首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 262 毫秒
1.
Mineral paragenescs in the prehnite-pumpellyite to greenschistfades transition of the Karmutsen metabasites are markedly differentbetween amygdule and matrix, indicating that the size of equilibriumdomain is very small. Characteristic amygdule assemblages (+chlorite + quartz) vary from: (1) prehnite + pumpeUyite + epidote,prehnite + pumpellyite + calcite, and pumpellyite + epidote+ calcite for the prehnite-pumpellyite facies; through (2) calcite+ epidote + prehnite or pumpellyite for the transition zone;to (3) actinolite + epidote + calrite for the greenschist facies.Actinolite first appears in the matrix of the transition zone.Na-rich wairakites containing rare analcime inclusions coexistwith epidote or Al-rich pumpellyite in one prehnite-pumpellyitefacies sample. Phase relations and compositions of these wairakite-bearingassemblages further suggest that pumpellyite may have a compositionalgap between 0.10 and 0.15 XFe?. Although the facies boundaries are gradational due to the multi-varianceof the assemblages, several transition equilibria are establishedin the amygdule assemblages. At low Xco2, pumpellyite disappearsprior to prehnite by a discontinuous-type reaction, pumpellyite+ quartz + CO2 = prehnite + epidote + calcite + chlorite + H2O,whereas prehnite disappears by a continuous-type reaction, prehnite+ CO2 = calcite + epidote + quartz-l-H2O. On the other hand,at higher XCO2 a prehnite-out reaction, prehnite + chlorite+ H2O + CO2 = calcite + pumpellyite + quartz, precedes a pumpellyiteoutreaction, pumpellyite + CO2 = calcite + epidote + chlorite +quartz + H2O. The first appearance of the greenschist faciesassemblages is defined at both low and high XCOj by a reaction,calcite + chlorite + quartz = epidote + actinolite+ H2O + CO2.Thus, these transition equilibria are highly dependent on bothXFe3+ + of Ca-Al silicates and XH20 of the fluid phase. Phaseequilibria together with the compositional data of Ca-Al silicatesindicate that the prehnite-pumpellyite to greenschist faciestransition for the Karmutsen metabasites occurred at approximately1.7 kb and 300?C, and at very low Xco2, probably far less than0.1.  相似文献   

2.
The major mineral assemblages of the metabasites of the Omoiji-Nagasawaarea in central Shikoku are hematite+epidote+chlorite+actinolite,riebeckitic actinolite+epidote+chlorite, epidote+chlorite+actinolite,and pumpellyite+epidote+chlorite+actinolite. The constituentminerals are often heterogeneous and assemblages in the fieldof a thin section sometimes do not obey the phase rule, butif grains apparently in non-equilibrium with others are excludedand domains of chemical equilibrium are appropriately chosenthe assemblages approximately obey the phase rule. The stability of hematite, pumpellyite, and epidote associatedwith chlorite and actinolite can be dealt with in terms of aternary system with appropriate excess phases. By fixing theFe2+/(Fe2+ +Mg) ratio of chlorite, it is dealt with in termsof stability relations in the system Ca2Al3Si3O12(OH)–Ca2AlFe2Si3O12(OH)with excess chlorite, actinolite, quartz, and controlled PH2O.The maximum and minimum Fe3+ contents of epidote in this modelsystem are determined by hematite+epidote+chlorite+actinoliteand pumpellyite+epidote+chlorite+actinolite assemblages. Themaximum Fe3+ of the three phase assemblage epidote+chlorite+actinoliteis insensitive to temperature, but the minimum Fe3+ contentof epidote is sensitive to temperature and can be used to definethe metamorphic grade by a continuous quantity related to temperature.The phase relations expected for the model system are in goodagreement with the parageneses of the Sanbagawa terrain in centralShikoku and offer an explanation to the rule of Miyashiro &Seki (1958a) that the compositional range of epidote enlargeswith increasing temperature. The model also makes it possibleto estimate semi-quantitatively the temperature range in whichthe assemblage pumpellyite+epidote+chlorite+actinolite is stable.The possible maximum range is about 120 ?C, but the assemblageis stable in metabasite only for about 90 ?C. The higher temperaturelimit of the pumpellyite-actinolite facies defined by the disappearanceof pumpellyite in metabasite corresponds to the temperatureat which epidote with Fe3+/(Fe3+ +Al) = 0.10 0.15 coexistswith pumpellyite, actinolite, and chlorite. The compositions of epidotes in the metabasites of the Omoiji-Nagasawaarea cluster around Fe3+/(Fe3+ +Al) = 0.33. The grade of thisarea is close to the lower temperature stability limit of thepumpellyite+epidote+chlorite+actinolite assemblage.  相似文献   

3.
The 6km-thick Karmutsen metabasites, exposed over much of Vancouver Island, were thermally metamorphosed by intrusions of Jurassic granodiorite and granite. Observation of about 800 thin sections shows that the metabasites provide a complete succession of mineral assemblages ranging from the zeolite to pyroxene hornfels facies around the intrusion. The reaction leading to the appearance of actinolite, which is the facies boundary between prehnite-pumpellyite and prehnite-actinolite facies, was examined using calcite-free Karmutsen metabasites collected from the route along the Elk river. In the prehnite-pumpellyite facies, X Fe3+[Fe3+/(Fe3++Al)] in prehnite, pumpellyite and epidote buffered by the four-phase assemblage prehnite+pumpellyite+epidote+chlorite systematically decreases with increasing metamorphic grade. Such a trend is the reverse of that proposed by Cho et al. (1986); this may be related to the higher in the Mt. Menzies area. The actinolite-forming reaction depends on the value of X Fe3+ in pumpellyite. If using a low value of Fe3+, 3.89 Pr(0.06)+0.48 Ep(0.26)+0.60 Chl+H2O=2.10 Pm (0.08)+0.17 Act+0.88 Qz is delineated. The number in parentheses stands for the X Fe3+value in Ca-Al silicates. On the other hand, replacing the X Fe3+ of 0.08 in pumpellyite with a higher X Fe3+ value (0.24) changes the reaction to 0.41 Pm+0.02 Chl+0.42 Qz=0.11 Pr+0.62 Ep+0.10 Act+H2O. The first (hydration) reaction forms pumpellyite and actinolite on the high-temperature side, whereas the second (dehydration) reaction consumes pumpellyite to form prehnite, epidote and actinolite. The former reaction seems to explain the textural relationship of Ca-Al silicates in the study area. However, actinolite-forming reaction changes to a different reaction depending on the compositions of the participating minerals, although in the other area even physical conditions may be similar to those in the study area. Chemographic analysis of phase relations in the PrA facies indicates that the appearance of prehnite depends strongly on the bulk FeO/MgO ratio: this may explain the rarity of prehnite in common metabasites in spite of the expected dominant occurrence in the conventional pseudo-quaternary (Ca-Al-Fe3+-FM) system. An increasing FeO/MgO ratio stabilizes the Pr+Act assemblage and reduces the stability of the Pm+Act one. Therefore, the definition of pumpellyite-actinolite facies should include not only Pm+Act but also the absence of Pr+Act assemblages. In addition to the possible role of high (Cho and Liou 1987) and/or high to mask the appearance of prehnite, the effect of the FeO/MgO ratio is emphasized.  相似文献   

4.
The metabasites within the Tokoro belt of eastern Hokkaido,Japan, suffered pervasive high–P/ Tetamorphism. Mineralassemblages and compositions of more than 400 metabasites fromthe Saroma–Tokoro district were investigated. The metabasites are divided into six metamorphic zones basedon mineral assemblages. The laumontite (Lm) zone is definedby the presence of laumontite. The prehnite–pumpellyite(Pr–Pp) zone is characterized by the association of prehnite+ pumpellyite. The lawsonite–sodic. pyroxene (Lw–Napx)zone is defined by the assemblage lawsonite + pumpellyite +sodic pyroxene + chlorite. The epidote–sodic pyroxene(Ep–Napx)(1) and (2) zones are charecterized by the assemblage epidote+ pumpellyite + sodic pyroxene + chlorite. The former is characterizedby the absence of aragonite, sodic amphibole, and winchite,as well as the presence of jadeite–poor sodic pyroxene(maxJd mol% = 13), whereas these minerals occur in the Ep–Napx(2)zone, together with jadeite–rich sodic pyroxene (max.Jd mol % = 34). In the epidote–actinolite (Ep–Act)zone, the most common assemblages contain epidote+ actionolite+ pumpellyite + chlorite. The Lm zone corresponds to the zeolite facies (150–200?Cand 1–2 kb) and the Pr–Pp zone is equivalent tothe prehnite–pumpellyite facies (200–250?C and 2–2–5kb). The Ep–Napx(I) zone appears to be stable at 200–250?C and 2? 5?3?5 kb. The pressure conditions in the Lw–Napx,Ep-Napx(2), and Ep–Act zones appear to range from 5 to6 kb, and the temperatures are estimated to be 200–230,230–270, and 270–300? C, respectively. The sequenceof the metamorphic zones is charaterized by the curved P–Tpath. The stability field of pumpellyite+ sodic+ pyroxene+ chloritein Fe3+ bearing metabasites is located in the lower–temperatureand higher–pressure part of the pumpellyite–actionolitefacies. On the basis of Schreinmaker's method, the stabilityfield of the assemblage is bounded by a high–pressurereaction Pp+ Napx+ Chl+ Ab+ Qz+ H2O= Lw+ Gl, and by a high-temperaturereaction Pp Napx+ Chl+ Ab+ Qz = Ep + Gl + H2O.  相似文献   

5.
The Cazadero blueschist allochthon lies within the Central MelangeBelt of the Franciscan assemblage in the northern Coast Rangeof California. Mineral compositions and assemblages of morethan 200 blueschists from Ward Creek were investigated. Theresults delineate lawsonite-, pumpellyite-, and epidote-zones.The lawsonite and pumpellyite zones are equivalent to the TypeII metabasites of Coleman & Lee (1963) and are characterizedby well-preserved igneous textures, relict augite, and pillowstructures, whereas epidote zone rocks are equivalent to theType III strongly deformed and schistose metabasites. Chlorite,phengite, aragonite, sphene, and minor quartz and albite areubiquitous. The lawsonite zone metabasites contain lawsonite ( < 3 wt.per cent Fe2O3), riebeckite-crossite, chlorite, and Ca-Na-pyroxene;some rocks have two distinct clinopyroxenes separated by a compositionalgap. The clinopyroxene of the lowest grade metabasites containsvery low Xjd. In pumpellyite zone metabasites, the most commonassemblages contain Pm + Cpx + Gl + Chl and some samples withhigher Al2O3 and/or Fe2O3 have Pm + Lw + Cpx + Chl, Actinolitejoins the above assemblage in the upper pumpellyite zone wherethe actinolite-glaucophane compositional gap is well defined.The epidote zone metabasites are characterized by the assemblagesEp + Cpx + two amphiboles + Chl, Lw + Pm + Act + Chl, and Ep+ Pm + two amphiboles + Chl depending on the Fe2O3 content ofthe rock. In the upper epidote zone, winchite appears, Fe-freelawsonite is stable, pumpellyite disappears and omphacite containsvery low Ac component. Therefore, the common assemblages areEp + winchite + Lw, and Lw + Omp + winchite. With further increasein metamorphic grade, epidote becomes Al-rich and lawsoniteis no longer stable. Hence Ep + winchite + omphacite ? garnetis characteristic. Mineral assemblages and paragenetic sequences delineate threediscontinuous reactions: (1) pumpellyite-in; (2) actinolite-in;and (3) epidote-in reactions. Using the temperatures estimatedby Taylor & Coleman (1968) and phase equilibria for Ca-Na-pyroxenes,the PT positions of these reactions and the metamorphicgradient are located. All three metabasite zones occur withinthe aragonite stability field and are bounded by the maximumpressure curve of Ab = Jd + Qz and the maximum stabilities ofpumpellyite and lawsonite. The lawsonite zone appears to bestable at T below 200?C with a pressure range of 4–6?5kb; the pumpellyite zone between 200 and 290?C and the epidotezone above 290?C with pressure variation between 6?5 and 9 kb.The metamorphic field gradient appears to have a convex naturetowards higher pressure. A speculative model of underplatingseamounts is used to explain such feature.  相似文献   

6.
Using graphical analysis of the system CaO-Al2O3-SiO2-H2O-CO2, this paper derives a topology relating the minerals calcite, laumontite, wairakite, prehnite, quartz, and zoisite. Simple thermodynamic reasoning allows this system to be applied to natural rocks and indicates that the first appearance of the assemblage epidote-chlorite-quartz (±albite) should mark the upper boundary of zeolite facies. This assemblage forms at the expense of laumontite+prehnite, laumontite+calcite, or laumontite+pumpellyite, with wairakite likely to replace laumontite as the stable zeolite at low pressures. In natural systems this proposed facies boundary is multivariant and, hence, it is likely to be strongly sensitive to compositional variables. For example, Na-bearing wairakite will be more stable than pure Ca-wairakite and increasing abundance of Fe3+ will tend to stabilize epidote+quartz at the expense of the zeolites. Because of this, monitoring the composition of minerals such as epidote, prehnite, or wairakite from lowvariance assemblages may provide a more-sensitive indicator of metamorphic grade than the presence or absence of any particular mineral assemblage.  相似文献   

7.
A new petrogenetic grid for low-grade metabasites   总被引:7,自引:0,他引:7  
Abstract We have used internally-consistent thermodynamic data to present calculated phase equilibria for the system Na2O-CaO-MgO-Al2O3-SiO2-H2O (NCMASH), in the range 0–500° C and 0.1–10 kbar, involving the phases anorthite, glaucophane, grossular, heulandite, jadeite, laumontite, lawsonite, paragonite, prehnite, pumpellyite, stilbite, tremolite, wairakite, zoisite with excess albite, clinochlore, quartz and pure water. Average activity terms derived from published mineral chemical data were included for clinochlore, glaucophane, prehnite, pumpellyite, tremolite, and zoisite. The new petrogenetic grid delineates stability fields and parageneses of common index minerals in zeolite, prehniteactinolite, prehnite-pumpellyite, pumpellyite-actinolite, blueschist and greenschist facies metabasites. The stability fields of mineral assemblages containing prehnite, pumpellyite, epidote, actinolite (+ albite + chlorite + quartz) were analysed in some detail, using activity data calculated from five specific samples. For example, the prehnite-actinolite facies covers a P-T field ranging from about 220 to 320° C at pressures below 4.5 kbar. The transition from the prehnite-actinolite and pumpellyite-actinolite to greenschist facies occurs at about 250–300° C at 1–3 kbar and at about 250–350° C at 3–8 kbar. P-T fields of individual facies overlap considerably due to variations in chemical composition.  相似文献   

8.
A sequence of regional metamorphic isograds indicating a range from prehnite-pumpellyite to lower amphibolite facies was mapped in metabasites near Flin Flon, Manitoba. The lowest grade rocks contain prehnite + pumpellyite and are cut by younger brittle faults containing epidote + chlorite + calcite. Isobaric temperature- X CO2 and pressure-temperature (constant X CO2) diagrams were calculated to quantify the effects of CO2 in the metamorphic fluid on the stability of prehnite-pumpellyite facies minerals in metabasites containing excess quartz and chlorite. Prehnite and, to a lesser extent, pumpellyite are stable only in fluids with X co2 <0.002. For X co2>0.002, epidote + chlorite + calcite assemblages are stable. Our calculated phase relations are consistent with regional metamorphism in the Flin Flon area in the presence of an H2O-rich fluid and a more CO2-rich fluid in the later fault zones. We believe that the potential effects of small amounts of CO2 in the metamorphic fluid should be assessed when considering the pressure-temperature implications of mineral assemblages in low-grade metabasites.  相似文献   

9.
LIOU  J. G. 《Journal of Petrology》1971,12(2):379-411
Hydrothermal investigation of the bulk composition CaO.Al2O3.4SiO2+excessH2O has been conducted using conventional techniques over thetemperature ranges 200–450 °C and 500–6000 barsPfluid. A number of reactions have been studied by employingmineral mixtures consisting of reactants and products in about9: 1 and 1: 9 ratios. The phase relations were deduced fromrelatively long experiments by observing which seeded assemblagedisappeared or decreased markedly in one of the paired run charges. Laumontite was synthesized in the laboratory, probably for thefirst time. Laumontite was grown from seeded wairakite to over99 per cent using a weak NaCl solution. The refractive indicesof the synthetic material are about = 1.504 and = 1.514. Theaverage unit cell dimensions are a0 = 14.761±0.005 Å;b0 = 13.077±0.005 Å; c0 = 7.561±0.003 Å;and ß = 112.02°±0.04°. Within the errorof measurement, the optical properties and cell parameters arein good agreement with those of natural laumontite. The equilibriumdehydration of laumontite involves two reactions: (1) laumontite= wairakite+2H2O, passing through about 230 °C at 0.5 kb,255±5 °C at 1 kb, 282±5 °C at 2 kb, 297±5°C at 3 kb and 325±5 °C at 6 kb; and (2) laumontite= lawsonite+2 quartz+2H2O, taking place at about 210 °Cat 3 kb and 275 °C at 3.2 kb. Above 300 °C, the equilibriumcurve for the solid-solid reaction (3) lawsonite+2 quartz =wairakite passes through 305 °C, 3.4 kb and 390 °C,4.4 kb. Equilibrium has been demonstrated unambiguously forthe above three reactions. The hydrothermal decomposition ofnatural laumontite above its own stability limit appears tobe a very slow process. Combined with previously published equilibria determined hydrothermallyfor wairakite, the phase relations are further investigatedby chemographic analysis interrelating the phases, laumontite,wairakite, lawsonite, anorthite, prehnite+kaolinite, and 2 pumpellyite+kaolinitein the system CaAl2Si2O8-SiO2-H2O. This synthesis allowed theconstruction of a semiquantitative petrogenetic grid applicableto natural parageneses and the delineation of the physical conditionsfor the various low-grade metamorphic facies in low µCO2environments. The similar stratigraphic zonations, consistentlyfound in a variety of environments, are recognized to be a functionof burial depth, geothermal gradient, and mineralogical andchemical composition of the parental rocks. Departures fromthe normal sequences are believed to be due to the combinationsof mineralogical variations, availability of H2O, differencesin the ratio µCO2/µH2O, and the rate of reaction.The possible P-T boundaries for diagenesis, the zeolite facies,the lawsonite-albite facies, the prehnite-pumpellyite facies,and the adjacent metamorphic facies are illustrated diagrammatically.  相似文献   

10.
The andesitic early Oligocene Taveyanne metagreywacke of the Helvetic nappes of western Switzerland shows an increase of metamorphic grade from zeolite facies through lower greenschist facies. Electron microprobe analysis, fluid inclusion thermometry, stable isotope analysis, coal rank, illite and chlorite crystallinity and thermodynamic calculations were carried out to determine metamorphic conditions. Evaluation of all techniques used in this study suggest that only combinations of different parameters yield reliable information to constrain very low-grade metamorphic conditions. Electron microprobe analyses are presented for actinolite, chlorite, epidote, phengite, laumontite, prehnite, pumpellyite, and titanite. With increasing metamorphic grade, chlorite is enriched in tetrahedral Al, pumpellyite becomes poorer in Fetot and more homogeneous in chemical composition, and titanite tends to incorporate Ti at the expense of Al and Fe3+. Metamorphic P-T conditions were determined by a combination of fluid inclusion microthermobarometry, stable isotope thermometry on quartz-calcite veins, chlorite “geothermometry” and thermodynamic calculations. Peak temperatures range from 210–250 °C for zeolite facies to 270–300 °C for prehnite-pumpellyite facies to 300–360 °C for pumpellyite-actinolite facies. An evaluation of 289 chlorite analyses indicates that the tetrahedral Al content is negatively correlated with the saponite component. Temperatures derived from chlorite “geothermometry” match maximum temperature conditions mentioned above. Illite crystallinity data for shales and slates intercalated with the Taveyanne metagreywacke indicate that the diagenetic zone correlates with the zeolite facies, the upper anchizone with the prehnite-pumpellyite facies, and the lower epizone with the pumpellyite-actinolite facies. A comparison of coal rank and illite crystallinity data (n=12,r=0.91) yielded R max values of 2.9 and 5.5% for the lower and upper boundary of the anchizone, respectively. Received: 2 August 1996 / Accepted: 16 July 1997  相似文献   

11.
ROSE  N. M.; BIRD  D. K. 《Journal of Petrology》1987,28(6):1193-1218
Layered gabbros at Nordre Aputit?q and Kruuse Fjord were emplacedduring extensional tectonism that led to the formation of theNorth Atlantic basin in the Early Tertiary. Sub-solidus reactionsbetween the gabbros and hydrothermal fluids formed superimposedalteration assemblages in fractures, cavities, and the adjacentgabbros. The earliest secondary minerals are Ca-Al amphibole+ clinopyroxene + biotite ? plagioclase that form thin veinsor porous pegmatitic masses. These minerals are crosscut, overgrownor partially replaced by one or more generations of prehniteand epidote bearing assemblages associated with filling of thefractures and cavities, and with extensive wall rock albitization. Wide variations in the partitioning of Fe3+ and Al between coexistingprehnite and epidote solid solutions occur in these alteredgabbros. The partitioning data define distinct clusters in termsof associated mineralogy and paragenetic relations. This, togetherwith prehnite and epidote compositions from active geothermalsystems, are used to evaluate the thermodynamic properties ofthe intercrystalline exchange reaction:When compared to thecompositions of prehnite and epidote in the Nordre Aputit?qand Kruuse Fjord intrusions, it is concluded that the latestand lowest temperature generations of prehnite and epidote displaydisequilibrium partitioning of Fe3+ and Al, manifested by theoccurrence of prehnite that is relatively enriched in Fe3+ Thermodynamic analysis of phase relations in the system Na2O-CaO-Al2O3-Fe2O3-FeO-SiO2-H2O-HClis used to determine local equilibrium constraints on Fe3+-Alsubstitution in prehnite and epidote. It appears that parageneticand compositional relations of prehnite and epidote are sensitiveindicators of local fluctuations in fluid composition and temperature.The complex magmatic and structural history of the gabbros atNordre Aputit?q relative to Kruuse Fjord is considered to beresponsible for the differences in mineral paragenesis and compositionsof prehnite and epidote within these intrusions.  相似文献   

12.
Low-variance assemblages occurring within amygdules of Karmutsenlavas from the Elk Creek and Upper Campbell Lake areas, VancouverIsland, British Columbia, provide important constraints on thepressure and temperature of metamorphism as well as on the compositionof the attendant fluid. The P-T stability of the assemblagesepidote-muscovite-K-feldspar-prehnite and epidote-prehnite-quartz-wairakitecoupled with mean isochores derived from homogenization temperaturesof H2O inclusions within amygdaloidal quartz indicate that theUpper Campbell Lake area was subjected to metamorphism at 1?5kb (?0?5 kb), 260 ?C (? 15?C) and the Elk Creek area at somewhatlower P or higher T. Isobaric T-a(CO2) diagrams show that the occurrence of epidote-oligoclase,prehnite-orthoclase-albite, and prehnite-andesine assemblagescollected from the Elk Creek area is consistent with the P-Tconstraints and that these assemblages formed in water-richfluids containing very low concentrations of CO2. The presenceof Ca-zeolite-epidote assemblages in the Upper Campbell Lakearea is also compatible with P-T estimates. The consistencyof epidote and prehnite rim compositions in low-variance assemblagesand the lack of incompatible phases in these assemblages demonstratethat equilibrium was obtained on limited domains within amygdules. Because epidote and prehnite compositions in low-variance assemblagesare very sensitive to changes in concentration of CO2, low-varianceassemblages involving these phases can serve as monitors offluid composition. It is postulated that low-variance assemblagesin Karmutsen flows originated by reaction of previously formed,high-variance assemblages with infiltrating CO2-bearing aqueousfluids during a subsequent hydrothermal event. These fluidspreferentially exploited more permeable amygdaloidal portionsof the Karmutsen flows. The low-variance assemblages not onlyrecord the extremely H2O-rich composition of the permeatingfluid, but also outline the paths the fluid took. * Offprint requests to B. R. Frost  相似文献   

13.
Pumpellyite from four-phase assemblages (pumpellyite + epidote + prehnite + chlorite; pumpellyite + epidote + actinolite + chlorite; pumpellyite + epidote + Na-amphibole + chlorite, together with common excess phases), considered to be low variance in a CaO-(MgO + FeO)-Al2O3-Fe2O3 (+Na2O + SiO2+ H2O) system, have been examined in areas which underwent metamorphism in the prehnite-pumpellyite, pumpellyite-actinolite and low-temperature blueschist facies respectively. The analysed mineral assemblages are compared for nearly constant (basaltic) chemical composition at varying metamorphic grade and for varying chemical composition (basic, intermediate, acidic) at constant metamorphic conditions (low-temperature blueschist facies). In the studied mineral assemblages, coexisting phases approached near chemical equilibrium. At constant (basaltic) bulk rock composition the MgO content of pumpellyite increases, and the XFe3+ of both pumpellyite and epidote decreases with increasing metamorphic grade, the Fe3+ being preferentially concentrated in epidote. Both pumpellyite and epidote compositions vary with the bulk rock composition at isofacial conditions; pumpellyite becomes progressively enriched in Fe and depleted in Mg from basic to intermediate and acidic bulk rock compositions. The compositional comparison of pumpellyites from high-variance (1–3 phases) assemblages in various bulk rock compositions (basic, intermediate, acidic rocks, greywackes, gabbros) shows that the compositional fields of both pumpellyite and epidote are wide and variable, broadly overlapping the compositional effects observed at varying metamorphic grade in low-variance assemblages. The intrinsic stability of both Fe- and Al-rich pumpellyites extends across the complete range of the considered metamorphic conditions. Element partitioning between coexisting phases is the main control on the mineral composition at different P-T conditions.  相似文献   

14.
Secondary Ca-Al silicates are used to constrain the P-T-x conditions of the very early post-magmatic stage of the intermediate to basic Hercynian plutonic complexes of Charroux-Civray (NW Massif Central, France) and Fichtelgebirge (NE Bavaria, Germany). The secondary Ca-Al silicates hydrogarnet, prehnite, pumpellyite, epidote and laumontite form lenses within unaltered or only slightly chloritized biotite. Hydrogarnet as the first occurring Ca-Al silicate phase crystallizes at temperatures above 340 °C. The common paragenesis prehnite + pumpellyite post-dates hydrogarnet and indicates rather narrow ranges of temperature (200-280 °C) and pressure (2-3 kbar). Laumontite is formed at the end of Ca-Al silicate crystallization (180-260 °C, 1-3 kbar), mostly in small fractures in association with prehnite and adularia. The observed crystallization sequence of the Ca-Al silicates and their stabilities define a retrograde alteration path for the plutonic rocks. The Ca-Al silicate assemblage results from an early pervasive alteration of the plutonic rocks by low XCO2 fluids during post-magmatic cooling. Subsolidus cooling starts at about 4 kbar at solidus temperatures as indicated by magmatic epidote stability, hornblende barometry and fluid inclusion data, and continues under slightly decreasing pressure (uplift) down to 2-3 kbar at 200-280 °C (prehnite-pumpellyite paragenesis). This shows that Ca-Al silicate assemblages may be a unique tool to constrain the P-T conditions of the subsolidus cooling of intermediate to basic plutonic bodies.  相似文献   

15.
Electron microprobe analyses are presented for new-formed mineralsfrom a small exposure of semi-schistose Taveyanne Formationof the pumpellyite-actinolite facies near Lo?che, Valais. Comparisonsare drawn with minerals of other low-grade metamorphic areas,especially in southern New Zealand. Sphene shows considerablesubstitution of Ca(Al,Fe)SiO4(OH) for CaTiSiO5. Epidotes aresharply divided into early pistacitic (Ps = 0.28–0.37)and later clinozoisitic varieties (Ps = 0.11–0.19). Pumpellyitesrange from pumpellyite-(Fe) to pumpellyite-(Al) and are generallyless Fe-rich than those of zeolite and prehnite-pumpellyitefacies. Pumpellyite inclusions in albitized plagioclase areparticularly low in Mg. Actinolites are low in A12O3, TiO2,and Na2O, essentially identical compositions being nucleatedon detrital augite, hornblende, and in the matrix. Phengitesare also extremely low in Na2O and TiO2. Chlorites are ripidolites.Albitized clastic plagioclase has the composition An0.7–1.6and albite in clinozoisite-calcite-albite-phengite-chloriteveins An2.1–2.3. Calcites carry minor Mn > Fe ? Mg.New-formed iron oxides are absent, whereas pyrrhotite and minorpyrite occur in one rock, buffering fs2 and indicating low fo2. Ratios Mg: Fe* (Fe* = total Fe) in coexisting chlorites andA1, Na-poor actinolites vary sympathetically both in the Lo?cheand southern New Zealand rocks here considered, giving KD =(Mg/Fe*) actlnolIte/(Mg/Fe*)chlorle = 1.72. Mg/Fe* ratios inpumpellyites tend to vary sympathetically with those of coexistingchlorites and actinolites but are more variable. Substitutionof (Fe, Mg)Si for A12 in phengitic micas and chlorites variessympathetically in the same suites between mafic volcanic andmore pelitic extremes. Various minor elements also behave ina consistent fashion, indicating an encouraging tendency towardsequilibrium. Variable (though small) A12O3 contents of actinolite,Fe: Al ratios in epidotes and pumpellyites, and Mg: Fe* ratiosin phengites, even within a single grain, are evidence of short-rangedisequilibrium; metamorphic equilibration is evidently easierbetween some crystal structures and structural sites than betweenothers. In phase rule analysis of assemblages in such rocks it is commonlynecessary to treat Fe2O3, FeO, and MgO as separate componentsand it may also be necessary to regard CO2 as an inert componentand/or to interpret observed assemblages as of low variance.The presence of the Ca-Al silicates and sphene indicates verylow Xco2 in the metamorphic fluids in all rocks examined exceptan albite-chlorite-calcite-quartz-anatase assemblage. But higherAn in albites than in isofacial and in greenschist facies rocksof southern New Zealand can be ascribed to significantly higherXco2 at Lo?che, especially in the veins, than in New Zealand. Pumpellyite and epidotes of the pumpellyite-actinolite faciestend to be lower in Fe and richer in Al than those of lowergrade facies. Important reactions include those of the formpumpellyite-(Fe3+)+chlorite+quartz+H2=pumpellyite-(Al)+actinolite,and pumpellyite+chlorite+quartz- ‘epidote’+actinolite+water.Careful selection of pumpellyite and chlorite compositions isrequired for experimental and chemographic analysis of pumpellyitestability. In the absence of critical data, temperatures ofabout 250–350? and pressures of several kilobars are provisionallysuggested for the Lo?che metamorphism.  相似文献   

16.
Abstract The 6-km-thick Karmutsen metabasites, exposed over much of Vancouver Island, were thermally metamorphosed by intrusions of Jurassic granodiorite and granite. Observations of about 800 thin sections from the Campbell River and Buttle Lake area show that the metabasites provide a complete succession of mineral assemblages ranging from the zeolite to pyroxene hornfels facies around the intrusion. The most important observations are as follows. (1) The compositional change of Ca-amphiboles with increasing metamorphic grade is not straightforward. The tremolite component decreases from the prehnite–actinolite facies to the greenschist facies with a compensating tschermak component increase, but the tendency is not clear thereafter. Instead, the edenite component increases from the amphibolite facies to the pyroxene hornfels facies. (2) The most pargasitic Ca-amphibole occurs in high-Fe2+/Mg metabasite from the greenschist/amphibolite transition zone. (3) The reasons for such irregular compositional trends, even in the rather uniform MORB-like composition of the Karmutsen metabasites, are non-ideal solid solutions of Ca-amphibole at low temperature and the effective control by bulk rock composition in the amphibolite facies. (4) The data from this study support, but do not prove, a transition loop for the actinolite–hornblende compositional gap rather than a solvus. If the gap is a solvus, its shape is asymmetric, and is highly dependent on the other compositional parameters such as Fe3+/Al and Fe2+/Mg. (5) The XNaA/XA±XAb) ratios between Ca-amphibole and plagioclase are most useful as an indicator of metamorphic grade even within the amphibolite facies, and these change systematically from 0.2 to 0.5 from the greenschist to pyroxene hornfels facies. (6) The compositional trend of Ca-amphibole from the Karmutsen metabasites indicates a typical low-P/T metamorphic facies series on a Rbk–Gln–Tr–Ts diagram.  相似文献   

17.
18.
FERRY  JOHN M. 《Journal of Petrology》1995,36(4):1039-1053
Contact-mctamorphic assemblages in ophicarbonate from the Bergellaureole correspond either to model isobaric invariant T-XCO2points [Atg-Cal-Di-Tr-Fo (6 samples) and Atg-Cal-Tr-Fo-Dol (2)]or to isobaric univariant T-XCO2, curves [Tr-Cal-Di-Atg (18),Tr-Dol-Atg-Cal (1), Atg-Cal-Fo-Di (1), and Atg-Cal-Tr-Fo (1)].Calcite-dolomite thermometry and mineral-fluid equilibria inthe invariant assemblages record T=440–540C at P=3•5kbar. Equilibrium metamorphic fluids were very H2O rich withX CO2,=0•001–0•027. In the invariant assemblagesTr + Fo were produced by prograde decarbonation-dehydrationreactions. In contrast, measured modes and reaction texturesin samples with univariant assemblages indicate thai Tr wasproduced by carbonation reactions. The apparent paradox of simultaneousdecarbonation reactions in the model isobaric invariant assemblagesand carbonation reactions in univariant assemblages is resolvedby local mineral-fluid equilibrium and fluid flow through ophicarbohatesin the direction of decreasing temperature as the aureole heated.Time-integrated flux (q) was computed from measured reactionprogress in 28 samples for models of both horizontal and verticaldown-temperature flow. Results are similar, with q decreasingrapidly from (0•2–5•1) 105 cm3 fluid/cm2 rock1•3–1•7 km from the intrusion to 0–0•6105cm3/cm2 at 1•8–4•0 km. The decrease in q ismore consistent with vertical than horizontal flow. Variationsin time-integrated flux of more than an order of magnitude arerecorded by samples from the same outcrop. The absence of carbonatein adjacent metaperidotite indicates that flow was confinedto the ophicarbonate. Channelized, spatially heterogeneous,vertical flow can be explained by the brecciation and strongvertical foliation of the ophicarbonate relative to surroundingmassive metaperidotite. Generation of metamorphicfluids by decarbonation-dehydrationreactions within the ophicarbonates explains larger averageflux 1–2 km from the intrusion compared with more distalpoints. KEY WORDS: Bergell; contact metamorphism; fluid flow; ophicarbonate *Telephone: (410) 516-8121. Fax: (410) 516-7933  相似文献   

19.
Pumpellyite occures in zeolite facies metabasites of the Horokanai ophiolite in the Kamuikotan zone, Hokkaido, Japan, filling veins or amygdules, replacing igneous plagioclase or clinopyroxene or olivine, and occupying the matrix. Its composition and pleochroism vary greatly even within a single sample, but appear to be related to its mode of occurrence. Thus, the most Al-rich pumpellyite with pale green to green pleochroism develops in pseudomorphs after plagioclase, whereas the most Fe*-rich variety with deep green to brown pleochroism occurs in the matrix. In low-grade metamorphic rocks which commonly contain relict minerals, chemical equilibrium is attained only locally. This results in the correlation of the composition of pumpellyite with its mode of occurrence, such as the precursor phases which are replaced by pumpellyite. On the other hand, among pumpellyites occurring in similar mode and coexisting with Ca-zeolite (laumontite or wairakite), epidote, chlorite and quartz, the Al content tends to be enriched in the wairakite-bearing metabasites over the laumontite-bearing metabasites. It follows that the composition of pumpellyite is also dependent upon the temperature of metamorphism.  相似文献   

20.
Almost pure andradite and intermediate members of the andradite-grossular series (gros40–49, and 47–54, py0–3, alm0–3, spess0–2, hydrogarnet0–3), often framboidal in habit, are widespread in metabasites including lavas, minor intrusions, and volcanic sandstones and breccias metamorphosed under prehnite-pumpellyite and pumpellyite-actinolite facies conditions, possibly extending into the zeolite facies. Coexisting phases include iron-rich epidotes (100 Fe*/Fe*+Al=22–34), pumpellyite, prehnite, actinolite, and chlorite, electron microprobe analyses of which are given, as well as quartz, albite, and calcite. Zoisite (100 Fe*/Fe*+Al=1–5) and iron-poor epidote (100 Fe*/Fe*+Al=11–18) occur in 2 rocks in pseudomorphs after plagioclase together with more iron-rich epidote, but not in close association with the garnets. Coexisting pumpellyite is iron-rich (FeO* 9–14%) in the prehnite-pumpellyite facies and iron-poor (FeO* 5%) in the pumpellyiteactinolite facies. Chlorites and actinolites vary widely and sympathetically in FeO/MgO+FeO ratio. Andradite is also described from a stilpnomelane-actinolite-hematite-bearing andradite quartzite of the pumpellyite-actinolite facies. Conditions of formation involved temperatures of 300 to 400 ° or less, at pressures up to a few kilobars. A wide range of oxygen fugacities is possible, but in the fluid phase was low. Grandite and chlorite are incompatible in the pumpellyite-actinolite and greenschist facies in the presence of quartz but the 2 minerals occur together in some pumpellyite-actinolite facies assemblages as a result of incomplete reaction and/or local deficiency in silica. In the greenschist facies the association is replaced by epidote-actinolite±hematite and sodic amphibole. Whereas at medium to high grades of metamorphism andradite and grandite are characteristic of skarns irrespective of , at very low grades they are found in mafic volcanic rocks and volcanogenic sediments as well as in certain cherty rocks of unusual composition, rodingites, and serpentinites, where was very low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号