首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper presents a multi-proxy climate record of an 11 m long core collected in Lago Puyehue (southern Chile, 40°S) and extending back to 18,000 cal yr BP. The multi-proxy analyses include sedimentology, mineralogy, grain size, geochemistry, loss-on-ignition, magnetic susceptibility and radiocarbon dating. Results demonstrate that sediment grain size is positively correlated with the biogenic sediment content and can be used as a proxy for lake paleoproductivity. On the other hand, the magnetic susceptibility signal is correlated with the aluminium and titanium concentrations and can be used as a proxy for the terrigenous supply. Temporal variations of sediment composition evidence that, since the Last Glacial Maximum, the Chilean Lake District was characterized by three abrupt climate changes superimposed on a long-term climate evolution. These rapid climate changes are: (1) an abrupt warming at the end of the Last Glacial Maximum at 17,300 cal yr BP; (2) a 13,100–12,300 cal yr BP cold event, ending rapidly and interpreted as the local counterpart of the Younger Dryas cold period, and (3) a 3,400–2,900 cal yr BP climatic instability synchronous with a period of low solar activity. The timing of the 13,100–12,300 cold event is compared with similar records in both hemispheres and demonstrates that this southern hemisphere climate change precedes the northern hemisphere Younger Dryas cold period by 500 to 1,000 years. This is the third in a series of eight papers published in this special issue dedicated to the 17,900 year multi-proxy lacustrine record of Lago Puyehue, Chilean Lake District. The papers in this special issue were collected by M. De Batist, N. Fagel, M.-F. Loutre and E. Chapron.  相似文献   

2.
A late Quaternary diatom stratigraphy of Lago Puyehue (40°40′ S, 72°28′ W) was examined in order to infer past limnological and climatic changes in the South-Chilean Lake District. The diatom assemblages were well preserved in a 1,122 cm long, 14C-dated sediment core spanning the last 17,900 years, and were in support of an early deglaciation of Lago Puyehue. The presence of a short cold spell in South Chile, equivalent to the Younger Dryas event in the Northern Hemisphere, the Antarctic Cold Reversal in Antarctica, or the Huelmo-Mascardi event in southern South America, was not clearly evidenced in the diatom data, although some climate instability may have occurred between 13,400 and 11,700 cal. yr. BP, and a relatively long period (between 16,850 and 12,810 cal. yr. BP) with low absolute abundances and biovolumes could be tentatively interpreted as a period of low rainfall and/or temperatures. An increase in the moisture supply to the lake was tentatively inferred at 12,810 cal. yr. BP. After 9,550 cal. yr. BP, inferred stronger and longer persisting summer stratification, may have been the result of the higher temperatures associated with an early-Holocene thermal optimum. The mid-Holocene appeared to be characterized by a decrease in precipitation, culminating around 5,000 cal. yr. BP, and rising again after 3,000 cal. yr. BP, likely associated with a previously documented lowered frequency and amplitude of El Niño events. An increase in precipitation during the late Holocene (3,000 cal. yr. BP–present) might have marked subsequent increased frequency of El Niño occurrences, leading to drier summers and slightly moister winters in the area.  相似文献   

3.
The timing of the last deglaciation in southern Chile is re-evaluated from a calendar varve chronology (Lago Puyehue, 40° S). The climate shifts are analysed by continuous annual varve-thickness measurements through the ∼17,100 cal. year to 10,800 cal. year BP time window (∼3.5 m sediment core). The varve years are determined by the alternation of light (phytoplankton-rich) and dark (terrigenous and organic-rich) layers forming graded annual couplets (∼0.2 to 0.8 mm/year). The varve chronology is constructed by conventional varve-counting methods on thin sections after correction for instantaneous volcanic and/or seismic events detected in the thin sections. The calibrated varve-age model derived from the manual varve counting is constrained by high-resolution grey-scale (GS) semi-automatic counts of the annual light phytoplankton-rich layers (∼120 μm to 300 μm thick). Due to physical sediment properties the GS constitutes a proxy record for the phytoplankton/terrigenous varve-thickness variations through the sediment record. The varve couplets are thicker/thinner during humid/dry phases and darker/lighter (negative/positive annual grey-scale index) during cold/warm phases. Our results show that at 40° S the last deglaciation took place in two phases between ∼17,100 cal. year and ∼15,500 cal. year BP. We note a climate instability between ∼15,500 cal. year and 13,300 cal. year BP and a significant dry phase between ∼15,000 and 14,500 cal. year BP. We evidence a cold event in two phases between ∼13,300 and 12,200 cal. year BP interrupted by a dry event between ∼12,800 and 12,600 cal. year BP. The onset of a significant warmer period is observed after ∼11,500 cal. year BP. Our results provide new evidence of a Younger Dryas cool reversal in southern Chile, i.e., the Huelmo/Mascardi event Hajdas et al. (2003) associated with an abrupt dry pulse at ∼12,800–12,600 cal. year BP. The high-resolution grey-scale measurements performed on the biogenic varves from Lago Puyehue provide a reliable calibrated chronology of the regional environmental and climate shifts during the last deglaciation. This is eighth in a series of eight papers published in this special issue dedicated to the 17,900 year multi-proxy lacustrine record of Lago Puyehue, Chilean Lake District. The papers in this issue were collected by M. De Batist, N. Fagel, M.-F. Loutre and E. Chapron.  相似文献   

4.
A pollen record from Puyehue area (40°S; 72°W) in the southern Lake District, Chile, indicates that prior to 13,410 14C yr BP (ca. 16,500–15,200 cal yr BP), cold resistant and hygrophilous vegetation, particularly Nothofagus forest and myricaceous vegetation, covered the area. From ca. 15,000 cal yr BP onward, the forest became increasingly dense. Between 10,010 and 7450 14C yr BP (ca. 11,000–8000 cal yr BP), the expansion of Nothofagus obliqua and the spread of grasses suggests the climate became warmer and semi-arid. Lowland deciduous forest (Nothofagus obliqua, Aextoxicon punctatum, Laurelia sempervirens) and Valdivian rainforest (Nothofagus dombeyi, Eucryphia cordifolia, Caldcluvia paniculata, Aextoxicon punctatum, Laureliopsis philippiana) were abundant. During the next two thousand years, stable warm climatic conditions prevailed, and the diversity of the vegetation increased. From 5760 to 1040 14C yr BP (ca. 6500–900 cal yr BP), the North Patagonian rainforest expanded. The presence of Pilgerodendron/Fitzroya, together with Nothofagus forest, suggests that humid conditions prevailed. During the last millennium, human impact intensified and regional vegetation was disturbed, particularly the lowland deciduous forest and Valdivian rainforest. North-Patagonian and subantartic taxa, such as Podocarpus nubigena, Pilgerodendron/Fitzroya, Nothofagus dombeyi type, Austrocedrus chilensis and Drimys winteri, occupied the low and high-altitude parts of the Cordillera. Five hundred years ago, shrub and grasses expanded in the Nothofagus forest, suggesting that forest became more open under cool–cold, and humid climatic conditions. These conditions prevail to the present day. This is the fourth in a series of eight papers published in this special issue dedicated to the 17,900 year multi-proxy lacustrine record of Lago Puyehue, Chilean Lake District. The papers in this special issue were collected by M. De Batist, N. Fagel, M.-F. Loutre and E. Chapron.  相似文献   

5.
Sub-bottom profiling was conducted at eight sub-basins within the lower French River area, Ontario, to investigate deposits preserved within the ancient North Bay outlet. Ten cores were collected that targeted the four depositional acoustic facies identified in the sub-bottom profiling records. The rhythmically laminated/bedded glaciolacustrine deposits of facies I are interpreted to have aggraded within glacial Lake Algonquin and its associated recessional lakes that persisted between 13,000 and 11,300 cal BP (~11,100 and 9,900 BP). The majority of the facies II, III and IV lacustrine deposits accumulated between about 9,500 cal BP (~8,500 BP) and the mid-Holocene, based on radiocarbon-dated organic materials. These deposits represent sedimentation within a ‘large’ lake during the late portion of the Mattawa-Stanley phase, and the Nipissing transgression, Nipissing Great Lakes and post-Nipissing recession phases of lake levels. Two sets of organic-rich sand beds are preserved within facies II deposits and reveal that the large lake lacustrine depositional environment was interrupted during the late Mattawa-Stanley phase between 9,500–9,300 and 9,000–8,400 cal BP (~8,500–8,300 and ~8,000–7,600 BP), when the water surface of Lake Hough fell below the outlet threshold and the lake basin became hydrologically closed. Pre-9,500 cal BP (~8,500 BP), the early and middle portions of the Mattawa-Stanley phase were dominated by erosion, as reflected by an unconformity at the base of facies II that occurs widely in the sub-basins and the general lack of preserved deposits for these intervals in the cores. This erosion is attributed to wave action and fluvial scouring within the outlet mouth during the early and mid-Stanley-Hough low stages and relates specifically to the period when the flowing portion of the North Bay outlet was situated over the lower French River area. This study reveals that the majority of the post-glacial deposits accumulated after the outlet threshold had shifted permanently eastwards and the lower French River area was inundated under the multiple phases of the large lake occupying the Nipissing Lowlands and Georgian-Huron basins, extending well into the mid-Holocene. The occurrence of deposits marking two closed-basin intervals during the late Stanley-Hough stage are well preserved locally within the lacustrine depositional sequence, but identifying earlier closed-basin intervals from the French River stratigraphy is hindered by the lack of preserved pre-9,500 cal BP (~8,500 BP) post-glacial deposits.  相似文献   

6.
This paper introduces the background and main results of a research project aimed at unravelling the paleolimnological and paleoclimatological history of Lago Puyehue (40° S, Lake District, Chile) since the Last Glacial Maximum (LGM), based on the study of several sediment cores from the lake and on extensive fieldwork in the lake catchment. The longest record was obtained in an 11-m-long piston core. An age-depth model was established by AMS 14C dating, 210Pb and 237Cs measurements, identification of event-deposits, and varve-counting for the past 600 years. The core extends back to 17,915 cal. yr. BP, and the seismic data indicate that an open-lake sedimentary environment already existed several thousands of years before that. The core was submitted to a multi-proxy analysis, including sedimentology, mineralogy, grain-size, major geochemistry and organic geochemistry (C/N ratio, δ13C), loss-on-ignition, magnetic susceptibility, diatom analysis and palynology. Along-core variations in sediment composition reveal that the area of Lago Puyehue was characterized since the LGM by a series of rapid climate fluctuations superimposed on a long-term warming trend. Identified climate fluctuations confirm a.o. the existence of a Late-Glacial cold reversal predating the northern-hemisphere Younger Dryas cold period by 500–1,000 years, as well as the existence of an early southern-hemisphere Holocene climatic optimum. Varve-thickness analyses over the past 600 years reveal periodicities similar to those associated with the El Niño Southern Oscillation and the Pacific Decadal Oscillation, as well as intervals with increased precipitation, related to an intensification of the El Niño impact during the southern-hemisphere equivalent of the Little Ice Age.  相似文献   

7.
Three lake sediment sequences (lakes Nero, Chashnitsy, Zaozer’e) from the Rostov-Jaroslavl’ region north of Moscow were studied to provide information on palaeoclimatic and palaeoenvironmental changes during the past 15,000 cal yr. The multi-proxy study (i.e., pollen, macrofossils, mineral magnetic measurements, total carbon, nitrogen and sulphur) is chronologically constrained by AMS 14C measurements. Lake Nero provided the longest sedimentary record back to ca. 15,000 cal yr BP, while sediment accumulation began around ca. 11,000 cal yr BP in the two other lakes, possibly due to melting of permafrost. Limnic plant macrofossil remains suggest increased lake productivity and higher mean summer temperatures after 14,500 cal yr BP. While the late glacial vegetation was dominated by Betula and Salix shrubs and various herbs, it appears that Betula sect. Albae became established as early as 14,000 cal yr BP. Major hydrological changes in the region led to distinctly lower lake levels, starting 13,000 cal yr BP in Lake Nero and ca. 9000 cal yr BP in lakes Chashnitsy and Zaozer’e, which are situated at higher elevations. These changes resulted in sedimentary hiatuses in all three lakes that lasted 3500–4500 cal yr. Mixed broad-leaved – coniferous forests were widespread in the area between 8200 and 6100 cal yr BP and developed into dense, species-rich forests between 6100 and 2500 cal yr BP, during what was likely the warmest interval of the studied sequences. Agricultural activity is documented since 500 cal yr BP, but probably began earlier, since Rostov was a major capital by 862 A.D. This apparent gap may be caused by additional sedimentary hiatuses around 2500 and 500 cal yr BP.  相似文献   

8.
《自然地理学》2013,34(5):438-456
Few long-term records of the fire history of Rocky Mountain National Park exist. Data from a lake sediment core was used to reconstruct changes in vegetation and fire frequencies over the last 7000 cal yr. Bear Lake is a high-elevation lake surrounded by subalpine vegetation in Rocky Mountain National Park, Colorado. Pollen data indicate that a warm and dry climate prevailed between ca. 7000 and 5000 cal yr BP. Temperatures increased until shortly before ca. 3500 cal yr BP when evidence for a marked decline is seen. Cooler-than-present conditions were maintained until ca. 1700 cal yr BP, when conditions transitioned to more like those of the present-day climate. Based on macroscopic charcoal analyses, fire frequency had varied between two and five episodes per 1000 years. The largest peak in charcoal was at ca. 590 cal yr BP. The fire return interval has varied with climate over time; however, we calculate a fire return interval of 325 years over the past 7000 years. Given these results, fire activity is likely to increase under current Intergovernmental Panel on Climate Change climate projections of an increase in annual temperatures.  相似文献   

9.
Whitefish Lake is a large (11-km-long), shallow, basin in Northwestern Ontario, Canada. The presence of extensive stands of wild rice (Zizania sp.) in combination with high archaeological site density suggests that this lake was ecologically important to regional precontact populations. Collection and analysis of sediment from Whitefish Lake was initiated in 2008 in order to reconstruct changes in lake depth, climate, and vegetation throughout the Holocene. In general, the upper 4.5 m of basinal sediment is composed of ~1.5+ m of varves, which is overlain by a 1.5-m-thick unit with ped-like structures, and ~1.5 m of lacustrine sediment. This sequence documents an early proglacial lake phase, followed by a dry interval before 4,300 (4,900 cal) BP when the lake was significantly shallower, and the establishment of the modern lake during the late Holocene. Plant microfossil (phytolith) evidence indicates that wild rice had colonized the basin ~5,300 (6,100 cal) BP as the lake level rose in response to climate change. Beginning ~4,000 (4,500 cal) BP, changes in elemental data suggest a sharp increase in lake productivity and a switch to anaerobic depositional conditions as the rate of organic sedimentation increased. Recent archaeological research confirms that wild rice was locally processed and consumed during the Middle and Late Woodland periods (~300 BC–AD 1700) although it was evidently growing in the lake well before this time.  相似文献   

10.
Lacustrine records from the northern margin of the East Asian monsoon generate a conflicting picture of Holocene monsoonal precipitation change. To seek an integrated view of East Asian monsoon variability during the Holocene, an 8.5-m-long sediment core recovered in the depocenter of Dali Lake in central-eastern Inner Mongolia was analyzed at 1-cm intervals for total organic and inorganic carbon concentrations. The data indicate that Dali Lake reached its highest level during the early Holocene (11,500–7,600 cal yr BP). The middle Holocene (7,600–3,450 cal yr BP) was characterized by dramatic fluctuations in the lake level with three intervals of lower lake stands occurring 6,600–5,850, 5,100–4,850 and 4,450–3,750 cal yr BP, respectively. During the late Holocene (3,450 cal yr BP to present), the lake displayed a general shrinking trend with the lowest levels at three episodes of 3,150–2,650, 1,650–1,150 and 550–200 cal yr BP. We infer that the expansion of the lake during the early Holocene would have resulted from the input of the snow/ice melt, rather than the monsoonal precipitation, in response to the increase in summer solar radiation in the Northern Hemisphere. We also interpret the rise in the lake level since ca. 7,600 cal yr BP as closely related to increased monsoonal precipitation over the lake region resulting from increased temperature and size of the Western Pacific Warm Pool and a westward shifted and strengthened Kuroshio Current in the western Pacific. Moreover, high variability of the East Asian monsoon climate since 7,600 cal yr BP, marked by large fluctuations in the lake level, might have been directly associated with variations in the intensity and frequency of the El Niño-Southern Oscillation (ENSO) events.  相似文献   

11.
Geochemical data obtained from X-ray fluorescence, physical properties, total organic and inorganic carbon content (TOC/TIC), and diatom analysis from a 6.61-m-long sedimentary sequence near the modern northern shore of Lake Zirahuen (101° 44′ W, 19° 26′ N, 2000 m asl) provide a reconstruction of lacustrine sedimentation during the last approximately 17 cal kyr BP. A time scale is based on ten AMS 14C dates and by tephra layers from Jorullo (AD 1759-1764) and Paricutin (AD 1943-1952) volcanoes. The multiproxy analyses presented in this study reveal abrupt changes in environmental and climatic conditions. The results are compared to the paleo-record from nearby Lake Patzcuaro. Dry conditions and low lake level are inferred in the late Pleistocene until ca. 15 cal kyr BP, followed by a slight but sustained increase in lake level, as well as a higher productivity, peaking at ca. 12.1 cal kyr BP. This interpretation is consistent with several regional climatic reconstructions in central Mexico, but it is in opposition to record from Lake Patzcuaro. A sediment hiatus bracketed between 12.1 and 7.2 cal kyr BP suggests a drop in lake level in response to a dry early Holocene. A deeper, more eutrophic and turbid lake is recorded after 7.2 cal kyr BP. Lake level at the coring site during the mid Holocene is considered the highest for the past 17 cal kyr BP. The emplacement of the La Magueyera lava flows (LMLF), dated by thermoluminiscence at 6560 ± 950 year, may have reduced basin volume and contributed to the relative deepening of the lake after 7.2 cal kyr BP. The late Holocene (after 3.9 cal kyr BP) climate is characterized by high instability. Extensive erosion, lower lake levels, dry conditions and pulses of high sediment influx due to high rainfall are inferred for this time. Further decrease in lake level and increased erosion are recorded after ca. AD 1050, at the peak of Purepechas occupation (AD 1300–1521), and until the eighteenth century. Few lacustrine records extend back to the late Pleistocene—early Holocene in central Mexico; this paper contributes to the understanding of late Pleistocene-Holocene paleoclimates in this region.  相似文献   

12.
Paleoenvironmental studies have documented the late Pleistocene to Holocene evolution of the lakes in the central and southern parts of the basin of Mexico (Texcoco and Chalco). No information was available, however, for the lakes in the north-eastern part of this basin. The north-eastern and the central and southern areas represent, at present, different environmental conditions: an important gradient exists between the dry north and the moister south. To investigate the late Pleistocene to Holocene characteristics of the north-eastern lakes in the basin of Mexico two parallel cores (TA and TB) were drilled at the SE shore of Lake Tecocomulco. Stratigraphy, magnetic properties, granulometry, diatom and pollen analyses performed on these sediments indicate that the lake experienced a series of changes between ca. > 42,000 yr BP and present. Chronological control is given by five radiocarbon determinations. The base of the record is represented by a thick, rhyolitic air-fall tephra that could be older than ca. 50,000 yr BP. After this Plininan event, and until ca. 42,000 yr BP, Lake Tecocomulco was a moderately deep, freshwater lake surrounded by extended pine forests that suggest the presence of cooler and moister conditions than present. Between ca. 42,000 and 37,000 yr BP, the lake became shallower but with important fluctuations and pollen suggests slightly warmer conditions. Between ca. 37,000 and 30,000 yr BP the lake experienced two relatively deep phases separated by a dry interval. A second Plinian eruption, represented in the sequence by a dacitic an air-fall tephra layer dated at 31,000 yr BP, occurred in the area by the end of this dry episode. Between ca. 30,000 and 25,7000 yr BP Tecocomulco was a fresh to slightly alkaline lake with a trend towards lower level. After ca. 25,700 yr BP very low lake levels are inferred, and after ca. 16,000 yr BP the data indicate the presence of a very dry environment that was persistent until the middle Holocene. After 3,500 yr BP lacustrine conditions were re-established and the vegetation cover shows a change towards higher percentages of herbaceous taxa.  相似文献   

13.
A multi-proxy analysis of two sediment cores from Rantin Lake are used to reconstruct past lake-level changes and to make inferences about millennial-scale variations in precipitation/evaporation (P/E) balance in the southern Yukon, Canada between 10,900 and 3,100?cal?yr BP. Analyses of calcium carbonate and organic matter concentration, magnetic susceptibility, titanium content, dry bulk density, and macrofossils are used to reconstruct water-level changes. The development of sand layers and deformed sediments at the deep-water core site (i.e. Core A-06) prior to ~10,900?cal?yr BP suggest that lake level was lower at this time. Fine-grained organic sediment deposited from 10,600 to 9,500?cal?yr BP indicates a rise in lake level. The formation of an unconformity at the shallow cores site (Core C-06) and the deposition of shallow-water calcium carbonate-rich facies at the Core A-06 site between ~9,500 and ~8,500?cal?yr BP suggest lower lake levels at this time. Shallow-water facies gradually transition into a sand layer that likely represents shoreline reworking during an extreme lowstand that occurred at ~8,400?cal?yr BP. Following this low water level, fine-grained organic-rich sediment formed by ~8,200?cal?yr BP, suggesting deeper water conditions at core site A-06. Calcium carbonate concentrations are relatively low in sediment deposited from ~6,300 to 3,100?cal?yr BP in Core A-06, indicating that lake level was comparatively higher during the middle and late Holocene. In general, results from this study suggest that the early Holocene was characterized by high P/E from ~10,500 to 9,500?cal?yr BP, low P/E from ~9,500 to 8,400?cal?yr BP, and return to higher P/E from ~8,200 to 3,100?cal?yr BP.  相似文献   

14.
A 2.5-m-long sediment core was retrieved from Lake Somaslampi, a small lake located in a kame field on the north slope of the Scandes Mountains in Finnish Lapland. Holocene environmental changes were inferred from the lithological, geochemical, pollen, diatom and Cladocera records stored in the lake sediment. The chronology was based on six radiocarbon AMS dates supported by a palynological control chronology. The sediment profile consists of a glacial sedimentary sequence truncated by a lacustrine one. A hiatus, tentatively correlated with climate cooling and advances of glaciers during the 8.2 ka yrs BP “Finse cooling Event”, occurs between these sequences. The glacial sequence was composed of fluvioglacial clastics, smoothly changing into glacio-lacustrine diatomaceous ooze deposited in a meromictic proglacial lake that covered the kame field. The meromixis was probably caused by the greater depth of the lake, the extended ice-cover, and the microbial mats covering large areas of the lake bottom. A distinct change in the biota of the glacio-lacustrine sediments indicates higher trophic conditions than during deposition of the fluvioglacial clastics. The late-Pleistocene vegetation was characterised by subarctic birch tundra vegetation (BetulaSalix–Ericaceae) with low biodiversity gradually changing to BetulaPinus dominance in the early Holocene. The lake was deep and had a diatom inferred pH ~ 7 indicated also by the dominance of planktonic Cladocera. The base of the lacustrine sediment sequence (6,650–6,300 cal. BP) consisted of loess-rich sediment indicating an increase in eolian activity. This is also supported by the pollen record, which is dominated by more long-distant taxa such as Alnus and Pinus, and by the increased C/N ratio of the sediment. After the initial meromictic phase of the lake, an abrupt lowering of the water level occurred. Lake Somaslampi was isolated from the larger Pre-Lake Somas basin and became holomictic, shallow, much warmer and more productive, until the deterioration of climate around 3,000 yr BP and the increased input of clastics from the tundra soils. The vegetation followed the general climatic trend by gradually changing from the dominance of Betula and Pinus to the dominance of more tundra-related vegetation like Poaceae and Cyperaceae. However, the higher frequencies of planktonic Cladocera and centric diatoms in the most recent sediments indicates higher trophic conditions, increased turbulence and a prolonged ice-free period, which can possibly be linked to the recent climate warming especially in areas of higher altitude and latitude.  相似文献   

15.
Changes in the diatom assemblages preserved in a sediment core taken from a small lake located north of arctic treeline on the western Taimyr Peninsula, Russia, were examined in order to investigate late Holocene (i.e., ca 5000 cal yr BP to present) climatic and environmental changes within the region. Early diatom assemblages were dominated by benthic Fragilaria taxa and indicate a transitional phase in the lake history, most likely reflecting lake development and environmental change associated with treeline retreat to the south of the study site. Concurrent with pollen and macrofossil evidence of a vegetation shift to shrub tundra in the catchment basin at ca 4200 cal yr BP, an increase in cold-water taxa, followed by little change in diatom assemblages until ca 2800 cal yr BP, suggests that conditions were relatively cool and stable at this time. The last 2000 years of the Middendorf Lake record have been marked by fluctuating limnological conditions, characterized by striking successional shifts between Fragilaria pinnata and Aulacoseira distans var. humilis. Recent conditions in Middendorf Lake indicate an increase in diatom taxa previously rare in the record, possibly associated with twentieth-century climatic warming. The Middendorf Lake record indicates that significant limnological change may occur in the absence of catchment vegetation shifts, suggesting late-Holocene decoupling of aquatic and terrestrial responses to climatic and hydrological change. Our study results represent one of the few paleoecological records currently available from northern Russia, and highlight the need for further development of calibration data sets from this region.  相似文献   

16.
Diatoms are usually used for reconstructing variations in past lacustrine depth. In a small endorheic basin located in the southern Bolivian Altiplano, we used a comparative method based on basin morphology, stratigraphy, sediment samples, altitude and diatom ecology to infer depth variations more precisely in both marginal and central parts of the basin. Beforeca. 22,000 yr BP, the general tendency was a progressive increase in water-level from 4,135 to 4,155 m altitude, but Lake Ballivian rose to 4,160 m twice, and dropped below 4,135m twice. After ca. 22,000 yr BP, a long dry period occurred, as indicated by a sedimentation hiatus. Atca. 13,000 yr BP, the water-level slightly increased again but the lake stayed very shallow, at less than 4,125 m altitude. *** DIRECT SUPPORT *** A02GG003 00005  相似文献   

17.
Diatom assemblages and sulfur content in sediments were analyzed to clarify changes in the sedimentary environment of Kushu Lake, a coastal lake on Rebun Island in Hokkaido, Japan. Salinity variations were assessed by means of a diatom-based index of paleosalinity and the sedimentary sulfur content. This paper discusses the Holocene development of the lake, in relation to Holocene relative sea-level change. For paleoenvironmental interpretation of the lake development, the rationale of the threshold method (Anundsen et al., 1994) was applied.At ca. 8000 yr BP, a coastal embayment (paleo-Kushu Bay) resulted from marine ingression. The threshold elevation at the mouth of the paleo-Kushu Bay kept pace with the rising sea-level, resulting in its enclosure at the culmination of Holocene marine transgression (ca. 6500–5000 yr BP). From predicted relative sea-level at ca. 6000 yr BP for Rebun Island (Nakada et al., 1991), the threshold may have been at least above –3 to –5 m altitude. A freshwater lake environment with strongly anoxic bottom conditions may have occurred from ca. 5500 to 5100 yr BP. After an important episode of marine ingression, the lake was isolated completely from the open sea at ca. 4900 yr BP. The diatom record suggests that the maximum lacustrine extent occurred at ca. 4900–3100 yr BP. Thereafter, water depth decreased at the lake margins.In Kushu Lake, the threshold elevation, due to a build-up of a coastal barrier, prevents us from determining the amplitude of sea-level changes, even though the age of isolation contacts corresponds to periods of regression and climatic deterioration. In spite of isostatic subsidence, the effective protection provided by the well-developed barrier did not allow registration of any relative sea-level fluctuations since its isolation.  相似文献   

18.
Wetlands and lakes in the Tanana Valley, Alaska, have provided important resources for prehistoric humans who inhabited this region. We examine an ~11,200?cal?yr BP record of environmental and paleolimnological changes from Quartz Lake in the middle Tanana Valley. Our data are also presented in the context of recent archaeological findings in the lake??s general vicinity that have 18 associated AMS 14C dates. We analyzed the stable-carbon and nitrogen isotope composition of total organic matter from the core, coupled with oxygen and carbon isotope analyses of Pisidiidae shells (fingernail clams), in addition to chironomid assemblage changes. Lacustrine sediments began to accumulate at ~11,200?cal?yr BP. Initially, autochthonous production was low and allochthonous organic input was negligible between 11,000 and 10,500?cal?yr BP, and were associated with relatively cool conditions at Quartz Lake at ~10,700?cal?yr BP. After 10,500?cal?yr BP, autochthonous production was higher coincident with a shift to chironomid assemblages dominated by taxa associated with warmer summer climates. A decrease in ??13C values of total organic carbon (TOC) and organic content of the sediment between 9,000 and 4,000?cal?yr BP may indicate declining autochthonous primary production. This period ended with an abrupt (~7???) decrease in the ??18O values from Pisidiidae shells at ~3,000?cal?yr BP, which we hypothesize represented an episodic connection (flood) of the lake with flow from the nearby (~6?km) Tanana River. Our findings coincide with evidence for major flooding at other locations connected to the Tanana River and further afield in Alaska. From ~3,000?cal?yr BP Quartz Lake subsequently appeared to become a relatively closed system, as indicated by the ??18OPisidiidae and ??13CPisidiidae data that are positively correlated and generally higher, which also correlates with a shift to moderately higher abundances of littoral chironomids. The cause of the transition to closed-basin conditions may have been geomorphic rather than climatic. This evidence of a progressively stronger evaporative influence on the lake??s closed hydrology after ~3,000?cal?yr BP is consistent with our modern ??18O and ??D water data from Quartz Lake that plot along a regional evaporative line we base on isotopic measurements from other local lakes and rivers.  相似文献   

19.
Holocene Lake Evolution in the Elmali Basin,Southwest Turkey   总被引:1,自引:1,他引:0  
《自然地理学》2013,34(3):234-253
The spatial coverage of paleoecological research from southwestern Turkey is expanded by reporting on a ca. 12,690 14C yr BP (14,935 cal yr BP) proxy record recovered from the Elmali basin. Four AMS radiocarbon age determinations, the litho-stratigraphic analysis of a lake bed core, and the analysis of subsurface sediment samples from 15 shallow auger holes across the basin document sedimentation patterns during the Holocene. Based on the widespread occurrence of Chara gyrogonite, and several species of ostracoda and gastropoda, the Elmali basin was dominated by lacustrine and palustrine environments but was continually influenced by alluvial fan sedimentation. Contrasting stratigraphy in the Kara Göl and Avlan Gölü sub-basins is a result of basin morphology, and possibly hydrologic control by karst features, and sub-basin isolation due to alluvial fan development. The cyclical deposition of marl/lime mud, gyttja, and peat in the Kara Göl core is indicative of periodic fluctuations in water level across a broad shallow basin, whereas the continuous clay record observed at Avlan Gölü implies deep-water sedimentation within a plugged former karst collapse feature. Calcareous clay deposited between 14,935 and 11,180 cal yr BP signals the growth and expansion of paleo Lake Elmali, which at its peak during the late Pleistocene, may have inundated over half of the of the 180 km2 Elmali basin.  相似文献   

20.
Early and late Holocene water-level changes in Lake Annecy, France, were reconstructed from a sediment sequence from Annecy. Two early Holocene successive rises in lake level at ca. 8900-8700 BP are recorded. Another increase in lake level, beginning at ca. 780 BP, is documented. The higher lake-level conditions in Lake Annecy during the 9th millennium BP, i.e. between the Preboreal oscillation and the 8200 yr event, appear to coincide with a more widespread cooling period which has been recorded in western Europe, in the Greenland ice-sheet and the North Atlantic ocean. The rise in lake level at ca. 780 BP can be related to the early Little Ice Age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号