首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individual tree crown delineation is of great importance for forest inventory and management. The increasing availability of high-resolution airborne light detection and ranging (LiDAR) data makes it possible to delineate the crown structure of individual trees and deduce their geometric properties with high accuracy. In this study, we developed an automated segmentation method that is able to fully utilize high-resolution LiDAR data for detecting, extracting, and characterizing individual tree crowns with a multitude of geometric and topological properties. The proposed approach captures topological structure of forest and quantifies topological relationships of tree crowns by using a graph theory-based localized contour tree method, and finally segments individual tree crowns by analogy of recognizing hills from a topographic map. This approach consists of five key technical components: (1) derivation of canopy height model from airborne LiDAR data; (2) generation of contours based on the canopy height model; (3) extraction of hierarchical structures of tree crowns using the localized contour tree method; (4) delineation of individual tree crowns by segmenting hierarchical crown structure; and (5) calculation of geometric and topological properties of individual trees. We applied our new method to the Medicine Bow National Forest in the southwest of Laramie, Wyoming and the HJ Andrews Experimental Forest in the central portion of the Cascade Range of Oregon, U.S. The results reveal that the overall accuracy of individual tree crown delineation for the two study areas achieved 94.21% and 75.07%, respectively. Our method holds great potential for segmenting individual tree crowns under various forest conditions. Furthermore, the geometric and topological attributes derived from our method provide comprehensive and essential information for forest management.  相似文献   

2.
In this study, we assess the quality of the digital surface model (DSM) generated from Pleiades-1 tri-stereo images which can potentially contribute to the detection of citrus trees in terms of height information. The methods tested on stereo/tri-stereo images are; (a) local methods (correlation-based and least squares method), (b) semi-global method (semi-global matching (SGM)), and (c) global method (SIFT-flow). DSMs of three sub-regions of Mersin area have been presented for each stereo/tri-stereo matching method; whereas for the SIFT-flow method, we have only depicted the parallax results. Numerical results reveal that the SGM forward-backward stereo combination which has the largest intersection angle provided the best results in 2 out of 3 test areas. However, the results confirm that none of the methods could reach the desired level of performance for the height estimation of citrus trees that can potentially guide the detection step.  相似文献   

3.
柑橘植株冠层氮素和光合色素含量近地遥感估测   总被引:1,自引:0,他引:1  
柑橘植株营养状况的遥感监测是实现果树轻简高效管理和优质丰产的重要手段,但迄今有关基于低空遥感信息的果树营养诊断研究鲜见报道。本文采用具有490 nm、550 nm、570 nm、671 nm、680 nm、700 nm、720 nm、800 nm、840 nm、900 nm、950 nm等11个波段光谱的八旋翼飞行器(UAV)载多光谱遥感系统,获取距地面100 m高度的哈姆林甜橙植株春季冠层近地遥感信息,对比分析基于多元散射校正(MSC)和标准正态变量(SNV)两种预处理光谱和原始光谱(OS)的偏最小二乘(PLS)、多元线性回归(MLR)、主成分回归(PCR)及最小二乘支持向量机(LS-SVM)等4种模型对冠层叶片氮素、叶绿素a、叶绿素b和类胡萝卜素含量预测精度的影响。结果显示,距地面100 m高度的多光谱信息,通过SNV光谱预处理和MLR建模对冠层叶片氮素、叶绿素a和叶绿素b含量的预测效果均较好,预测集相关系数(Rp)值分别达0.8036、0.8065和0.8107,预测均方根误差(RMSEP)值分别为0.1363、0.0427和0.0243;而在SNV光谱预处理基础上的LS-SVM建模对冠层类胡萝卜素含量预测效果更优,Rp值达到了0.8535,RMSEP值为0.0117。表明利用机载多光谱图像信息可实现对柑橘植株冠层全氮及叶绿素a、叶绿素b和类胡萝卜素含量的较好估算,为大规模柑橘园植株冠层营养状况的精准和高效监测提供了一条新途径。  相似文献   

4.
Three-dimensional (3-D) representations of urban regions have gained much attention because of recent developments in remote sensing and computer graphics technologies. In particular, textured 3-D building reconstruction for a variety of applications has been a popular research topic in recent years. In this study, we present the reconstruction of 3-D building models along with texture selection and mapping. Extracted two-dimensional building patches and normalized digital surface model (nDSM) data are used to generate the 3-D models. To build near-photorealistic 3-D models, the acquired geo-referenced facade textures are associated with the corresponding building facades using an automated GPS-assisted approach. On the other hand, the modelling and texture mapping of the roof structures were carried out manually. The study area is composed of eight housing estates (blocks), where a total of 110 buildings were analysed. The whole study area was modelled, with facade textures, in less than 1 min of processor running time with an acceptable level of accuracy. The texture mapping was carried out using MATLAB’s Virtual Reality Toolbox?.  相似文献   

5.
Urban green space is important for the well-being of urban residents. Seeking for three spatial dimension stereopsis is a very important issue in investigating urban green space. A potential applicability in the domain of urban tree space measurement and modelling has been explored based on LiDAR data in our study. This paper aims to present a framework—through a more automatic way—to extract canopy structure attributes. In this study, treetops were filtered by local maxima filtering algorithm from canopy height model. An improved spoke wheel algorithm was used to delineate the crown boundaries. And, an estimation issue of crown volume was simplified into three measurable parameters by estimating the crown structures. For accuracy assessment, data of 363 sampled trees located in the subset of Székesfehérvár city were selected randomly. The overall detection rate of treetop had proven to be 95.87% and crown boundaries were recognized effectively with a delineation quality of 88.59%, which were acceptable. About 80.26% of investigated crown volume estimates were obtained with shape distortion ranging from 3.1 to 7.8% according to the error analysis. The results indicated that the method can be used to extract canopy structure in urban areas.  相似文献   

6.
树冠作为树木主要组成部分之一,是树木长势监测、树种识别等内容的重要参数,对森林资源调查和生态研究具有重要意义。与传统的实地调查相比,运用无人机遥感技术提取树冠信息具有高效、便捷等优势。本文基于无人机多光谱影像提取树冠信息,在树冠点探测上结合局部最大值法与Mean Shift优化策略,较原始局部最大法探测精度提升约10%。此外,提出了一种新的树冠边界提取算法,运用动态规划思想进行全局最优边界提取。与以往分水岭分割算法相比,本文算法在较密集林区和稀疏林区均有更好的提取效果,在试验样区稀疏林区F测度提升12%,较密集区F测度提升28%。  相似文献   

7.
枯立木识别对森林资源管理,生物多样性保护,以及森林碳储量变化评估具有重要价值。无人机高分辨率影像为枯立木调查提供了较为便捷的方式。现有枯立木识别算法多依靠拥有红边、近红外波段的多光谱影像来实现。相比于多光谱相机,消费级无人机通常搭载的是用于获取可见光(RGB)影像的普通数码相机,较少的波段信息为基于RGB影像的枯立木自动化精准识别带来很大的挑战。现有利用无人机可见光影像进行枯立木高精度识别多依赖于人工目视解译,自动化识别程度较低,且缺乏单木尺度的研究;此外,现有研究多集中在强扰动(如病虫害)引起的群发枯立木上,而对森林自然演替过程中产生的散发枯立木关注较少。为此,本研究提出了利用无人机可见光影像进行单木尺度的散发枯立木高精度自动化识别算法。在已有单木分割算法的基础上,发展了基于红绿波段比值(RGI)和蓝绿波段比值(BGI)光谱指数迭代统计分析的枯立木树冠自动化检测算法,提出了基于数字表面模型纹理特征的森林掩膜自动提取方法,实现了单木尺度的散发枯立木自动识别。经过实地调查和目视解译的枯立木参考数据的验证,结果表明枯立木查全率和精确率均接近95%,单木树冠分割结果中的欠分割和错分割是枯立木识别误差的主要来源,提高单木树冠提取精度是进一步完善单木尺度枯立木识别的关键。  相似文献   

8.
无人机遥感影像林地单株立木信息提取   总被引:2,自引:1,他引:1  
针对无人机遥感技术在提取单株立木信息的限制性问题,提出一种新的自动单株立木信息提取方法。对原始无人机影像进行光谱信息增强处理以突出局部细节特征;通过引入DBI指数自动化确定K-means聚类方法的最优聚类数目,进而对影像像素进行标记;通过利用高斯马尔可夫随机场模型进一步对影像进行分割;使用数学形态学算子等方法对分割结果进行后处理得到单株立木树冠信息,通过图像几何矩原理计算得到单株立木位置以作为其识别的依据。结果表明,应用该提取方法,油松林区和樟子松林区单株立木识别总体精度分别为89.52%和95.65%、单木树冠提取精度分别为81.90%和95.65%,均具有较好地适用性。该方法不需要大量的人工干预和先验知识的输入,大大提高提取方法的自动化程度。  相似文献   

9.
In this letter, we present an approach to detecting trees in registered aerial image and range data obtained via lidar. The motivation for this problem comes from automated 3-D city modeling, in which such data are used to generate the models. Representing the trees in these models is problematic because the data are usually too sparsely sampled in tree regions to create an accurate 3-D model of the trees. Furthermore, including the tree data points interferes with the polygonization step of the building roof top models. Therefore, it is advantageous to detect and remove points that represent trees in both lidar and aerial imagery. In this letter, we propose a two-step method for tree detection consisting of segmentation followed by classification. The segmentation is done using a simple region-growing algorithm using weighted features from aerial image and lidar, such as height, texture map, height variation, and normal vector estimates. The weights for the features are determined using a learning method on random walks. The classification is done using the weighted support vector machines, allowing us to control the misclassification rate. The overall problem is formulated as a binary detection problem, and the results presented as receiver operating characteristic curves are shown to validate our approach  相似文献   

10.
In this work we have developed a theoretical model that helps the interpretation of the remotely sensed thermal infrared measurements carried out over citrus orchards. A detailed analysis of the different factors which take part in the definition of the effective emissivity and temperature (observation height, viewing angle, type of soil, dimensions and separation between orange trees) is made. The model was validated under vertical observation in a citrus orchard during seven nights. In this situation we have determined that the model performs to an accuracy of about 1%.  相似文献   

11.
任自珍  岑敏仪  张同刚  周国清 《测绘科学》2010,35(6):134-136,141
激光雷达技术(LiDAR)已广泛应用于数字高程模型(DEM)的快速获取和三维城市模型的建立中,但仍有许多不足之处,需要做更深入的研究。本文介绍了一种新的建筑物提取方法,称之为Fc-S法。该方法首先利用等高线特征进行滤波,从LIDAR数据内插的数字表面模型(DSM)中提取出DEM,利用DSM与DEM的高差阈值和DSM边缘特征参数去掉地面点和汽车等矮小物体,获得主要包含植被和建筑物的地物点群,然后对地物点群进行分割,利用二次梯度和面积等参数去掉植被点,并采用迭代逼近的方法精化建筑物。文章通过实验对所提方法进行验证,并借助高分辨率的航空影像对建筑物提取结果进行评估,评估结果表明该方法能够在地形起伏的区域中较准确地提取出建筑物。  相似文献   

12.
Site productivity is essential information for sustainable forest management and site index (SI) is the most common quantitative measure of it. The SI is usually determined for individual tree species based on tree height and the age of the 100 largest trees per hectare according to stem diameter. The present study aimed to demonstrate and validate a methodology for the determination of SI using remotely sensed data, in particular fused airborne laser scanning (ALS) and airborne hyperspectral data in a forest site in Norway. The applied approach was based on individual tree crown (ITC) delineation: tree species, tree height, diameter at breast height (DBH), and age were modelled and predicted at ITC level using 10-fold cross validation. Four dominant ITCs per 400 m2 plot were selected as input to predict SI at plot level for Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). We applied an experimental setup with different subsets of dominant ITCs with different combinations of attributes (predicted or field-derived) for SI predictions. The results revealed that the selection of the dominant ITCs based on the largest DBH independent of tree species, predicted the SI with similar accuracy as ITCs matched with field-derived dominant trees (RMSE: 27.6% vs 23.3%). The SI accuracies were at the same level when dominant species were determined from the remotely sensed or field data (RMSE: 27.6% vs 27.8%). However, when the predicted tree age was used the SI accuracy decreased compared to field-derived age (RMSE: 27.6% vs 7.6%). In general, SI was overpredicted for both tree species in the mature forest, while there was an underprediction in the young forest. In conclusion, the proposed approach for SI determination based on ITC delineation and a combination of ALS and hyperspectral data is an efficient and stable procedure, which has the potential to predict SI in forest areas at various spatial scales and additionally to improve existing SI maps in Norway.  相似文献   

13.
Macroalgae plays an important role in coastal ecosystems. The accurate delineation of macroalgae areas is important for environmental management. This study compared the pixel- and object-based methods using Gaofen satellite no. 2 image to explore an efficient classification approach. Expert system rules and nearest neighbour classifier were adopted for object-based classification, whereas maximum likelihood classifier was implemented in the pixel-based approach. Normalized difference vegetation index, normalized difference water index, mean value of the blue band and geometric characteristics were selected as features to distinguish macroalgae farms by considering the spectral and spatial characteristics. Results show that the object-based method achieved a higher overall accuracy and kappa coefficient than the pixel-based method. Moreover, the object-based approach displayed superiority in identifying Porphyra class. These findings suggest that the object-based method can delineate macroalgae farming areas efficiently and be applied in the future to monitor the macroalgae farms with high spatial resolution imagery.  相似文献   

14.
李艳  宫鹏 《遥感学报》2005,9(4):357-362
介绍了一个建筑物阴影检测的模型。首先利用摄影测量学原理来计算阴影坐标。即用数字表面模型(digitalsurfacemodel,缩写为DSM)和太阳高度和方位来计算建筑物阴影的空间坐标,并由相机模型计算出每个阴影单元对应的扫描行和相机空间坐标。由高度场光线跟踪判断阴影的可见性,对可见阴影计算出它在投影图像上的坐标。然后在这个结果的基础上再对图像进行阴影的细分割。  相似文献   

15.
Modelling forest canopy gaps using LiDAR-derived variables   总被引:1,自引:0,他引:1  
Remote sensing has revolutionized forest management and has been widely employed to model canopy gaps. In this study, a canopy height model (CHM) and an intensity raster (IR) derived from light detection and ranging (LiDAR) data were used to model canopy gaps within a four-year-old Eucalyptus grandis forest using an object-based image analysis (OBIA) approach. Model thematic accuracies using the CHM, intensity raster and combined data set (CHM and IR) were all above 90%, with KHAT values ranging from 0.88 to 0.96. Independent test thematic accuracies were also above 90%, with KHAT values ranging from 0.82 to 0.91. A comparative area-based assessment yielded accuracies ranging from 70 to 90%, with the highest accuracies achieved using the combined data set. The results of this study show that using a CHM and intensity raster, and an OBIA approach, provides a viable framework to accurately detect and delineate canopy gaps within a commercial forest environment.  相似文献   

16.
叶面积指数(LAI)和叶倾角分布(LAD)是决定植被冠层结构的重要参数。在计算机模拟植被冠层,两个参数是植被三维真实结构生成的重要控制因子。本论文中,结合计算机图像学理论,基于实验的地面实测结构参数数据利用可改写的扩展L-system方法生成草以及白杨树的真实三维场景。RGM(A radiosity-graphics combined model)模型是基于辐射度方法的计算机模拟模型,利用此模型来计算生成的三维场景可见光及近红外波段的冠层辐射特性,如冠层波谱以及方向反射特性等。在本研究中,模拟了两种不同下垫面的白杨林地:(1)下垫面只有土壤的白杨树场景;(2)下垫面包括土壤和草的白杨树。在特定的场景组分光学特性下,模拟得到两种情况的主平面冠层BRF(bi-di-rectional reflectance factor),并对两者的差异进行了分析。可以看出,下垫面对冠层BRF的影响不可忽视。但是,由于白杨林地结构的复杂,大尺度的场景中必须由成千上万个面元组成,因此辐射度方法不能模拟大尺度的真实结构场景。为了拓展辐射度方法应用范围,根据白杨树树冠的特点,将其抽象为椭球体,从而减少场景组成面元个数,满足了辐射度方法的要求。并结合几何光学模型的思想,在对椭球体面元赋值加入了间隙率;并考虑了整个树冠的承照面以及阴影面的差异,模拟大尺度林地冠层BRF,且与GOMS模型结果符合的很好。通过以上研究,可以看出计算机模拟为遥感研究获取多角度数据信息提供了一种很好的手段。  相似文献   

17.
单木树冠提取对果树健康状态、营养成分、产量预测具有重要意义。无人机获取的高分辨率遥感影像作为低成本、低风险的数据源,为准确估计棵数、描绘树木冠层轮廓提供了新的技术手段。以往关于单木冠层轮廓提取的研究大多集中在森林或稀疏果园,以局部最大值滤波结果作为基于标记分水岭算法的种子点,该方法在密植型果园的表现并不理想。提出了一种适用于密植型果园、以区域型种子块作为标记的分水岭算法,通过最大似然法提取果树冠层生成冠层数字表面模型,利用高斯滤波结合形态学开运算及自适应阈值分割方法生成区域型种子块,并执行基于种子块标记的分水岭算法,实现密植型果园单木分割。实例研究结果表明,总体棵数查全率为95.22%,查准率为99.09%,得到单木轮廓提取总体准确率为93.45%,总体欠分割误差为5.87%,总体过分割误差为0.90%。与局部最大值种子点提取结果对比,总体准确度提高18.66%,精细树冠轮廓提取精度提高17.75%,可为地形平缓地区密植型果园单棵果树树冠提取提供参考。  相似文献   

18.
This paper presents an algorithm dealing with initial segmentation of speckled Synthetic Aperture Radar (SAR) intensity images in order to automatically determine the number of homogeneous regions. Taking this problem into account, segmentation procedure utilizing splitting and merging is designed, iteratively. The proposed approach is based upon Bayesian inference, a maximum likelihood gamma distribution parameter estimator, and a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm. By using of image splitting operation, SAR image is partitioned into finite regions iteratively, until all individual regions are coherent. Then each region is assigned a unique label to indicate the class to which the homogeneous region belongs. The intensities of pixels in each coherent region are assumed to satisfy identical and independent gamma distribution. Then an RJMCMC scheme is designed to simulate the posterior distribution in order to estimate the number of components and delineate an initial segmentation. Thus, the main purpose of this research is to define the number of homogeneous regions rather than a perfect segmentation, i.e. model outputs can be served for unsupervised segmentation methodologies as prior information. The results obtained from Radarsat-1/2 of SAR intensity images show that the proposed algorithm is both capable and reliable in defining the accurate number of homogeneous regions in a wide variety of SAR intensity images, comprising a high level of speckle noise.  相似文献   

19.
Traditional field-based forest inventories tend to be expensive, time-consuming, and cover only a limited area of a forested region. Remote sensing (RS), especially airborne laser scanning (ALS) has opened new possibilities for operational forest inventories, particularly at the single-tree level, and in the prediction of single-tree characteristics. Throughout the world, forests have varying characteristics that necessitate the development of modern, effective, and versatile tools for ALS data processing. To address this need, we aimed to develop a tool for individual tree detection (ITD) utilising a self-calibrating algorithm procedure and to verify its accuracy using the complicated forest structure of near natural forests in the temperate zone.This study was carried out in the Polish part of the Białowieża Forest (BF). The airborne laser scanner (ALS) and color-infrared (CIR) datasets were acquired for more than 60 000 ha. Field-based measurements were performed to provide reference data at the single tree level. We introduced a novel ITD method that is self-calibrated and uses a hierarchical analyses of the canopy height model.There were more than 20 000 000 of trees in first layer in BF above 7 m height. Trees visible from above were divided into coniferous, deciduous and mixed trees that were then matched with an accuracy of 85 %, 85 % and 75 %, respectively. Compared to existing methods, the proposed method is more flexible and achieves better results, especially for deciduous species. Before application of the presented method to other regions, the calibration based on the developed optimisation procedure is needed.  相似文献   

20.
Computer simulation models have seldom been applied for estimating the structural and biophysical variables of forest canopy. In this study, an approach for the estimation of leaf area index (LAI) using the information contained in hyperspectral, multi-angle images and the inversion of a computer simulation model are explored. For this purpose, L-systems combined with forest growth model ZELIG were applied to render 3-D forest architectural scenarios. The Radiosity-graphics combined model (RGM) was used to estimate forest LAI from the Compact High-Resolution Imaging Spectrometer/Project for On-Board Autonomy (CHRIS/PROBA) data. LAI inversion was performed using the look-up table (LUT) method. The estimated LAI was evaluated against in situ LAI measurement and compared against the LAI predictions from CHRIS data obtained using the Li-Strahler geometric-optical canopy reflectance model (GOMS). The results indicated that the method used in this study can be efficient strategy to estimate LAI by RGM model inversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号