首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
J.- P. Wülser 《Solar physics》1988,114(1):115-126
H line profile observations of solar flares with high temporal resolution are an important tool for the analysis of the energy transport mechanism from the site of the flare energy release to the chromosphere. A specially designed instrument (imaging spectrograph) allows two-dimensional imaging of an active region simultaneously in 15 spectral channels along the H line profile with a temporal resolution of 5.4 s. Two flares have been observed in November 1982. The first one shows H signatures which one would typically expect in the case of explosive chromospheric evaporation produced by massive injection of non-thermal electrons. The observations of the other flare indicate that the heating of the upper chromosphere is dominated by thermal conduction, although during the impulsive hard X-ray burst there are also signatures of heating by non-thermal electrons.  相似文献   

2.
The problem to compute the magnetic field above the chromosphere using data of the vector = B t/Bt that gives the projected field direction can be solved with different approximations. The field of direction vectors is, however, not the only field accessible to observations. The Stokes parameters, which are components of the radiation tensor, can be measured at each point of the image plane. The directions of the eigenvectors of the radiation tensor define two mutually orthogonal systems of integral curves in the image plane. These families of curves have singular points, which are generally of different type than those of the vector field. When the morphology of H chromospheric fibrils are used to infer the topology of the magnetic field, a similar problem is met, suggesting that singular points should also be present there.  相似文献   

3.
Moore  R. L.  Schmieder  B.  Hathaway  D. H.  Tarbell  T. D. 《Solar physics》1997,176(1):153-169
We present H and coronal X-ray images of the large two-ribbon flare of 25–26 June, 1992 during its long-lasting gradual decay phase. From these observations we deduce that the 3-D magnetic field configuration late in this flare was similar to that at and before the onset of such large eruptive bipolar flares: the sheared core field running under and out of the flare arcade was S-shaped, and at least one elbow of the S looped into the low corona. From previous observations of filament-eruption flares, we infer that such core-field coronal elbows, though rarely observed, are probably a common feature of the 3-D magnetic field configuration late in large two-ribbon flares. The rare circumstance that apparently resulted in a coronal elbow of the core field being visible in H in our flare was the occurrence of a series of subflares low in the core field under the late-phase arcade of the large flare; these subflares probably produced flaring arches in the northern coronal elbow, thereby rendering this elbow visible in H. The observed late-phase 3-D field configuration presented here, together with the recent sheared-core bipolar magnetic field model of Antiochos, Dahlburg, and Klimchuk (1994) and recent Yohkoh SXT observations of the coronal magnetic field configuration at and before the onset of large eruptive bipolar flares, supports the seminal 3-D model for eruptive two-ribbon flares proposed by Hirayama (1974), with three modifications: (1) the preflare magnetic field is closed over the filament-holding core field; (2) the preflare core field has the shape of an S (or backward S) with coronal elbows; (3) a lower part of the core field does not erupt and open, but remains closed throughout flare, and can have prominent coronal elbows. In this picture, the rest of the core field, the upper part, does erupt and open along with the preflare arcade envelope field in which it rides; the flare arcade is formed by reconnection that begins in the middle of the core field at the start of the eruption and progresses from reconnecting closed core field early in the flare to reconnecting opened envelope field late in the flare.  相似文献   

4.
We compare evidence of coronal magnetic fields from polarized metric type III radio bursts with (a) global potential field models, (b) direct averages of the observed photospheric magnetic field, and (c) H synoptic charts. The comparison clearly indicates both that the principal aspects of type III burst radiation are understood and that global potential field models are a significantly more accurate representation of coronal magnetic field structure than either the large-scale photospheric field or H synoptic charts.  相似文献   

5.
Malherbe  J. M.  Schmieder  B.  Mein  P.  Mein  N.  Van Drielgesztelyi  L.  Von Uexküll  M. 《Solar physics》1998,180(1-2):265-284
Using multi-wavelength observations obtained with the Tenerife telescopes (VTT and GCT) and with the Yohkoh satellite, we observed new emerging flux with an associated arch filament system (AFS) in the chromosphere and bright X-ray loops in the corona. We observed the change of connectivity of the X-ray loop footpoints which may be at the origin of the occurrence of a subflare. Densities, gas and magnetic pressures of cold AFS and hot loops were derived and discussed. The extrapolation of the photospheric magnetic field observed with the GCT in a linear force-free field assumption (constant ) shows that this region, in spite of having roughly a global potential configuration, consists of two systems of arch filaments. We found these two systems best fitted with two sheared magnetic topologies of opposite values of ± 0.1 Mm-1  相似文献   

6.
T. Hirayama 《Solar physics》1974,34(2):323-338
A theoretical model of flare which explains observed quantities in H, EUV, soft X-ray and flare-associated solar wind is presented. It is assumed that large mass observed in the soft X-ray flare and the solar wind comes from the chromosphere by the process like evaporation while flare is in progress. From mass and pressure balance in the chromosphere and the corona, the high temperature in the soft X-ray flare is shown to be attained by the larger mass loss to the solar wind compared with the mass remained in the corona, in accord with observations. The total energy of 1032 erg, the electron density of 1013.5 cm–3 in H flare, the temperature of the X-ray flare of 107.3K and the time to attain maximum H brightness (600 s) are derived consistent with observations. It is shown that the top height of the H flare is located about 1000 km lower than that of the active chromosphere because of evaporation. So-called limb flares are assigned to either post-flare loops, surges or rising prominences.The observed small thickness of the H flare is interpreted by free streaming and/or heat conduction. Applications are suggested to explain the maximum temperature of a coronal condensation and the formation of quiescent prominences.  相似文献   

7.
    
Using the boundary element method (BEM) for constant-, force-free fields, the vector magnetic field distributions in the chromosphere of a flare-productive active region. AR 6659 in June 1991, are obtained by extrapolating from the observed vector magnetograms at the photosphere. The calculated transverse magnetic fields skew highly from the photosphere to the chromosphere in the following positive polarity sunspot whereas they skew only slightly in the main preceding sunspot. This suggests that more abundant energy was stored in the former area causing flares. Those results demostrate the validity of the BEM solution and the associations between the force-free magnetic field and the structure of the AR 6659 region. It shows that the features of the active region can be revealed by the constant- force-free magnetic field approximation.  相似文献   

8.
On practical representation of magnetic field   总被引:2,自引:0,他引:2  
Various manners of determination of a magnetic field are reviewed briefly from the standpoint of practicality and uniqueness. Then a practical representation of magnetic fields in terms of a class of force-free magnetic field is described. The proposed scheme is based on the physical consideration that in the chromosphere and lower corona a quasistatic magnetic field must be nearly force-free and that for the class of force-free magnetic field, i.e., ×B=B with = constant, the magnetic field can be determined uniquely from the observed distribution of the vertical component of a magnetic field. The applicability of the representation is demonstrated by examples and the limitations are discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

9.
Fine dark H filaments fibrils form at the limb, apparently in most of the middle chromosphere corresponding to an altitude between 1500–2000 km and 4000 km. The space in between filaments is corona and the transition layer. The cool gas in fibrils is protected by the magnetic field against the conductive flux out of the hot corona. Therefore the fibrils stretch up to 4000 km where their temperature is about 18 000 K and the density about 5 × 109 cm–3. The gas in the fibrils is ionized by electronic collisions and by the external ultraviolet radiation. The second level of the hydrogen atoms in fibrils is populated by recombinations, electronic collisions and by Ly- quanta. The calculated optical thickness of the fibrils in H is about 1, it explains the absorption features on the spectroheliograms. The gas pressure in fibrils is lower than the coronal pressure, and the pressure equilibrium is achieved by a magnetic field of about 1.5–2 G. In the active regions the photospheric fields are stronger, therefore the fibrils in active regions are wider and show more contrast. The emission of the fibrils at the limb is explained by the scattering of the solar radiation. The temperature in arches reaching as high as 5000–6000 km, is stabilized near the top by the HeII emission. Thus the middle chromosphere is essentially a collection of magnetic arches.  相似文献   

10.
Based on the photospheric vector magnetograms taken at Huairou Solar Observing Station (HSOS), H images taken at Hiraiso Solar Terrestrial Research Center of Communication Research Laboratory, soft X-ray images taken by Yohkoh and an extrapolation method, the magnetic field structures and some active phenomena of the active region AR 7321 around 04:12 UT on 27 October 1992 are analyzed in this paper. A divergence of the transverse magnetic field, located at a newly formed spot, was found. At least four highly sheared magnetic field systems separately spread from this divergence to four other sites around this divergence. Vertical current concentrations are upward in this region and downward in the other four sites, and the corresponding H bright patches and soft X-ray bright loops coincide with these structures, confirming the existence of these four systems. The extrapolated magnetic force lines reconstructed by the Boundary Element Method (BEM), force-free field assumption, and boundary condition of observed photospheric vector magnetic field, coincide in space with the H bright patches and soft X-ray bright loops, showing that this extrapolation method is very effective and suggesting that the H bright patches and soft X-ray bright loops in this case represent the magnetic field structures in the upper atmosphere of the Sun.The bright structures in the H images and the soft X-ray images have a close correlation with the non-potential characteristics of the magnetic fields.  相似文献   

11.
A developing active region near the center of the solar disk was observed for 80 min at the center and the wings of H. Ellerman bombs lying both below an Arch Filament System and near sunspots were studied at H - 1.0 Å and H - 0.75 Å. We determined their average contrast, lifetime, size and we studied their flux as a function of time. We found evidence that the size of Ellerman bombs increases with height. The time curves of flux provide evidence for both impulsive and gradual energy release. Under the AFS the Ellerman bombs form a cellular pattern with a characteristic size of 3.1 × 103 km. Fifty percent of the bombs appear and disappear in pairs, possibly associated with bipolar emerging magnetic flux tubes.  相似文献   

12.
Through coordinated observations made during the Max'91 campaign in June 1989 in Potsdam (magnetograms), Debrecen (white light and H), and Meudon (MSDP), we follow the evolution of the sunspot group in active region NOAA 5555 for 6 days. The topology of the coronal magnetic field is investigated by using a method based on the concept of separatrices - applied previously (Mandriniet al., 1991) to a magnetic region slightly distorted by field-aligned currents. The present active region differs by having significant magnetic shear. We find that the H flare kernels and the main photospheric electric current cells are located close to the intersection of the separatrices with the chromosphere, in a linear force-free field configuration adapted to the observed shear. Sunspot motions, strong currents, isolated polarities, or intersecting separatrices are not in themselves sufficient to produce a flare. A combination of them all is required. This supports the idea that flares are due to magnetic reconnection, when flux tubes with field-aligned currents move towards the separatrix locations.  相似文献   

13.
Choudhary  Debi Prasad  Gary  G. Allen 《Solar physics》1999,188(2):345-364
The high-resolution H images observed during the decay phase of a long-duration flare on 23 March 1991 are used to study the three-dimensional magnetic field configuration of the active region NOAA 6555. Whereas all the large flares in NOAA 6555 occurred at the location of high magnetic shear and flux emergence, this long-duration flare was observed in the region of low magnetic shear at the photosphere. The H loops activity started soon after the maximum phase of the flare. There were a few long loop at the initial phase of the activity. Some of these were sheared in the chromosphere at an angle of about 45° to the east-west axis. Gradually, an increasing number of shorter loops, oriented along the east-west axis, started appearing. The chromospheric Dopplergrams show blue shifts at the end points of the loops. By using different magnetic field models, we have extrapolated the photospheric magnetograms to chromospheric heights. The magnetic field lines computed by using the potential field model correspond to most of the observed H loops. The height of the H loops were derived by comparing them with the computed field lines. From the temporal evolution of the H loop activity, we derive the negative rate of appearance of H features as a function of height. It is found that the field lines oriented along one of the neutral lines were sheared and low lying. The higher field lines were mostly potential. The paper also outlines a possible scenario for describing the post-flare stage of the observed long-duration flare.  相似文献   

14.
Wang  Huaning  Yan  Yihua  Sakurai  Takashi  Zhang  Mei 《Solar physics》2000,197(2):263-273
The photospheric vector magnetic fields, H and soft X-ray images of AR 7321 were simultaneously observed with the Solar Flare Telescope at Mitaka and the Soft X-ray Telescope of Yohkoh on October 26, 1992, when there was no important activity in this region. Taking the observed photospheric vector magnetic fields as the boundary condition, 3D magnetic fields above the photosphere were computed with a new numerical technique. Then quasi-separatrix layers (QSLs), i.e., regions where 3D magnetic reconnection takes place, were determined in the computed 3D magnetic fields. Since Yohkoh data and Mitaka data were obtained in well-arranged time sequences during the day, the evolution of 3D fields, H features and soft X-ray features in this region can be studied in detail. Through a comparison among the 3D magnetic fields, H features and soft X-ray features, the following results have been obtained: (a) H plages are associated with the portions of QSLs in the chromosphere; (b) diffuse coronal features (DCFs) and bright coronal features (BCFs) are morphologically confined by the coronal linkage of the field lines related to the QSLs; (c) BCFs are associated with a part of the magnetic field lines related to the QSLs. These results suggest that as the likely places where energy release may occur by 3D magnetic reconnection, QSLs play an important role in the chromospheric and coronal heating in this active region.  相似文献   

15.
We present the two-dimensional imaging observations of radio bursts in the frequency range 25–50 MHz made with the Clark Lake multifrequency radioheliograph during a coronal mass ejection event (CME) observed on 1984, June 27 by the SMM Coronagraph/Polarimeter and Mauna Loa K-coronameter. The event was spatially and temporally associated with precursors in the form of meter-decameter type III bursts, soft X-ray emission and a H flare spray. The observed type IV emission in association with the CME (and the H spray) could be interpreted as gyrosynchrotron emission from a plasmoid containing a magnetic field of 2.5 G and nonthermal electrons with a number density of 105 cm–3 and energy 350 keV.On leave from Indian Institute of Astrophysics, Kodaikanal, India.  相似文献   

16.
During a coordinated SMY program, the consecutive formation of two new active centers merging together within AR 2646 was observed from 28 August, to 5 September, 1980. The two preceding spots compressed an inverse polarity spot on 1 September 1980, causing recurrent ejecta of matter with time intervals around 10 min. The observations of the MSDP spectrograph operating in H at the Meudon Solar tower and of the UVSP spectrometer on SMM in the Civ 1548 Å line show that cold and hot material had the same projection, although the upward Civ velocity structure was more extended than the H one. We present evidence that observed contrasts of the H absorbing structure can be interpreted in terms of a dynamic cloud model overlying the chromosphere. H matter follows a magnetic channel with upward velocity around 20–30 km s–1 in the first phase of the event and with downward velocity ( - 40 km s–1) in the second phase. The stored energy is not sufficient to trigger a flare, nor even to propulse matter along the full length of an arch, because of the periodic reorganisation of the magnetic field.  相似文献   

17.
Yuanyong  Deng  Guoxiang  Ai  Jingshan  Wang  Guofeng  Song  Bin  Zhang  Xiangming  Ye 《Solar physics》1997,173(2):207-221
In this paper, we have made a report on the test observations with a Multi-Channel Solar Telescope (MCST), which consists of 60 cm Nine-Channel Solar Telescope (NCST), 35 cm Solar Magnetic Field Telescope (SMFT), 8 cm Full Disc Telescope (FDT), 10 cm Full Disc Magnetic Field Telescope (FDMFT) and 14 cm H telescope. These observations demonstrate that the MCST has the following advantages: (a) It can work at more than nine visible spectral lines simultaneously. In this way, different solar layers of the photosphere and chromosphere can be observed at the same time; (b) every channel of the NCST is entirely equivalent to a videomagnetograph, by means of which the vector magnetic fields and line-of-sight velocity fields can be measured; (c) real-time monochromatic images of the photosphere and chromosphere can be obtained with the FDT, FDMFT, and H Telescope; (d) high-temporal-resolution full-disk magnetic fields can be measured with the FDMFT; (e) spectral profiles over a large field of view can be scanned with the NCST.  相似文献   

18.
A numerical method is developed for solving the force-free magnetic field equation, × B = B, with spatially-varying . The boundary conditions required are the distribution of B n (viz. normal component of the field on the photosphere) as well as the value of in the region of positive (or negative) B n . Examples of calculations are presented for a simple model of a solar bipolar magnetic region. It is found that the field configuration and the energy stored in the field depend crucially on the distribution of . The present method can be applied to a more complex configuration observed on the Sun by making use of actual magnetic field measurements.On leave of absence from Department of Astronomy, University of Tokyo.  相似文献   

19.
Chae  Jongchul  Denker  Carsten  Spirock  Tom J.  Wang  Haimin  Goode  Philip R. 《Solar physics》2000,195(2):333-346
There have been two different kinds of explanations for the source of cool material in prominences or filaments: coronal condensations from above and cool plasma injections from below. In this paper, we present observational results which support filament mass injection by chromospheric reconnection. The observations of an active filament in the active region NOAA 8668 were performed on 17 August 1999 at a wavelength of H–0.6 Å using the 65 cm vacuum reflector, a Zeiss H birefringent filter, and a 12-bit SMD digital camera of Big Bear Solar Observatory. The best image was selected every 12 s for an hour based on a frame selection algorithm. All the images were then co-aligned and corrected for local distortion due to the seeing. The time-lapse movie of the data shows that the filament was undergoing ceaseless motion. The H flow field has been determined as a function of time using local correlation tracking. Time-averaged flow patterns usually trace local magnetic field lines, as inferred from H fibrils and line-of-sight magnetograms. An interesting finding is a transient flow field in a system of small H loops, some of which merge into the filament. The flow is associated with a cancelling magnetic feature which is located at one end of the loop system. Initially a diverging flow with speeds below 10 km s–1 is visible at the flux cancellation site. The flow is soon directed along the loops and accelerated up to 40 km s–1 in a few minutes. Some part of the plasma flow then merges into and moves along the filament. This kind of transient flow takes place several times during the observations. Our results clearly demonstrate that reconnection in the photosphere and chromosphere is a likely way to supply cool material to a filament, as well as re-organizing the magnetic field configuration, and, hence, is important in the formation of filaments.  相似文献   

20.
Using simultaneous observations of the same solar regions in the lines H and Civ 1548 Å, we have derived schematic models of closed magnetic lines from dynamical constraints. We conclude that the magnetic loops are closed at higher levels above facular than above non-facular regions. This result remains valid whatever are the assumed density models and even if we take into account the 3 min oscillations. The center-to-limb behaviour is well predicted by taking into account the relative opacity in chromosphere and transition region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号