首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was two-fold: the first to investigate the role of moist convection and nongeostrophic effects on the growth of the monsoon depressions using a linearized multi-level moist primitive equation (PE) model and quasi-geostrophic (QG) model with only vertical shear. The second was to study the nonlinear evolution, growth, movement and detailed energetics of the monsoon depressions using a nonlinear moist global spectral model. Our linear studies using both models revealed lower as well as upper tropospheric growing modes. For the lower tropospheric modes the shorter scales were found to grow faster. While the PE model showed faster growth rate for shorter scales, as compared to longer scales, the QG model showed less tendency for scale selection. The shorter scales in PE model had phase speeds ranging from 4 to — 1 ms−1 and in QG model from 8 to — 4 ms−1. The nongeostrophic effects were found to be, in general, important. One of the lower tropospheric modes with wavelength 2500 km was found to have many features similar to the observed monsoon depression of the Bay of Bengal. In the upper troposphere the PE model showed much faster growth rates compared to the QG model. Also the fastest growing mode with a doubling time of 2.5 days had a scale of 6000 km. This was shorter than the scale predicted in the QG model. This mode had many characteristics similar to the observed features of the monsoon upper tropospheric easterly waves. Using a nonlinear global spectral model, we simulated the monsoon depression around 21°N starting from an antisymmetric heating distribution (with respect to the equator) and with a specific vertical structure with and without basic flows. The model was integrated for a period of five days incorporating a simple form of cumulus heating. The simulated model disturbance showed a pronounced growth and a westward movement in the presence of cumulus heating. The detailed energetics calculations revealed that the baroclinic energy exchange is the primary energy exchange process and cumulus heating is the driving force for the generation of available potential energy.  相似文献   

2.
The interaction between extratropical transition process and the mid-latitude jet system stimulates the downstream development. In this paper, three typhoon cases were selected to study their downstream development mechanism through the analysis of the eddy kinetic energy budget and the idealized simulations. The results of Chen’s work to the Pacific region were examined. The results were consistent with the results of Chen’s Atlantic hurricane Case. ET downstream at the upper levels generated first eddies, and the disturbances triggered the low level eddy development. Then the upper and the lower coupled and formed a deep cyclone system throughout the whole troposphere. The ageostrophic geopotential flux promoted the formation and development of the downstream ridge from the typhoon. Vertical ageostrophic geopotential flux transferred energy from upper downward that convergence happened in lower, which stimulated the lower-level cyclone development. Simulation results showed that, in the process of ET, TC outflow transported low potential vorticity to mid-latitude jet, which enhanced the PV gradient and the baroclinic. Then, it is inspired the Rossby wave in the jet and propagated downstream. The formation of downstream ridge-trough couple and development of the further wave was the spread to the downstream through the Rossby wave.  相似文献   

3.
Vertical distributions of various components of the tropospheric global rotational kinetic energy, enstrophy and available potential energy during July 1979, and the contributions to these from different zonal wave categories were studied. Representative levels in the lower and upper troposphere for the stationary and transient energetics were identified on the basis of different components of energy and enstrophy. The eddy energy and enstrophy contained in different zonal scale components in the lower and upper troposphere were studied to find out the preferred scales for stationary and transient monsoonal motion in the two atmospheric layers. The role of different zonal wave categories in the nonlinear exchanges of energy and enstrophy arising due to stationary-stationary, transient-transient, stationary-transient and observed flow interactions was examined. Stationary and transient global spectra of the aforesaid dynamical variables in terms of the zonal wavenumber(m) with triangular truncation atm = 42 were utilized for this purpose. It was found from the global average kinetic energy in lower and upper troposphere that the global stationary and transient motions were comparable in the lower troposphere while in the upper troposphere stationary motion dominated over the transient motion. The computed zonal and eddy energy confirmed that the stationary motion was predominantly zonal while the transient motion was dominated by eddies. From the time mean nonlinear interaction of kinetic energy (enstrophy) of observed flow it was seen that the long and short waves as well as the zonal flow gained kinetic energy (enstrophy) from medium waves due to nonlinear interactions. The transfer of available potential energy due to nonlinear interaction was down the scale except for short waves in the upper troposphere. The stationary-transient interaction was found to be an important element of the spatial-temporal varying atmospheric flow.  相似文献   

4.
Anomalous sea level, anomalous observed dynamic height (0/400 db) and anomalous model dynamic height are examined at the locations of 13 island sea level stations in the tropical Pacific for each bimonth of the four year period 1979 to 1982. Starting in 1981, the anomalous dynamic height data show off-equatorial Rossby waves propagated toward the W boundary of the Pacific basin. At the W boundary, the model Rossby wave activity was found to have excited coastally trapped Kelvin-Munk waves which transmitted the anomalous dynamic height equatorward. At the equator, coastally trapped wave activity excited eastward propagating equatorial Kelvin waves, yielding a pair of anomalous peaks in dynamic height variability in the E equatorial Pacific associated with the 1982–1983 ENSO event. The evolution of the peaks in dynamic height associated with the Rossby and Kelvin wave activity reflects the redistribution of observed upper-ocean heat content in the W tropical Pacific, providing a qualitative hindcast for the 1982–1983 ENSO event. In consequence of these results, and the results of a related study (Inoue et al. 1985), the redistribution of both observed and model heat content, as evidenced in dynamic height in the W Pacific during the 23-year period 1964–1985, is examined for its ability to hindcast and forecast ENSO events in this period. Complex EOF analysis is applied to the Onset Phase of ENSO events occurring in 1968–69, 1972–73, 1976–77, and 1982–83; it is used to determine the characteristic redistribution of heat content (dynamic height) prior to the Mature Phase of ENSO events. This analysis found both model and observed dynamic height in the N hemisphere to be characterized by wind-driven, westward propagating, baroclinic Rossby wave activity, having a remarkably stable period of 3 years over the 23-year period. The complex time series associated with these first spatial eigen-functions are used to construct observed and model hindcast indices that yield high values one year prior to the Mature Phase of ENSO events of the period. These indices achieve these values due to the incidence upon the Philippine coast in fall/winter of a positive anomaly in dynamic height propagating from the east at nondispersive Rossby long wave speeds.  相似文献   

5.
The tropical cyclone Viyaru maintained a unique quasi-uniform intensity during its life span. Despite being in contact with sea surface for >120 hr travelling about 2150 km, the cyclonic storm (CS) intensity, once attained, did not intensify further, hitherto not exhibited by any other system over the Bay of Bengal. On the contrary, the cyclone Phailin over the Bay of Bengal intensified into very severe cyclonic storm (VSCS) within about 48 hr from its formation as depression. The system also experienced rapid intensification phase (intensity increased by 30 kts or more during subsequent 24 hours) during its life time and maximum intensity reached up to 115 kts. In this paper, a comparative study is carried out to explore the evolution of the various thermodynamical parameters and possible reasons for such converse features of the two cyclones. Analysis of thermodynamical parameters shows that the development of the lower tropospheric and upper tropospheric potential vorticity (PV) was low and quasi-static during the lifecycle of the cyclone Viyaru. For the cyclone Phailin, there was continuous development of the lower tropospheric and upper tropospheric PV, which attained a very high value during its lifecycle. Also there was poor and fluctuating diabatic heating in the middle and upper troposphere and cooling in the lower troposphere for Viyaru. On the contrary, the diabatic heating was positive from lower to upper troposphere with continuous development and increase up to 6°C in the upper troposphere. The analyses of cross sections of diabatic heating, PV, and the 1000–500 hPa geopotential metre (gpm) thickness contours indicate that the cyclone Viyaru was vertically tilted (westward) and lacked axisymmetry in its structure and converse features (axisymmetric and vertical) that occurred for the cyclone Phailin. In addition, there was a penetration of dry air in the middle troposphere of Viyaru, whereas high moisture existed in the middle troposphere of Phailin. The vertical wind shear (5–10 ms?1) near the core of the storm region between 850 and 200 hPa was favourable for both the systems but was higher in the northern region of the cyclone Viyaru. The divergent development of these thermodynamic features conspired to produce converse characteristic of the two cyclones.  相似文献   

6.
The structure of the monsoon depression and the observed flow features prior to and at the time of monsoon depression formation (composite of 15 depressions) are examined. The composite monsoon depression (transient eddy) has a scale of 25° longitude and extends up to 300 mb and has the greatest intensity at 700 mb. It shows north-north-east to south-south-west tilt in the lower levels indicating that it may draw upon zonal kinetic energy for its growth. The disturbance has lower temperatures to its west and tilts westwards with height indicating that eddy available potential energy is not converted from zonal available potential energy by large scale advection. There appears to be a reduction of vertical shear at the time of formation of monsoon depressions and this possibly aids cumulus convection. The profiles of potential vorticity indicate extremes (i) in the upper troposphere and (ii) at several midtropospheric levels in the region of the monsoon trough indicating the possibility of combined barotropic-baroclinic instability. Using multi-level quasi-geostrophic model and employing the eigen-value technique it is shown that the monsoon zonal current is notbaroclinically unstable. A barotropic stability analysis is also done for monsoon zonal current in the lower and middle tropospheres. It yields very slowly growing unstable modes at lower tropospheric levels with wave lengths of 2500 km and 5000 km.  相似文献   

7.
利用位涡(PV)收支诊断和质点轨迹追踪等方法对2006年影响中国最严重的超强台风"桑美"强度变化的成因进行了分析和研究.结果表明:台风中心四周的垂直风切变、涡度、散度变化对台风强度变化有重要影响;通过位涡诊断揭示出在台风增强和减弱时,凝结潜热、垂直平流和水平平流起着不同的作用.在台风迅速发展之前和迅速发展初期,凝结潜热...  相似文献   

8.
The circulation patterns over the Indian Ocean and the surrounding continents have been studied during June 2009 and July 2002 to explain the failure of Indian summer monsoon (ISM) rainfall. This study presents evidences that the failure of the ISM during these 2?months was probably due to the development of cyclonic circulation anomaly over the Western Asia and anticyclonic circulation anomalies downstream of Eastern Asia. These circulation anomalies were associated with the equatorward advection of cold air up to 10°N. This may be due to the equatorward intrusion of midlatitude Rossby waves. We hypothesize that the intrusion of midlatitude Rossby wave is responsible for breaking the east?Cwest circulation cell over the Indian region into two cells and weakening it. The weak east?Cwest cell reduces the strength of the easterly wind field usually present over the monsoonal region, thus reducing the cross-equatorial moisture transport into the Indian subcontinent and decreasing monsoon rainfall.  相似文献   

9.
Ensemble seasonal integrations are carried out with the COLA GCM, with a view to understand the dynamical connection between warm SST anomalies in the equatorial central-eastern Pacific Ocean and the upper level stationary wave anomalies seen during drought years over the Indian summer monsoon region. In addition, experiments with and without orography are performed in order to examine the role of the Himalayas in modulating the El Niño induced stationary wave anomalies over the summer monsoon region. The GCM simulations show a statistically significant weakening of the summer monsoon activity over India in response to the SST forcing in the equatorial Pacific Ocean. This weakening of the summer monsoon appears to be largely related to modifications of the local Hadley and Walker cells over the summer monsoon region. In addition, it is seen that the anomalous ENSO divergent forcing over the tropical Pacific Ocean can act as a potential source for Rossby wave dispersion. Here one finds the possibility of meridionally propagating Rossby waves, which emanate from the ENSO forcing region, to interact with the subtropical westerlies and generate anomalous highs and lows in the subtropics and extratropics. The quasi-stationary perturbations seen over west Asia, Pakistan and northwest India during drought years, seem to be generated by the above mechanism. An alternate mechanism that could be important for the persistence of the quasi-stationary perturbations seems to be based on the dynamic excitation of middle latitude normal modes which can extract energy from the zonally varying unstable basic flow. It is seen from the GCM simulations, that the Himalayan orography plays a crucial role in anchoring the El Niño induced extratropical westerly troughs far to the west in the high latitude belt. In the absence of orography it is seen that the ENSO induced extra-tropical cyclonic anomalies tend to intrude southward into the monsoon region thereby destroying the regional scale circulations completely. Another effect due to the Himalayas is to generate lee waves on the eastern side of the topographic barrier which encircle the globe in the subtropics and midlatitudes.  相似文献   

10.
赤道太平洋潜流变化特征及其与异常海温东传   总被引:1,自引:0,他引:1       下载免费PDF全文
应用TOGA-TAO实测海流资料(ADCP)和SODA同化海流和海温资料,分析探讨了赤道太平洋潜流的季节和年际变化特征,以及与赤道异常暖水东传的内在联系.揭示了El Nino事件中异常暖水东传的物理机制.结果表明,赤道太平洋潜流具有明显的季节变化和年际变化特征.潜流的垂直最大深度可由海表层至300~400 m,其多年平均最大流速可达100 cm/s.潜流最大中心的纬向变化位置基本维持在160°W-130°W之间.在年际变化中,赤道潜流变化特征非常明显,尤其是在El Nino事件发生过程中,赤道潜流出现明显的加强现象.其最大流速可达140 cm/s以上.在西太平洋暖池区域次表层暖水东传之前,位于中东太平洋次表层的赤道潜流就已出现加强,其最大流速中心沿温跃层不断加强和东移,“引导”来自西太平洋暖池区域次表层的异常暖水向东传播.因此,可以认为西太平洋暖池区域异常暖水的东传与赤道潜流的强度和东传存在密切关系,也就是说在El Nino事件中,赤道潜流的变化是导致西太平洋暖池区域次表层异常暖水东传的重要机制.  相似文献   

11.
Residual eddies in a tidal channel   总被引:1,自引:0,他引:1  
Persistent residual eddies in a tidal channel in Wassaw Sound, Georgia, were resolved through shipboard observations. The residual eddies appear to be linked to bathymetry and coastlines. The semidiurnal tidal constituent, which explains about 90% of the variability of the data, was found to be a standing wave and the tidal wave propagation induced residual flow was minimal, so the advective nonlinearity was one of the major contributors to the residual eddies. From the vorticity point of view, if the lateral friction is neglected, three terms contribute to the generation of the relative vorticity in the depth-averaged vorticity equation. An important fact is that all these terms include the depth function: the interaction between the advection and bathymetry gradient, the interaction between advection and bathymetry, and the interaction between mean pressure gradient and the bathymetry gradient.  相似文献   

12.
建立三维水动力学模型分析中华鲟产卵栖息地水力因子的时空分布和中华鲟产卵时的适宜水力特性,为设计最佳的生态调度方案提供科技支撑。研究结果表明,中华鲟产卵栖息地的上产卵区水深和流速的变化主要受流量影响,涡量的变化主要受地形影响;中华鲟产卵前需要高流量脉冲刺激产卵。坝下与隔流堤之间流速和涡量值的大小与波动远大于其他区域,均值为2.4 m/s和11 m2/s。产卵栖息地水体表层、中层和底层的流速和水平涡量分布格局相似,均是在上产卵区值较大,空间分布多样性高。水体中层垂向涡量的值远大于底层和表层。产卵栖息地水体表层、中层和底层水力分布特征为中华鲟繁殖提供了有利的水力条件,体现出中华鲟对产卵栖息地不同功能区的自主选择性。  相似文献   

13.
A two-dimensional, nonlinear, vertically integrated model was used to simulate depth-mean wind-driven circulation in the upper Ekman layers of the Bay of Bengal and Andaman Sea. The model resolution was one third of a degree in the latitude and longitude directions. Monthly mean wind stress components used to drive the model were obtained from the climatic monthly mean wind data compiled by Hastenrath and Lamb. A steady-state solution was obtained after numerical integration of the model for 15 days. The sensitivity of the model to two types of open boundary conditions, namely, a radiation type and clamped type, was tested. A comparison of simulated results for January with available ship drift data showed that the application of the latter along the open boundary could reproduce all the observed features near the boundary and the interior of the model domain. The model was integrated for 365 days to study the circulation during the southwest and northeast monsoon seasons. The model was successful in simulating the broad features of circulation including gyres and eddies observed during both the seasons, the development of north equatorial current during the northeast monsoon period and eastward moving monsoon drift current up to 90°E during the southwest monsoon season. During the latter season, two anticyclonic gyres were observed in the central and the southern parts of the Bay. A cyclonic type of circulation was prevalent in the central and western parts of the Bay of Bengal during the northeast monsoon months of November and December. The simulated western boundary current along the east coast of India, flows northward and southward during the southwest and northeast monsoon seasons respectively. It is presumed that this western boundary current, simulated during both the seasons, is locally wind-driven.  相似文献   

14.
陈斌  王凯  刘健  高飞 《地球科学》2016,41(8):1402-1412
台风是短期改变海洋环境的重要动力因素,会对近岸河口环境产生巨大的影响.基于0608号台风“桑美”过境前后长江口外海域多个站位的调查资料,分析了台风过境前后长江口外海域温度、盐度、浊度等环境要素的变化.结果表明:在台风引起的水体平流输运和垂向混合作用下,长江口外海域的温度、盐度、浊度等结构发生了较大改变.表层水体的温度降低,盐度增大;底层水体温度升高,盐度降低;温跃层厚度增大,层结构强度减弱;东部海域的盐跃层基本消失,温盐跃层对营养盐垂向输运的限制减弱,导致叶绿素a浓度值升高;台湾暖流底层冷水明显向近岸涌升,近岸上升流特征更为显著,同时台湾暖流底层冷水的中心位置向东偏移;水体浊度减小,尤其是近岸水深较浅海域,细颗粒沉积物被强平流作用输运.   相似文献   

15.
郑锦文  左志燕  蔺邹兴  肖栋 《冰川冻土》2022,44(5):1513-1522
基于1961—2017年中国气象局地表气温数据、JRA-55大气再分析数据以及美国国家海洋和大气管理局延伸重建的海温资料,研究了青藏高原冬季地表气温的年代际变化特征及其与海温的可能联系。结果表明:巴伦支-喀拉海冬季海温年代际变化可以激发出向东传播的Rossby波,在西伯利亚对流层高层产生异常的气旋或反气旋性环流,通过影响副极地以及副热带西风急流强度,在青藏高原的南侧产生异常的反气旋或气旋性环流,从而使得青藏高原上空的垂直运动发生变化,导致青藏高原冬季地表气温异常。  相似文献   

16.
曹瑜  游庆龙  蔡子怡 《冰川冻土》2021,43(5):1290-1300
采用一元线性回归、合成分析等方法对1961—2019年青藏高原中东部71个站点夏季强降水与大尺度环流进行了分析,研究结果表明,近年来青藏高原中东部强降水呈增加趋势。在强降水高值年时,青藏高原中东部水汽辐合加强,中纬度西风和热带地区东风带向极移动加强,高层辐散流场、水汽输送以及上升运动条件,共同作用导致了强降水的产生。在强降水低值年时,青藏高原中东部大部水汽异常辐散,区域内的季风水汽输送减弱,西风带和东风带均向赤道移动减弱,高层为气旋式环流异常。通过风暴轴、波作用通量和E-P通量进一步分析发现,当北大西洋地区风暴轴偏强(偏弱)时,瞬变扰动作用加强(减弱),使得北大西洋地区高纬度西风加速(减弱),急流出口区的不稳定能量激发了欧洲西北部的异常反气旋(异常气旋),并通过Rossby波列调控季风输送,导致了青藏高原中东部地区强降水的变化。  相似文献   

17.
夏季青藏高原加热和环流场的日变化   总被引:3,自引:0,他引:3  
刘新  吴国雄  李伟平 《地球科学进展》2006,21(12):1273-1282
通过使用NCEP/NCAR再分析资料,分析了夏季青藏高原地区非绝热加热场的日变化特征以及高原上空环流场的日变化特点。分析发现青藏高原及其邻近地区上空环流的日变化在欧亚地区大气环流系统中表现最为显著。环流日变化是被非绝热加热的日变化所驱动的,特别是被太阳辐射日变化所驱动。由于高原上空大气柱质量远小于低海拔的平原地区,故太阳辐射日变化引起的加热日变化可在高原地区产生更为显著的环流日变化。通过位涡方程的诊断证实,白天高原加热增强,可在大气上层制造大量负位涡并向周边地区辐散,使高原地区大气高层成为负涡源。而低层则是加热制造正位涡,并使周边地区向高原的辐合增强,摩擦耗散是低层抑制正位涡增长的主要因素。而夜间加热减弱使高原对局地环流的影响作用大为减弱。故而高原及其周边地区的局地环流也具有明显的日变化特征。  相似文献   

18.
Touboul  Julien  Kharif  Christian 《Natural Hazards》2016,84(2):585-598
The kinematic and dynamic of steep two-dimensional focusing wave trains on a shearing flow in deep water are investigated analytically and numerically. In the absence of waves, the vorticity due to the vertical gradient of the horizontal current velocity is assumed constant. A linear kinematic model based on the spatio-temporal evolution of the frequency is derived, predicting the focusing distance and time of a chirped wave packet in the presence of constant vorticity. Furthermore, a linear model, based on a Fourier integral, is used to describe the evolution of the free surface on shearing current. To compute the fully nonlinear evolution of the wave group in the presence of vorticity, a new numerical model, based on a BIEM approach, is developed. On the basis of these different approaches, the role of constant vorticity on rogue wave occurrence is analysed. Two main results are obtained: (1) the linear behaviour expected in the presence of constant vorticity is significantly different from what is commonly expected in the presence of constant current and (2) the nonlinear effects are found to be of significant influence in the case at hand.  相似文献   

19.
A cyclone genesis parameter, termed the genesis potential parameter (GPP), for the Indian Sea is proposed. The parameter is defined as the product of four variables, namely vorticity at 850 hPa, middle tropospheric relative humidity, middle tropospheric instability, and the inverse of vertical wind shear. The variables are calculated using the National Centers for Environmental Prediction (NCEP), USA, reanalysis data, averaged within a circle of 2.5° radius around the centre of cyclonic system. The parameter is tested with a sample dataset of 35 nondeveloping and developing low-pressure systems that formed over the Indian Sea during the period 1995–2005. The result shows that there is a distinction between GPP values for nondeveloping and developing systems in more than 85% cases. The composite GPP value is found to be around three to five times greater for developing systems than for nondeveloping systems. The analysis of the parameter at early development stage of a cyclonic storm appears to provide a useful predictive signal for intensification of the system.  相似文献   

20.
The upper air RS/RW (Radio Sonde/Radio Wind) observations at Kolkata (22.65N, 88.45E) during pre-monsoon season March–May, 2005–2012 is used to compute some important dynamic/thermodynamic parameters and are analysed in relation to the precipitation associated with the thunderstorms over Kolkata, India. For this purpose, the pre-monsoon thunderstorms are classified as light precipitation (LP), moderate precipitation (MP) and heavy precipitation (HP) thunderstorms based on the magnitude of associated precipitation. Richardson number in non-uniformly saturated (R i *) and saturated atmosphere (R i ); vertical shear of horizontal wind in 0–3, 0–6 and 3–7 km atmospheric layers; energy-helicity index (EHI) and vorticity generation parameter (VGP) are considered for the analysis. The instability measured in terms of Richardson number in non-uniformly saturated atmosphere ( \(R_{i}^{\mathrm {\ast } })\) well indicate the occurrence of thunderstorms about 2 hours in advance. Moderate vertical wind shear in lower troposphere (0–3 km) and weak shear in middle troposphere (3–7 km) leads to heavy precipitation thunderstorms. The wind shear in 3–7 km atmospheric layers, EHI and VGP are good predictors of precipitation associated with thunderstorm. Lower tropospheric wind shear and Richardson number is a poor discriminator of the three classified thunderstorms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号