east-west and the north-south components of the deflection of verticals are computed where ascending and descending tracks meet each other. Finally, the inverse Vening-Meinesz formula is implemented on the gridded deflections to compute FAA. Results are then compared with available marine and airborne data. Standard deviations of ± 4.301 and ± 6.159 mGal in comparison with airborne and marine FAA were achieved. Thereafter, the derived anomalies are combined with marine and airborne FAA together with the land FAA to compute a fine resolution geoid for Norway and the surrounding marine areas. This geoid is evaluated over sea and land with the synthetic geoid (the geoid derived from the mean sea surface by subtracting the mean dynamic topography) and Global Positioning System (GPS)-levelling and the standard deviations of the differences are ± 20.9 and ± 12.8 cm respectively. ali.soltanpour@ntnu.no, hossein.nahavandchi@ntnu.no, kourosh.ghazavi@ntnu.no  相似文献   

9.
The relationships between total mercury (Hg) concentration and stable nitrogen isotope ratio (δ15N) were evaluated in Mullus barbatus barbatus and M. surmuletus from the Mediterranean Sea and M. barbatus ponticus from the Black Sea. Mercury concentration in fish muscle was six times higher in the two Mediterranean species than in the Black Sea one for similar sized animals. A positive correlation between Hg concentration and δ15N occurred in all species. Increase in Hg concentration with δ15N was high and similar in the two Mediterranean fishes and much lower in the Black Sea species. Since this was neither related to trophic level difference between species nor to methylmercury (MeHg) concentration differences between the north-western Mediterranean and the Black Sea waters, we suggested that the higher primary production of the Black Sea induced a dilution of MeHg concentration at the base of the food webs.  相似文献   

10.
The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km~2 from tropical to northern temperate zones, and including a variety of continental margins/basins and depths, the China Seas provide typical cases for carbon budget studies. The South China Sea being a deep basin and part of the Western Pacific Warm Pool is characterized by oceanic features; the East China Sea with a wide continental shelf, enormous terrestrial discharges and open margins to the West Pacific, is featured by strong cross-shelf materials transport; the Yellow Sea is featured by the confluence of cold and warm waters; and the Bohai Sea is a shallow semiclosed gulf with strong impacts of human activities. Three large rivers, the Yangtze River, Yellow River, and Pearl River, flow into the East China Sea, the Bohai Sea, and the South China Sea, respectively. The Kuroshio Current at the outer margin of the Chinese continental shelf is one of the two major western boundary currents of the world oceans and its strength and position directly affect the regional climate of China. These characteristics make the China Seas a typical case of marginal seas to study carbon storage and fluxes. This paper systematically analyzes the literature data on the carbon pools and fluxes of the Bohai Sea,Yellow Sea, East China Sea, and South China Sea, including different interfaces(land-sea, sea-air, sediment-water, and marginal sea-open ocean) and different ecosystems(mangroves, wetland, seagrass beds, macroalgae mariculture, coral reefs, euphotic zones, and water column). Among the four seas, the Bohai Sea and South China Sea are acting as CO_2 sources, releasing about0.22 and 13.86–33.60 Tg C yr~(-1) into the atmosphere, respectively, whereas the Yellow Sea and East China Sea are acting as carbon sinks, absorbing about 1.15 and 6.92–23.30 Tg C yr~(-1) of atmospheric CO_2, respectively. Overall, if only the CO_2 exchange at the sea-air interface is considered, the Chinese marginal seas appear to be a source of atmospheric CO_2, with a net release of 6.01–9.33 Tg C yr~(-1), mainly from the inputs of rivers and adjacent oceans. The riverine dissolved inorganic carbon (DIC) input into the Bohai Sea and Yellow Sea, East China Sea, and South China Sea are 5.04, 14.60, and 40.14 Tg C yr~(-1),respectively. The DIC input from adjacent oceans is as high as 144.81 Tg C yr~(-1), significantly exceeding the carbon released from the seas to the atmosphere. In terms of output, the depositional fluxes of organic carbon in the Bohai Sea, Yellow Sea, East China Sea, and South China Sea are 2.00, 3.60, 7.40, and 5.92 Tg C yr~(-1), respectively. The fluxes of organic carbon from the East China Sea and South China Sea to the adjacent oceans are 15.25–36.70 and 43.93 Tg C yr~(-1), respectively. The annual carbon storage of mangroves, wetlands, and seagrass in Chinese coastal waters is 0.36–1.75 Tg C yr~(-1), with a dissolved organic carbon(DOC) output from seagrass beds of up to 0.59 Tg C yr~(-1). Removable organic carbon flux by Chinese macroalgae mariculture account for 0.68 Tg C yr~(-1) and the associated POC depositional and DOC releasing fluxes are 0.14 and 0.82 Tg C yr~(-1), respectively. Thus, in total, the annual output of organic carbon, which is mainly DOC, in the China Seas is 81.72–104.56 Tg C yr~(-1). The DOC efflux from the East China Sea to the adjacent oceans is 15.00–35.00 Tg C yr~(-1). The DOC efflux from the South China Sea is 31.39 Tg C yr~(-1). Although the marginal China Seas seem to be a source of atmospheric CO_2 based on the CO_2 flux at the sea-air interface, the combined effects of the riverine input in the area, oceanic input, depositional export,and microbial carbon pump(DOC conversion and output) indicate that the China Seas represent an important carbon storage area.  相似文献   

11.
In this paper the reaction of the salt‐/freshwater interface due to the changes in the Dead Sea level are elaborated at in details by using the inflows into the Dead Sea, the outflows due to evaporation losses and artificial discharges, and the hydrographic registrations of the Dead Sea level. The analyses show that the interface seaward migration resulted in a groundwater discharge of around 423 Mio m3 per meter drop in the level of the Dead Sea in the period 1994–1998 and of around 525 Mio m3/m in the period 1930–1937. The additional amount of groundwater joining the Dead Sea due to the interface seaward migration was 51 Mio m3 per one square kilometer of shrinkage in the area of the Dead Sea in the period 1930–1937 and 91 Mio m3/km2 in the period 1994–1998. The riparian states of the Dead Sea are nowadays loosing 370 Mio m3/a of freshwater to the Dead Sea through the interface readjustment mechanisms as a result of their over exploitation of waters which formerly fed the Dead Sea.  相似文献   

12.
Norwegian and British laws relevant to the control of marine pollution from North Sea petroleum development are briefly described. The emergence of law intended to reduce the probability of pollution from equipment failure or human error is noted, and suggestions are made to increase the effectiveness of this approach.  相似文献   

13.
Seismic risk is evaluated in the North Sea using areal and tectonic models. The procedures used are applied to California to determine their accuracy. In California, expected peak ground accelerations are computed for the northwest coast, the San Francisco Bay area, and the Imperial Valley, with a return period of 100 years. Using a return period of ten thousand years, expected peak ground accelerations are calculated in the Norwegian sector of the North Sea. In all cases, the results depend significantly on the choice of attenuation coefficients.  相似文献   

14.
Between January 1978 and September 1979 samples of subsurface (1 m) water and surface sediment were collected from sites in the North Sea, English Channel, Irish Sea and a number of estuarine areas. These have been analysed by fluorescence spectroscopy (UVF) in order to provide information on the levels of hydrocarbons generally present in UK marine waters.Total hydrocarbon concentrations (THCs) of water samples ranged from 1.1–74 μg l.?1 Ekofisk crude oil equivalents, all values greater than 3.5 μg l.?1 occurring inshore. In offshore areas the mean THCs were: 1.3 μg l.?1 in the northern North Sea, 1.5 μg l.?1 in the western Channel, 2.5 μg l.?1 in the eastern Channel and southern North Sea, and 2.6 μg l.?1 in the Irish Sea.THCs of sediment samples ranged from 0.27–340 μ g?1 dry weight Ekofisk crude oil equivalents, the highest concentration being in the Queen's Channel, the main entrance to the River Mersey.  相似文献   

15.
The surface water of the Japan Sea contained226Ra of70 ± 4dpm m−3 which was nearly equal to that of the surface water in the North Pacific. The concentration of226Ra in the Japan Sea deep water below 500 m was151 ± 8dpm m−3, showing a vertically and regionally small variation. This concentration of226Ra in the deep water is unexpectedly high, because the Japan Sea deep water has a higher Δ14 C value by about 50‰ than the Atlantic deep water containing the same226Ra. One of the causes to be considered is larger contribution of226Ra from biogenic particles dissolving in the Japan Sea deep water, but the Japan Sea is not so fertile in comparison to the Bering Sea. The other more plausible cause is the internal ventilation of the Japan Sea water, which means that the residence time of the Japan Sea Proper water is considerably long although the water is vertically mixed fairly well especially in winter. The ventilation may supply some amounts of radiocarbon and oxygen but does not change the inventory of226Ra. The residence times of the Japan Sea deep water and of water within the Japan Sea are calculated by solving simultaneous equations for226Ra and14C with a three-box model to be 300–400 years and 700–1000 years, respectively.  相似文献   

16.
The high‐density Dead Sea water (1.235 g/cm3) forms a special interface configuration with the fresh groundwater resources of its surrounding aquifers. The fresh groundwater column beneath its surroundings is around one tenth of its length compared to oceanic water. This fact alone indicates the vulnerability of the fresh groundwater resources to the impacts of changes in the Dead Sea level and to saltwater migration. Ghyben‐Herzberg and Glover equations were used to calculate the volumes of water in coastal aquifers which were replaced by freshwater due to the interface seaward migration as a result of the drop in the level of the Dead Sea. For that purpose, the dynamic equation of Glover approach has been integrated to accommodate that type of interface readjustment. The calculated amounts of freshwater which substituted salt Dead Sea water due to the migration of interface are 3.21 · 1011 m3, from a Dead Sea level of –392 m to τ411 m below sea level. The average porosity of coastal aquifers was calculated to range from 2.8 to 2.94%. Geoelectric sounding measurements showed that areas underlying the coastal aquifers formerly occupied by the Dead Sea water are gradually becoming flushed and occupied by freshwater. The latter is becoming salinized due to the residuals of Dead Sea water in the aquifer matrix, the present salinity of which is lower than that of the Dead Sea water. At the same time salt dissolution from the Lisan Marl formation is causing collapses along the shorelines in the form of sinkholes, tens of meters in diameter and depth.  相似文献   

17.
The atmospheric chemistry and deposition model has been applied for calculation of nitrogen and sulphur depositions to the entire North Sea area for the year 1999. The total atmospheric nitrogen and sulphur depositions to the North Sea area were determined to 709 kton (kt) N and 551 kt S, respectively. Since the North Sea area was calculated to be 747,988 km2, this is equivalent to an average deposition of 0.9 ton N km?2 and 0.7 ton S km?2, respectively. The depositions decrease strongly from the south end (about 2–3 kt N km?2) to the north end (about 0.2 kt N km?2) of the North Sea, due to increasing distance to the large source areas in the northern part of the European continent. The territorial waters of Belgium, the Netherlands and Germany receive about 50% higher deposition densities than the average value for the entire North Sea area. For the remaining territorial waters of the North Sea the depositions follow more or less the fraction of the area. The results furthermore show that about 60% of the total nitrogen deposition is related to emissions from combustion sources (nitrogen oxides) and about 40% from emissions related to agricultural activities (ammonia).  相似文献   

18.
咸海地处中亚,气候和人类的双重影响下湖面急剧萎缩引发区域生态危机,定量解析其水量平衡互动关系及影响因素对咸海地区水资源管理和生态保护有重要意义.基于1990—2019年密集时序Landsat影像、T/P卫星、Jason1/2测高卫星及咸海数字测深模型(DBM),提取近30年咸海面积、水位变化信息,重建咸海水位-面积-库容曲线,探明咸海水量变化特征;建立水量平衡模型,定量分析研究区水量平衡要素变化及时空差异,探讨其互动关系与影响机制.结果表明:(1)1990—2019年间,咸海水量减少了2271.6×108 m3(约75.15%),年平均变化率达-78.3×108 m3/a;南咸海水量变化趋势与咸海整体基本一致,北咸海除1999年出现了极小值外,其余年份水量变化趋势均呈波动上升状态,至2019年水位已恢复至1984年水平.(2)1990s以来,南、北咸海水量平衡结构变化时空差异显著,阿姆河入湖径流量呈波动减少趋势,随着咸海持续退缩水体蒸发不断减小,区域水量支出收入比由1990年的2.46降低到2015年的0.87;近年来丰水年份南咸海地下水可由亏损转化为盈余状态,水域变化进入相对平缓的状态.北咸海入湖径流量波动增加,蒸散发随水域面积增加而增加,1990s初以来水量收入超过水量支出,区域地下水盈余,湖泊水位不断抬升.(3)湖区尺度上,入湖径流量和水域蒸发量是咸海水量变化的主导因素.流域尺度上,气候变化与人类活动共同影响咸海入湖水量,南咸海入湖水量与阿姆河上游来水、流域耕地面积显著相关,而北咸海入湖水量主要与锡尔河上游来水相关.  相似文献   

19.
The paper briefly summarizes the Norwegian governmental view regarding regional and global fisheries problems. In particular, the need for international co-operation, especially in international waters and distant-waters interests, is discussed.

The findings of the 1993 UN Conference on the conservation and management of straddling stocks are outlined, particularly with the example of the Barents Sea stocks.  相似文献   


20.
60Co were detected in common octopus specimens collected in the East China Sea in 1996-2005. The source of 60Co has remained unclear yet. Stable isotope analyses showed that there was no difference in stable Co concentrations between octopus samples with 60Co and without 60Co. This result showed that the stable Co in the digestive gland of octopus potentially did not include a trace amount of 60Co and the source of 60Co existed independently. Furthermore, investigations of octopus in other area and other species indicated that the origin of the source of 60Co occurred locally in the restricted area in the East China Sea and not in the coastal area of Japan. Concentrations of 60Co have annually decreased with shorter half-life than the physical half-life. This decrease tendency suggests that the sources of 60Co were identical and were temporary dumped into the East China Sea as a solid waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号