首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The eruptions of Nevado del Ruiz in 1985 were unusually rich in sulfur dioxide. These eruptions were observed with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) which can quantitatively map volcanic sulfur dioxide plumes on a global scale. A small eruption, originally believed to be of phreatic origin, took place on September 11, 1985. However, substantial amounts of sulfur dioxide from this eruption were detected with TOMS on the following day. The total mass of SO2, approximately 9 ± 3 × 104 metric tons, was deposited in two clouds, one in the upper troposphere, the other possibly at 15 km near the stratosphere.The devastating November 13 eruptions were first observed with TOMS at 1150 EST on November 14. Large amounts of sulfur dioxide were found in an arc extending 1100 km from south of Ruiz northeastward to the Gulf of Venezuela and as an isolated cloud centered at 7°N on the Colombia-Venezuela border. On November 15 the plume extended over 2700 km from the Pacific Ocean off the Colombia coast to Barbados, while the isolated mass was located over the Brazil-Guyana border, approximately 1600 km due east of the volcano. Based on wind data from Panama, most of the sulfur dioxide was located at 10–16 km in the troposphere and a small amount was quite likely deposited in the stratosphere at an altitude above 24 km.The total mass of sulfur dioxide in the eruption clouds was approximately 6.6 ± 1.9 × 105 metric tons on November 14. When combined with quiescent sulfur dioxide emissions during this period, the ratio of sulfur dioxide to erupted magma from Ruiz was an order of magnitude greater than in the 1982 eruption of El Chichon or the 1980 eruption of Mount St. Helens.  相似文献   

2.
Augustine, an island volcano in Lower Cook Inlet, southern Alaska, erupted in January, 1976, after 12 years of dormancy. By April, when the eruptions ended, a new lava dome had been extruded into the summit crater and about 0.1 km3 of pyroclastics had been deposited on the island, mainly as pyroclastic debris avalanches and pumice flows. The ventclearing phase in January was highly explosive and we have been able to document 13 major vulcanian eruptions.The timing, thermal energy, mass loading of fine particles and the horizontal dispersion of these eruption clouds were determined from radar measurements of cloud height, reports of pilots flying in plumes, satellite photography, seismic records and infrasonic detection of air waves. A lower estimate of the mass of fine (r < 68 μm) particles injected into the troposphere from the 13 main eruptions in January is 5.5–18 × 1012 g. The corresponding mass loading of fine particles within individual eruption clouds is 0.3–1 g m−3. We calculated thermal energies of 4 × 1014 to 35 × 1014 J for individual eruptions by applying convective plume rise theory to observed cloud heights and seismically determined eruption durations. This energy range compares favorably with the 4–16 × 1014 J of thermal energy, calculated from the cooling of juvenile material contained in a typical eruption cloud.The vulcanian eruption clouds stayed intact for at least 700 km downwind. Satellite images in both visible and infrared wavebands, showing the Gulf of Alaska just after sunrise on January 23, reveal a series of puffs strung out downwind from the volcano, 20–30 km in diameter and with their tops at altitudes of about 8 km, overlying a continuous plume at altitude 4 km. Each puff corresponded to a seismically and infrasonically timed eruption. A substantial portion of the material injected into the atmosphere between January 22 and 25 was rapidly transported by the subpolar jet stream through southwestern Canada and the western United States, then northeast across the States into the Atlantic. The clouds were observed passing over Tucson, Arizona, on January 25 at an elevation of 7 km.Several of the eruptions penetrated into the stratosphere. Sun photometer measurements, taken at Mauna Loa, Hawaii, six weeks after the eruption, showed an increased stratospheric optical thickness of 0.01 (wavelength 0.5 μm), which decayed in about 5 months. The maximum column mass loading of the veil was 4–10 × 10−7 g cm−2. The mass of the veil, spread-ever a fourth of the earth's surface, is 10 to 100 times larger than can be accounted for by assuming that injected ash and converted sulfate particles from the 13 main Augustine eruptions are the only components contributing to the stratospheric turbidity observed at Mauna Loa.  相似文献   

3.
Results of drilling, logging, and testing of three exploration core holes, combined with results of geologic and hydrogeochemical investigations, have been used to present a reservoir model of the Platanares geothermal system, Honduras. Geothermal fluids circulate at depths ≥ 1.5 km in a region of active tectonism devoid of Quaternary volcanism. Large, artesian water entries of 160 to 165°C geothermal fluid in two core holes at 625 to 644 m and 460 to 635 m depth have maximum flow rates of roughly 355 and 560 l/min, respectively, which are equivalent to power outputs of about 3.1 and 5.1 MW(thermal). Dilute, alkali-chloride reservoir fluids (TDS ≤ 1200 mg/kg) are produced from fractured Miocene andesite and Cretaceous to Eocene redbeds that are hydrothermally altered. Fracture permeabillity in producing horizons is locally greater than 1500 and bulk porosity is ≤ 6%. A simple, fracture-dominated, volume-impedance model assuming turbulent flow indicates that the calculated reservoir storage capacity of each flowing hole is approximately 9.7 × 106 l/(kg cm−2), Tritium data indicate a mean residence time of 450 yr for water in the reservoir. Multiplying the natural fluid discharge rate by the mean residence time gives an estimated water volume of the Platanares system of ≥ 0.78 km3. Downward continuation of a 139°C/km “conductive” gradient at a depth of 400 m in a third core hole implies that the depth to a 225°C source reservoir (predicted from chemical geothermometers) is at least 1.5 km. Uranium-thorium disequilibrium ages on calcite veins at the surface and in the core holes indicate that the present Platanares hydrothermal system has been active for the last 0.25 m.y.  相似文献   

4.
Temperatures of aquifers feeding thermal springs and wells in Long Valley, California, estimated using silica and Na-K-Ca geothermometers and warm spring mixing models, range from 160/dg to about 220°C. This information was used to construct a diagram showing enthalpy-chloride relations for the various thermal waters in the Long Valley region. The enthalpy-chloride information suggests that a 282 ± 10°C aquifer with water containing about 375 mg chloride per kilogram of water is present somewhere deep in the system. That deep water would be related to 220°C Casa Diablo water by mixing with cold water, and to Hot Creek water by first boiling with steam loss and then mixing with cold water. Oxygen and deuterium isotopic data are consistent with that interpretation. An aquifer at 282°C with 375 mg/kg chloride implies a convective heat flow in Long Valley of 6.6 × 107 cal/s.  相似文献   

5.
In the Aleutian volcanic chain (USA), the 2,050±50 bp collapse of Okmok caldera generated pyroclasts that spread over 1,000 km2 on Umnak Island. After expelling up to 0.25 km3 DRE of rhyodacitic Plinian air fall and 0.35 km3 DRE of andesitic phreatomagmatic tephra, the caldera collapsed and produced the 29 km3 DRE Okmok II scoria deposit, which is composed of valley-ponding, poorly sorted, massive facies and over-bank, stratified facies with planar and cross bedding. Geological and sedimentological data suggest that a single density current produced the Okmok II deposits by segregating into a highly concentrated base and an overriding dilute cloud. The dense base deposited massive facies, whereas the dilute cloud sedimented preferentially on hills as stratified deposits. The pyroclastic current spread around Okmok in an axisymmetric fashion, encountering topographic barriers on the southwest, reaching Unalaska Island across an 8-km strait on the east, and reaching the shoreline of Umnak in the other directions. A kinematic model (Burgisser and Bergantz, Earth Planet Sci Lett 202:405–418, 2002) was used to show how decoupling of the pyroclastic current was triggered by both sea entrance and interaction with the topography. In the former case, the dense part of the current and the lithics transported by the dilute cloud went underwater. In the latter case, topographical barriers noticeably decelerated both parts of the decoupled current and favored sedimentation by partial or complete blocking. The resulting unloading of the dilute current drastically reduced the runout distance by triggering an early buoyant lift-off.Editorial responsibility: A.W. Woods  相似文献   

6.
Gas concentrations and isotopic compositions of water have been measured in hydrothermal waters from 13°N on the East Pacific Rise. In the most Mg-depleted samples ( 5 × 10−3 moles/kg) the gas concentrations are: 3–4.5 × 10−5 cm3 STP/kg helium, 0.62–1.24 cm3 STP/kg CH4, 10.80–16.71 × 10−3 moles/kg CO2. The samples contain large quantities (95–126 cm3/kg) of H2 and some carbon monoxide (0.26–0.36 cm3/kg) which result from reaction with the titanium sampling bottles. δ13C in methane and CO2 (−16.6 to −19.5 and −4.1 to −5.5 respectively) indicate temperatures between 475 and 550°C, whereas δ13CCO is compatible with formation by reduction of CO2 on Ti at 350°C close to the sampling temperature.3He/4He are very homogeneous at (7.5 ± 0.1)RA(3He/4He = 1.0 × 10−5) and very similar to already published data as well as CH4/3He ratios between 1.4 and 2.1 × 106.18O and D in water show enrichments from 0.39 to 0.69‰ and from 0.62 to 1.49‰ respectively. These values correspond to W/R ratios of 0.4–7. The distinct18O enrichments indicate that the isotopic composition of the oceans is not completely buffered by the hydrothermal circulations. The3He-enthalpy relationship is discussed in terms of both hydrothermal heat flux and3He mantle flux.  相似文献   

7.
Water is a dominant component of volcanic clouds and has fundamental control on very fine particle deposition. Particle size characteristics of distal tephra-fall (100s km from source volcano) have a higher proportion of very fine particles compared to predictions based on single particle settling rates. In this study, sedimentological analyses of fallout from for the 18 August and 16–17 September 1992 eruptions of Crater Peak, Alaska, are combined with satellite observations, and cloud trajectory and microphysics modeling to investigate meteorological influences on particle sedimentation. Total grain size distributions of tephra fallout were reconstructed for both Crater Peak eruptions and indicate a predominance of fine particles < 125 μm. Polymodal analysis of the deposits has identified a particle subpopulation with mode ~ 15–18 μm involved in particle aggregation. Accounting for the magmatic water source only, calculated ice water content of the 3.7 hour old September 1992 Spurr cloud was ~ 4.5 × 10− 2 g m− 3 (based on an estimated cloud thickness of ~ 1000 m from trajectory modeling). Hydrometeor formation on particles in the volcanic cloud and subsequent sublimation may induce a cloud base instability that leads to rapid bulk (en masse) sedimentation of very fine particles through a mammatus-like mechanism.  相似文献   

8.
All previous accounts of the spiral patterns at the Martian poles emphasize that the north polar spiral is centered about the geographic pole, whereas that of the south polar region is off-set by about 4°. This paper demonstrates that the patterns near both poles are centered on topographic highs rather than the spin poles themselves. This is circumstantial evidence in favour of the relatively unexplored mechanism of radial outflow of viscous rock by gravity spreading.The hypothesis developed here is that the spiral patterns are essentially due to crevasse patterns formed perpendicular to flow lines which are perturbed by Coriolis forces. In order to account for a crevasse pattern that has a form concave to the east the angular deflection of an hypothetical ice flow emanating from the topographic high centered about the geographical north pole, must be about 40° or 0.7 radians in a westward direction at 85°N latitude.The polar cap rock has previously been assumed to consist mainly of either frozen carbondioxide or water ice. Corresponding viscosities (at 190 K) allow for the occurrence of radial outflow or gravity driven tectonics at a maximum rate of 1 cm a−1, but the flow pattern remains unaffected by Coriolis forces.The spiral patterns of the Martian poles can be explained if the flowing mass has an occasional effective kinematic viscosity as low as about 7 × 106 m2 s−1, because gravity tectonics will then be deflected by Coriolis forces resulting in appropriately curved flowlines. A tensile fracture pattern, resembling an anticlockwise spiral pattern perpendicular to the clockwise deflected flowlines may subsequently form by local brittle failure.The occasional kinematic viscosity 7 × 106 m2 s−1 would cause flow rates of 0.2 m s−1 along the slopes of the topographic highs. This velocity and the corresponding viscosity is tentatively thought to be possible when thermal and pressure runaway occurs in the polar layered deposits. This would mean glacier surges on the Martian poles are two orders of magnitude faster than those hitherto observed on Earth.  相似文献   

9.
We use interferometric synthetic aperture radar (InSAR) observations to investigate the coseismic deformation and slip distribution of the 1997 Mw7.5 Manyi earthquake, a left-lateral strike-slip earthquake occurred on the west portion of the Kunlun fault in the northern Tibet, China. The fault trace is constrained by the combination of interferometric coherence image and azimuth offset image. The total length of the identified fault is about 170 km. We estimate the source parameters using a seven-segment fault model in a homogeneous elastic half-space. We first use a uniform slip model to estimate the slip, width, dip and rake for each segment, resulting in a maximum slip of 5.5 m with a depth of 11 km on the fourth segment. The average dip of the uniform slip model is about 93° northward and the average rake is about −2°. We then use a distributed slip model to estimate the pure strike-slip and oblique slip distribution, respectively. In the distributed slip model, the fault plane is discretized into 225 patches, each of them 4 km × 4 km. We fix the optimal geometric parameters and solve for the slip distribution using a bounded variable least-squares (BVLS) method. We find a geodetic moment of 1.91 × 1020 Nm (Mw7.5), of which almost 68% released in the uppermost 8 km and 82% in the uppermost 12 km. For all the models used in this study, the synthetic profiles along strike show asymmetric displacements on the opposite sides of the fault, which are in agreement with the observations. This suggests that a linear elastic model with variable and non-vertical dips is also reasonable for the mechanism of the Manyi earthquake.  相似文献   

10.
During the large explosions of the Bezymianny (1956), Shiveluch (1964) and Mount St. Helens (1980) volcanoes, 4.8·1012, 3.0·1012 and 8.2·1012 kg of resurgent and magmatic material were ejected respectively. The eruptions were preceded and accompanied by significant crustal deformations and by a great number of volcanic earthquakes. In all three cases, earthquakes with an energy of E = 109 J occurred 8–11 days before the eruption; their foci were at a distance of less than 5 km from the floor of the active crater and the power of earthquake swarms increased continuously and monotonously until the beginning of the eruption. The data obtained on deformations, earthquakes and volcanic activity may be used for the prediction of the place, time, energy and hazards of large explosions of andesitic volcanoes.  相似文献   

11.
Two major pyroclastic surges generated during the 4 April 1982 eruption of El Chichon devastated an area of 153 km2 with a quasi-radial distribution around the volcano. The hot surge clouds carbonized wood throughout their extent and were too hot to allow accretionary lapilli formation by vapor condensation. Field evidence indicates voidage fraction of 0.99 in the surge cloud with extensive entrainment of air. Thermal calculations indicate that heat content of pyroclasts can heat entrained air and maintain high temperatures in the surge cloud. The dominant bed form of the surge deposits are sand waves shaped in dune forms with vertical form index of 10–20, characterized by stoss-side erosion and lee-side deposition of 1–10 cm reversely graded laminae. A systematic decrease in maximum lithic diameter with distance from source is accompanied by decrease in wavelength and amplitude. Modal analysis indicates fractionation of glass and pumice from the surge cloud relative to crystals, resulting in loss of at least 10%–25% of the cloud mass due to winnowing out of fines during surge emplacement. Greatest fractionation from the –1.0–0.0– grain sizes reflects relatively lower pumice particle density in this range and segregation in the formative stages of the surge cloud. Extensive pumice rounding indicates abrasion during bed-load transport. Flow of pyroclastic debris in the turbulent surge cloud was by combination of bed-load and suspended-load transport. The surges are viewed as expanding pyroclastic gravity flows, which entrain and mix with air during transport. The balance between sedimentation at the base of the surge cloud and expansion due to entrainment of air contributed to low cloud density and internal turbulence, which persisted to the distal edge of the surge zone.  相似文献   

12.
As basic research for the effect of heavy oil on the fish immune system, in this study, the number of leukocyte was counted in Japanese flounder Paralichthys olivaceus, after exposure to heavy oil at a concentration of 30 g/8 L for 3 days. To compare the numbers of bacteria in the skin mucus between oil-exposed and control fish, viable bacteria were enumerated by counting colony forming unit (CFU). Compared with 5.79 ± 1.88 × 107 leukocytes/mL in the controls, the exposed fish demonstrated higher counts, averaging 1.45 ± 0.45 × 108 cells/mL. The bacterial numbers of control fish were 4.27 ± 3.68 × 104 CFU/g, whereas they were 4.58 ± 1.63 × 105 CFU/g in the exposed fish. The results suggest that immune suppression of the fish occurred due to heavy oil stressor, and bacteria could invade in the mucus, resulting in the increasing leukocyte number to prevent infectious disease.  相似文献   

13.
Beryllium isotopes (10Be and9Be) have been measured in suspended particles of < 1 mm size collected by mid-water sediment traps deployed in the eastern Pacific at MANOP sites H (6°32′N, 92°50′W, water depth 3600 m) and M (8°50′N, 104°00′W, 3100 m). For comparison, surface sediments from box cores taken from the two sites were also studied. The concentrations of10Be and9Be in sediment-trap particles are about an order of magnitude smaller than those in the bottom sediments which contain about 8 × 109 and 6 × 1016 atoms g−1 of10Be and9Be, respectively. The sediment trap samples collected from 50 m off the bottom showed significant (26–63%) contributions from resuspended bottom sediments. The10Be/9Be ratio in trap samples varies from 3 to 20 × 10−8. The variation may partly result from varied proportion of authigenic/detrital material. The fluxes of both isotopes exhibit a very strong seasonality. The fluxes of10Be into the traps at about 1500 m are estimated as 9 × 105 and 4 × 105 atoms cm−2 a−1 at sites H and M respectively. These values are to be compared with the fluxes into the sediments of 4–5 × 105 atoms cm−2 a−1 at both locations. Good correlations exist between10Be,9Be and27Al indicating that the primary carrier phase(s) for the beryllium isotopes in the water column may be aluminosilicates.  相似文献   

14.
The influx of10Be into a globigerinid ooze core (CH72-02) from the eastern North Atlantic has been studied. This core contains a depositional record of the first 11 δ18O stages covering the last 423 ka. It is shown that the marine deposition of10Be is strongly influenced by the sedimentation of clays. Clay particles appear 10 times more efficient than the carbonate component as a carrier in bringing10Be to the bottom sediments. In core CH72-02, the deposition rates of10Be averaged over each oxygen-isotope stage for the past 11 stages show a scatter of ±40% about the mean value of 6.6 × 108 atoms cm−2 ka−1. However, after correction for changes in lithology, the data show that the production rate of10Be over the same period has varied no more than ±25%, and the variations are not systematic in that high or low10Be production appear to be associated with either cold or warm climates. On the time scale of this investigation (intervals of ca. 50 ka over the last 420 ka, with resolutions as fine as 10 ka for portions of the record), it is unlikely that the shielding effect of the solar wind has deviated by more than ±25% or the geomagnetic field intensity has deviated by more than a factor of 1.6 from their long-term averages.  相似文献   

15.
Fluid flow from pore pressure measurements off La Palma, Canary Islands   总被引:1,自引:0,他引:1  
In situ subseafloor pore pressure results from the western flank of the island of La Palma, Canary Islands, are presented. The data obtained with a Pop Up Pore Pressure Instrument (PUPPI) provide constraints on the fluid circulation and its causes in a very special context: The sediment piles near an intraplate oceanic island built on the continental rise of the Northwest African Margin. The ambient pore pressures estimated from 2 to 4 days long record are negative in almost all cases with values, at depths of a few meters below sea floor, usually on the order of −10 to −70 Pa. Excess pore pressures develop only in the distal most areas. The permeabilities and compressibilities obtained respectively from the decay of the insertion pressures and the amplitude of the tidally induced pore pressure variations range between 2.5×10−18 and 6.6×10−16 m2 and, 6.2×10−9 and 1.5×10−7 Pa−1. According to these permeabilities fluid flow is estimated to be mostly downward and usually on the range between 0 and −0.3 mm y−1. However, from the excess pore pressure profile a complex pattern of fluid circulation is inferred where horizontal fluid motion cannot be neglected. Horizontal flow is probably controlled by significant contrasts in the permeability of the different layers. The prevailing downward fluid flow is abnormal for a classical passive margin. We thus interpret these results as the superposition to the loss of fluids by sediment compaction (on the continental rise), of a large-scale flow system stimulated by thermal buoyancy (100 km wide) related to the volcanic activity on the island of La Palma.  相似文献   

16.
In the subglacial eruption at Gjálp in October 1996 a 6 km long and 500 m high subglacial hyaloclastite ridge was formed while large volumes of ice were melted by extremely fast heat transfer from magma to ice. Repeated surveying of ice surface geometry, measurement of inflow of ice, and a full Stokes 2-D ice flow model have been combined to estimate the heat output from Gjálp for the period 1996–2005. The very high heat output of order 106 MW during the eruption was followed by rapid decline, dropping to  2500 MW by mid 1997. It remained similar until mid 1999 but declined to 700 MW in 1999–2001. Since 2001 heat output has been insignificant, probably of order 10 MW. The total heat carried with the 1.2 × 1012 kg of basaltic andesite erupted (0.45 km3 DRE) is estimated to have been 1.5 × 1018 J. About two thirds of the thermal energy released from the 0.7 km3 edifice in Gjálp occurred during the 13-day long eruption, 20% was released from end of eruption until mid 1997, a further 10% in 1997–2001, and from mid 2001 to present, only a small fraction remained. The post-eruption heat output history can be reconciled with the gradual release of 5 × 1017 J thermal energy remaining in the Gjálp ridge after the eruption, assuming single phase liquid convection in the cooling edifice. The average temperature of the edifice is found to have been approximately 240 °C at the end of the eruption, dropping to  110 °C after 9 months and reaching  40 °C in 2001. Although an initial period of several months of very high permeability is possible, the most probable value of the permeability from 1997 onwards is of order 10− 12 m2. This is consistent with consolidated/palagonitized hyaloclastite but incompatible with unconsolidated tephra. This may indicate that palagonitization had advanced sufficiently in the first 1–2 years to form a consolidated hyaloclastite ridge, resistant to erosion. No ice flow traversing the Gjálp ridge has been observed, suggesting that it has effectively been shielded from glacial erosion in its first 10 years of existence.  相似文献   

17.
The Ottaviano eruption occurred in the late neolithic (8000 y B.P.). 2.40 km3 of phonolitic pyroclastic material (0.61 km3 DRE) were emplaced as pyroclastic flow, surge and fall deposits. The eruption began with a fall phase, with a model column height of 14 km, producing a pumice fall deposit (LA). This phase ended with short-lived weak explosive activity, giving rise to a fine-grained deposit (L1), passing to pumice fall deposits as the result of an increasing column height and mass discharge rate. The subsequent two fall phases (producing LB and LC deposits), had model column heights of 20 and 22 km with eruption rates of 2.5 × 107 and 2.81 × 107 kg/s, respectively. These phases ended with the deposition of ash layers (L2 and L3), related to a decreasing, pulsing explosive activity. The values of dynamic parameters calculated for the eruption classify it as a sub-plinian event. Each fall phase was characterized by variations in the eruptive intensity, and several pyroclastic flows were emplaced (F1 to F3). Alternating pumice and ash fall beds record the waning of the eruption. Finally, owing to the collapse of a eruptive column of low gas content, the last pyroclastic flow (F4) was emplaced.  相似文献   

18.
The vertical distributions of10Be and9Be at three locations in the Pacific (25°N, 170°E; 17°N, 118°W; 3°S, 117°W) are presented. The results show that both isotopes exhibit nutrient-like profiles. From the surface to the bottom, the increase for10Be is two- to threefold and that for9Be is about fivefold. While the inter-station variations in surface water concentrations may reach a factor of two, deep-water values tend to be much more uniform averaging about 2000 atoms/g for10Be and 30 pM for9Be. A similar situation applies to the10Be/9Be ratio; it varies approximately from 1 to 3 × 10−7 (atom/atom) at shallow depths but tends toward a value close to 1.1 × 10−7 in the deep ocean. The variation of10Be/9Be can be viewed as resulting from the fact that10Be in a given parcel of water consists of two components: recycled and primary. The recycled component is that part of10Be which has reached tracer equilibrium with9Be, as opposed to the primary component which, upon entering the sea from the atmosphere, has yet to equilibrate with9Be through particle cycling and mixing processes. It is estimated that 70% to nearly 100% of10Be at the three stations are being recycled, and the recycled beryllium bears an atomic ratio of10Be/9Be close to 1 × 10−7. The oceanic residence time of Be is of the order of 1000–4000 years, comparable to or slightly longer than the ocean mixing time.  相似文献   

19.
During an explosive volcanic eruption, tephra fall out from the umbrella region of the eruption cloud to the ground surface. We investigated the effect of the intensity of turbulence in the umbrella cloud on dispersion and sedimentation of tephra by performing a series of laboratory experiments and three dimensional (3-D) numerical simulations. In the laboratory experiments, spherical glass-bead particles are mixed in stirred water with various intensities of turbulence, and the spatial distribution and the temporal evolution of the particle concentration are measured. The experimental results show that, when the root-mean-square of velocity fluctuation in the fluid (Wrms) is much greater than the particle terminal velocity (vt), the particles are homogeneously distributed in the fluid, and settle at their terminal velocities at the base of the fluid where turbulence diminishes. On the other hand, when Wrms is as small as or smaller than vt, the particle concentration increases toward the base of the fluid during settling, which substantially increases the rate of particle settling. The results of the 3-D simulations of eruption cloud indicate that Wrms is up to 40 m/s in most of the umbrella cloud even during a large scale plinian eruption with a magma discharge rate of 109 kg/s. These results suggest that relatively coarse pyroclasts (more than a few mm in diameter) tend to concentrate around the base of the umbrella cloud, whereas fine pyroclasts (less than 1/8 mm in diameter) may be distributed homogeneously throughout the umbrella cloud during tephra dispersion. The effect of the gradient of particle concentration in the umbrella cloud explains the granulometric data of the Pinatubo 1991 plinian deposits.  相似文献   

20.
The 1975 sub-terminal activity was characterised by low effusion rates (0.3–0.5 m3 s−1) and the formation of a compound lava field composed of many thousands of flow units. Several boccas were active simultaneously and effusion rates from individual boccas varied from about 10−4 to 0.25 m3s−1. The morphology of lava flows was determined by effusion rate (E): aa flows with well-developed channels and levees formed when E > 2 × 10−3 m3 s−1, small pahoehoe flows formed when 2 × 10−3 m3 s−1 >E > 5 > 10−4 m3 s−1 and pahoehoe toes formed when E < 5 × 10−4 m3 s−1. There was very little variation with time in the effusion temperature, composition or phenocryst content of the lava.New boccas were commonly formed at the fronts of mature lava flows which had either ceased to flow or were moving slowly. These secondary boccas developed when fluid lava in the interior of mature aa flows either found a weakness in the flow front or was exposed by avalanching of the moving flow front. The resulting release of fluid lava was accompanied by either partial drainage of the mature flow or by the formation of a lava tube in the parent flow. The temperature of the lava forming the new bocca decreased with increasing distance from the source bocca (0.035°C m−1). It is demonstrated from the rate of temperature decrease and from theoretical considerations that many of the Etna lavas still contained a substantial proportion of uncooled material in their interior as they came to rest. The formation of secondary boccas is postulated to be one reason why direct measurements of effusion rates tend, in general, to overestimate the total effusion rates of sub-terminal Etna lava fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号