首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the potentially large contribution of black carbon (BC) to the recalcitrant soil organic matter pool, the molecular-level composition of aged BC has hardly been investigated. Pyrolysis-GC/MS, which provides structural information on complex mixtures of organic matter, was applied to the NaOH-extractable organic matter of an acidic colluvial soil (Atlantic ranker) sampled with high resolution (5 cm) that harbours a fire record of at least 8.5 ka. Additionally, 5 charcoal samples from selected soil layers were characterised using pyrolysis-GC/MS for comparison. Pyrolysis-GC/MS allowed distinguishing between BC and non-charred organic matter. It is argued that a large proportion of the polycyclic aromatic hydrocarbons (PAHs), benzenes and benzonitrile in the pyrolysates of the extractable organic matter, together accounting for 21–54% of total identified peak area, derived from BC. In charcoal samples, these compounds accounted for 60–98% of the pyrolysis products. The large quantity of BC in almost all samples suggested a key role of fire in Holocene soil evolution. The high C content of the soil (up to 136 g C kg−1 soil) may be attributed to the presence of recalcitrant organic C as BC, in addition to the sorptive preservation processes traditionally held responsible for long-term C storage in acid soils. Interactions between reactive Al hydroxides and BC could explain the longevity of BC in the soil. This work is the first thorough pyrolysis-GC/MS based study on ancient fire-affected organic matter.  相似文献   

2.
Biomass burning results in the formation and accumulation of pyrogenic products such as black carbon (BC) and black nitrogen (BN) in soils. The ubiquitous presence of pyrogenic products in natural dissolved organic matter (DOM) and potential implications in global carbon cycling have recently been reported. However, little is known about the environmental dynamics or the importance in the global N cycle of dissolved BN (DBN; or heteroaromatic N). Here we report the coupling between DBN and dissolved BC (DBC) in ultrafiltered DOM from six headwater streams across a climatic region of North America, suggesting similar combustion sources, and that DOC may play an important role in the translocation of soil BN to the dissolved phase. The export of potentially recalcitrant riverine DBN to the ocean may affect the biogeochemical cycling of N and possibly the microbial community structure in aquatic environments.  相似文献   

3.
利用稳定同位素技术研究广西桂江流域水体中碳的来源   总被引:8,自引:0,他引:8  
本文对岩溶区不同类型样品中的有机碳同位素样品前处理的分离提纯技术进行了研究,并对广西桂江流域水体进行了稳定有机碳同位素分析.结果表明,C3植物对桂江水体可溶性有机碳(DOC)有很大比例的贡献,而水生生物对水体有机碳影响较小.抚河流域比漓江流域有较高的(DOC)含量,可能与非岩溶区土壤微生物活动强,土壤活性有机碳含量高有...  相似文献   

4.
The various sources of pyrogenic and coalified carbon (black carbon, BC) in soil have considerable structural heterogeneity, making the quantification of BC a challenge. This study was aimed at evaluating the capability of different detection procedures to recover different types of BC from soil. We added defined quantities of urban dust (UD, NIST SRM1649a), diesel particulate matter (DPM, NIST SRM2975), charcoal, lignite, bituminous coal and wood to four topsoil samples. Mixtures were analyzed by way of chemo-thermal oxidation (CTO), thermal gradient oxidation (ThG), the benzene polycarboxylic acid method (BPCA) and mid-infrared spectroscopy (MIRS). CTO returned good quantification of soot BC in the pure DPM, yet the recovery of soot BC from soil was unsatisfactory (18–270%). ThG gave good precision but lower values for pure soot BC. It severely overestimated the BC content for all soil-standard mixtures. The BPCA method gave a low return for soot BC, but for the spiked soil it reliably detected charcoal and coalified C (69–107% avg. recovery) but underestimated soot BC (52–90% recovery of DPM). Linear coherence in specific MIR vibrations was found in one component soil-BC mixtures for each BC type. Applying these standard calibrations to multi-component mixtures allowed detecting charcoal and a quantification of soot BC (88% avg. recovery) via MIRS, but ignored the presence of diagenetic C. We see the greatest potential in differentiating soot from charcoal in soil by employing a combination of chemical and thermal oxidation and MIRS, while the differentiation from diagenetic C is not possible yet.  相似文献   

5.
为了研究马衔山多年冻土区和非多年冻土区土壤微生物碳氮、土壤酶活性的差异,选取多年冻土区、季节冻土区和交界区为对象,分析了0~30 cm土层微生物碳氮和转化酶、脲酶、中性磷酸酶、淀粉酶、过氧化氢酶、多酚氧化酶酶活性不同季节的变化特征。结果表明:全氮、总有机碳、微生物量碳氮与多数土壤酶之间呈显著相关关系。在不同区域,土壤微生物碳氮均在0~10 cm含量最高,10~20 cm次之,20~30 cm最低。土壤微生物碳氮在生长季表现为含量逐渐增加,但是多年冻土区与季节冻土区差异不大。土壤酶活性在深度方面表现与微生物碳氮含量变化一致。土壤酶并无的季节变化规律。在多年冻土区,转化酶、多酚氧化酶和磷酸酶活性明显高于非多年冻土区。本研究表明,尽管多年冻土区的植被和土壤总有机碳明显高于非多年冻土区,其土壤微生物碳氮含量相当,且一些土壤酶活性也相当。说明非多年冻土区土壤的生物地球化学相对强度较大。因此,多年冻土退化后可能会导致生态系统的退化。  相似文献   

6.
8000 yr of black carbon accumulation in a colluvial soil from NW Spain   总被引:1,自引:0,他引:1  
Analytical pyrolysis-GC/MS and solid-state 13C NMR (nuclear magnetic resonance) were applied to the NaOH-extractable organic matter fraction of a colluvial soil from Galicia (NW Spain) that represents more than 8500 yr of accumulation. While molecular indicators of vegetation change were looked for, it seemed likely that any such signal was disturbed by the intense fire regime of the area. This conclusion was drawn from (1) the presence of three charcoal layers, (2) the high proportion of aryl C in NMR spectra (non-quantitative) and (3) the prevalence of benzenes and polycyclic aromatic hydrocarbons (PAHs) in the chromatograms (38 ± 6% of total identified peak area), also in charcoal-poor samples. If this conclusion is accurate, the area has been subjected to burning episodes for at least 8000 yr. Additionally, the results indicate that biomass burning residues (black carbon; BC) may become NaOH extractable after long periods of degradation in mineral soil. These results add to our knowledge of the long-term fate of BC in soil, which is a potential agent in the global C cycle.  相似文献   

7.
Activated charcoal chromatography was used to isolate dissolved organic matter from a series of water samples collected in Narragansett Bay, Rhode Island, during 1975–1976. The range of dissolved organic carbon values in the samples was 1.46–3.75 mg OC/1. A relatively constant amount of organic carbon was isolated giving overall recoveries of 23 to 63% (mean of 45%). The isolated organic matter was characterized by spectrophotometric measurements, stable carbon isotope determinations, and copper solubilizing capacities. In general, the isolated material displayed considerable constancy in terms of the parameters measured. However, several chemical variations were detected that were probably related to the introduction of organic matter from diatom blooms and terrigenous runoff.  相似文献   

8.
This work describes the evolution of migration forms of true dissolved compounds and colloidal entities using an integrated approach with molecular mass distribution and differences in the association of trace elements with organic matter and Fe-oxide colloids in the soil water-bog-river-lake system. One major problem is obtaining reliable information on the processes of redistribution deposited forms and trace element complexes during the phase transformation of organic humic compounds in a series of high-molecular-weight organic matter of bog soils to colloidal and truly dissolved forms, as well as to the river and lake fine sediment (suspension) as a transit zone and deposit region.  相似文献   

9.
Major ionic composition and other chemical parameters were determined at five sampling stations on the Salí River (Province of Tucumán, Argentina). The heavy human usage of the river causes increased levels of dissolved ions, from the dissolution of halite and gypsum, and from the weathering of basic sediments. Correlations demonstrate that sodium chloride and sulphate, and calcium carbonate are the main contributors to dissolved ions in the river. In the polluted region, south of the Celestino Gelsi dam, the main source of calcium and sulphate is the dissolution of gypsum. Large amounts of halite are also dissolved. Weathering of biotite, K-feldspar and albite are suggested by the data. Conductivity, dissolved oxygen and organic matter all indicate severe contamination by organic matter (mainly from sugar-cane processing) in the lower course. The data also demonstrate a substantial improvement in water quality before the discharge of the river at the Río Hondo dam. Data from the Colorado (a tributary of the Salí River) and Medina rivers are also analyzed and compared.  相似文献   

10.
Soil microbial biomass is a primary source of soil organic carbon (SOC) and therefore plays a fundamental role in carbon and nitrogen cycling. However, little is known about the fate and transformations of microbial biomass in soil. Here we employ HR-MAS NMR spectroscopy to monitor 13C and 15N labeled soil microbial biomass and leachate degradation over time. As expected, there is a rapid loss of carbohydrate structures. However, diffusion edited HR-MAS NMR data reveals that macromolecular carbohydrates are more resistant to degradation and are found in the leachate. Aromatic components survive as dissolved species in the leachate while aliphatic components persist in both the biomass and leachate. Dissolved protein and peptidoglycan accumulate in the leachate and recalcitrant amide nitrogen and lipoprotein persists in both the degraded biomass and leachate. Cross-peaks that appear in 1H-15N HR-MAS NMR spectra after degradation suggest that specific peptides are either selectively preserved or used for the synthesis of unknown structures. The overall degradation pathways reported here are similar to that of decomposing plant material degraded under similar conditions suggesting that the difference between recalcitrant carbon from different sources is negligible after decomposition.  相似文献   

11.
Extractable biomarkers can help elucidate the environment and biota of ancient glaciations, although the method must be applied with care, as glacial sediments have a potential for incorporation of older detrital carbon. In Phanerozoic glacial sediments, the distinct elemental, molecular and isotopic compositions of the terrestrial and marine biomass allow discrimination between primary marine and redeposited terrestrial organic matter. However, as the Proterozoic biosphere was largely microbial and marine, biomarker and isotopic analyses are insufficient for distinguishing primary organic matter from secondary reworked organic matter. Here, we report the combined application of Raman spectroscopy and biomarker analysis to Precambrian glacial sediments, which, together, allows discrimination between mixed pools of organic carbon and provides a promising new approach for rapidly screening Precambrian sediments for immature organic matter amenable to biomarker analysis.  相似文献   

12.
Black carbon (BC) in soils plays a key role of carrying hydrophobic pollutants like polycyclic aromatic hydrocarbons (PAHs). However, little is known about the spatial distribution, sources of BC and its relationship with PAHs in urban soils. We studied BC, total organic carbon (TOC) and PAHs concurrently in 77 soils collected from downtown area, suburban and rural area and industrial area of Shanghai, China. BC was determined by both chemical oxidation (dichromate oxidation, BCCr) and chemo-thermal oxidation (CTO-375, BCCTO). BC sources were identified qualitatively by BC/TOC concentration ratios and BC-cogenerated high molecular weight (HMW) PAH isomer ratios and quantitatively by principal component analysis followed by multiple linear regression (PCA-MLR). Results showed that BCCr concentration (4.65 g/kg on average) was significantly higher than BCCTO (1.91 g/kg on average) in Shanghai soils. BCCr concentrations in industrial area were significantly higher than those in other two. Stronger correlation was found between PAHs and TOC, BCCr than that between PAHs and BCCTO, which indicates the possibility of PAHs being carried by charcoal and other organic matters thus negating its exclusive dependence on soot. Charcoal was therefore suggested to be taken into account in studies of BC and its sorption of PAHs. BC/TOC ratios showed a mixed source of biomass burning and fossil fuel combustion. PCA scores of BC-cogenerated HMW PAHs isomer ratios in potential sources and soil samples clearly demonstrated that sources of BC in urban soils may fall into two categories: coal and biomass combustion, and traffic (oil combustion and tire wear). PCA-MLR of HMW PAHs concentrations in soil samples indicated that coal and oil combustion had the largest contribution to BC in urban soils while tire wear and biomass combustion were important in downtown and rural area, respectively, which indicated they were main sources of HMW PAHs and presumably of BC.  相似文献   

13.
During the past 50 years, the amount of agricultural fertilizer used in Northern China increased from about 7.5 kg ha?1 in the 1950s to approximately 348 kg ha?1 in the 1990s. Given that little is known about the effects of nitrogen fertilization on soil labile carbon fraction in Northern China, this paper evaluated such effects in terms of microbial biomass and dissolved organic carbon in the Sanjiang Plain located in Northeast China. Soils with different cultivation time and undisturbed marsh with Deyeuxia angustifolia were selected to study the effects of nitrogen fertilization on the soil labile organic fractions microbial C (biomass C, microbial quotient, and basal respiration) and to estimate the contributions of nitrogen input on the dynamics of soil labile carbon. Continuous nitrogen application decreased total organic and dissolved organic carbon concentrations significantly, leading to the lack of carbon source for microbes. Therefore, continuous nitrogen fertilizer application induced negative effects on measured soil microbiological properties. However, a moderate nitrogen application rate (60 kg N ha?1) stimulated soil microbial activity in the short term (about 2 months), whereas a high nitrogen application rate (150 kg N ha?1) inhibited measured soil microbiological properties in the same period.  相似文献   

14.
以小兴安岭湿地土壤为研究对象,基于室内分析和冻融实验,分析了冻融作用下不同年代排水造林湿地土壤微生物量、酶活性以及有机碳密度的变化趋势,探讨了不同年代排水造林湿地土壤微生物活性与有机碳密度之间的相关关系,以期为深入认识冻融期间高寒高纬度地区土壤碳循环过程提供参考依据。结果表明:(1)冻融次数对土壤微生物量碳、氮含量影响显著(P<0.05),经历9次冻融循环后,土壤微生物量碳、氮含量比冻融前明显减少;在三种不同年代排水造林的湿地中,排水时间越短,土壤微生物量碳、氮含量下降幅度越大,表明长时间的反复冻融交替可能导致土壤微生物量的进一步减少。(2)冻融前后,土壤蔗糖酶和淀粉酶活性均表现为下降趋势,且多次冻融交替后,-25~5℃冻融处理比-5~5℃冻融处理酶活性更低,表明较大的冻融温差更能降低土壤酶的活性度。(3)随着冻融次数和冻融温度的变化,四种湿地的土壤有机碳密度基本保持稳定,但其与土壤微生物量、酶活性却存在着高度的正相关性,通过探究微生物活性所调控的土壤过程,可以直接或间接了解土壤有机碳密度的变化趋势,便于从本质上验证其响应机制。  相似文献   

15.
Combustion produces a complex mixture of polycondensed aromatic compounds known as black carbon (BC). Such products can become remobilized from char and soil in the form of dissolved BC (DBC). Ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI–FT-ICRMS) analysis of a variety of soil and char leachates showed that a significant proportion of DBC compounds contained one or more nitrogen atoms. While the presence of black nitrogen (DBN) in dissolved organic matter (DOM) has been reported, its molecular features were uncharacterized. Here we present results of FT-ICRMS characterization of DBN, where assigned formulae were validated on the basis on their 13C isotope signatures and fragmentation patterns obtained via collision induced dissociation. Possible chemical structures were assigned for several DBN formulae and suggest that nitrogen was incorporated into the core ring system as a pyrrole-type moiety. Most DBN compounds existed as part of homologous series where homologs differed by a mass corresponding to CO2, suggesting that they were polysubstituted with carboxylic acid groups. The environmental contribution of such novel, aromatic, combustion-derived nitrogen compounds with respect to global nitrogen cycling remains elusive. The biogeochemical implications of the input of such fire-derived products to aquatic ecosystems as part of climate change therefore need to be assessed.  相似文献   

16.
森林生态系统的土壤微生物群落组成和活性,是影响生物地球化学循环、有机质代谢和土壤质量的关键因素.磷脂脂肪酸(PLFA)是一类可有效表征活体微生物群落结构的生物标志物,而其单体稳定碳同位素(δ13C)水平对土壤微生物植物碳代谢具有独特的指示作用.本次研究以土壤PLFA为对象,分析了我国位处纬度梯度带上(24°N~47°N...  相似文献   

17.
Very little is known about the macromolecular properties of biomass combustion residues referred to as black carbon (BC). Pyrolysis-gas chromatography–mass spectrometry (Py-GC/MS) was performed on: (i) peat from Spain at 400–1200 °C to investigate the effect of charring on pyrolysis fingerprint and (ii) natural charcoal from Laos in order to link molecular information to published chemical and reactivity parameters. Confirming earlier Py-GC/MS studies, the BC in the artificially charred peat and the natural charcoal produced predominantly benzene, toluene, C2-benzenes, PAHs and benzonitriles. Furthermore, some charcoal samples produced significant amounts of phenols, methoxyphenols, carbohydrate markers, n-alkanes and n-alkenes upon pyrolysis, reflecting non-charred and weakly charred biomass. A series of pyrolysis product ratios related to the degree of dealkylation of the pyrolysis products (benzene/toluene, naphthalene/C1-naphthalenes, C1-naphthalenes/C2-naphthalenes, benzofuran/C1-benzofurans and benzonitrile/C1-benzonitrile) increased with increasing artificial charring (peat) and, for the natural charcoal, these ratios were in accordance with established chemical and reactivity parameters related to charring intensity from other methods: proportion of aromatic C obtained from solid state 13C nuclear magnetic resonance spectroscopy (NMR), the proportion of charred material as estimated from NMR in conjunction with a molecular mixing model (NMR–MMM) and the resistance to acid dichromate oxidation. The alkyl side chains of aromatic pyrolysis products are probably inherited from short chain aliphatic C chains that cross link the predominantly aromatic building blocks of BC, and these linkages seem to disappear with increasing charring intensity. Thus, the degree of thermal alteration of BC can be discerned from the pyrolysis fragmentation pattern.  相似文献   

18.
This study focuses on the factors affecting nitrate removal via microbial denitrification in agricultural soils, and particularly on the quantity and quality of dissolved organic carbon. To assess the relationship among dissolved organic carbon, nitrate and low molecular weight organic acids (acetate and formate), grids of ceramic suction cups were established in the four most representative soil types of the lower Po River floodplain, cropped with maize. Results highlighted a direct relation between acetate and dissolved organic carbon in all sites. The best fit was obtained in soils were the main source of organic carbon was the maize residues. By comparing dissolved organic carbon and acetate versus nitrate concentration revealed that acetate can be used as a better proxy for denitrification in the field with respect to dissolved organic carbon.  相似文献   

19.
The influence of metals, Cd, Cr, Cu, Ni, Pb and Zn, on the microbial biomass and enzyme activities of an amended acid lateritic soil were investigated under field conditions receiving a one-time application of 52 t ha–1 of sludge, coal ash and their mixtures at 1:3, 1:1 and 3:1 proportions, and including control and chemical fertilizer treatment at crop-specific recommended doses. Paddies and peanuts were grown in the experimental plots and soil was sampled twice after 6 months and 1 year after amendment application. The heavy metals in the soil were fractionated using sequential extraction and the increments in their concentrations in amended soil with respect to the control were determined. Concentrations of Cd, Ni and Zn were determined to have increased in their mobile fractions and were more pronounced in soil collected during the second sampling, which was associated with a decrease in soil organic carbon. The size of the microbial biomass carbon and the soil enzyme activities increased with the addition of an amendment and was highest at equal proportions of coal ash and sludge. Further increase in the proportion of sludge resulted in a significant decrease in biomass carbon. Simple correlation revealed significant and strong negative relations of mobile fractions of Cd and Ni with the ratio between microbial biomass C and organic carbon in soil, while the organic carbon content and the pH were positively correlated. The microbial activities were determined to be sensitive to the concentrations of some heavy metals in mobile fractions and therefore indicated possibilities of being useful as indicators for evaluation of toxic effects of sludge-borne metals on soil organisms.  相似文献   

20.
我国南方岩溶区和北方黄土区的大气CO2效应   总被引:10,自引:1,他引:9  
我国南方岩溶区与北方黄土区都是巨大的碳库。碳酸盐的溶蚀及再结晶是两个碳库与大气CO2交换的重要过程;碳的区域平衡是评价化学风化消耗或逸散CO2的基础,岩溶区与黄土区在地球化学风化的环境背景。溶蚀过程,产物运移和归宿等差异很大。黄土区化学风化消耗大气CO2通量较岩溶区小。目前评价两类地区土壤与大气CO2的源汇关系尚不成熟,需要定量认识土壤CO2与下伏碳酸盐岩溶蚀或与下伏黄土次生碳酸盐化作用。岩溶区湖  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号