首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-aqueous CO2 and CO2-rich fluid inclusions are found in the vein quartz hosting mesothermal gold-sulphide mineralization at Bin Yauri, northwestern Nigeria. Although mineralizing fluids responsible for gold mineralization are thought to be CO2-rich, the occurrence of predominantly pure to nearly pure CO2 inclusions is nevertheless unusual for a hydrothermal fluid system. Many studies of similar CO2-rich fluid inclusions, mainly in metamorphic rocks, proposed preferential loss (leakage) of H2O from H2O-CO2 inclusions after entrapment. In this study however, it is proposed that phase separation (fluid immiscibility) of low salinity CO2-rich hydrothermal fluids during deposition of the gold mineralization led to the loss of the H2O phase and selective entrapment of the CO2. The loss of H2O to the wallrocks resulted in increasing oxidizing effects. There is evidence to suggest that the original CO2-rich fluid was intrinsically oxidized, or perhaps in equilibrium with oxidizing conditions in the source rocks. The source of the implicated fluid is thought to be subducted metasediments, subjected to dehydration and devolatilization reactions along a transcurrent Anka fault/shear system, which has been described as a Pan-African (450–750 Ma) crustal suture.  相似文献   

2.
Abstract Fluid evolution paths in the COHN system can be calculated for metamorphic rocks if there are relevant data regarding the mineral assemblages present, and regarding the oxidation and nitrodation states throughout the entire P-T loop. The compositions of fluid inclusions observed in granulitic rocks from Rogaland (south-west Norway) are compared with theoretical fluid compositions and molar volumes. The fluid parameters are calculated using a P-T path based on mineral assemblages, which are represented by rocks within the pigeonite-in isograd and by rocks near the orthopyroxene-in isograd surrounding an intrusive anorthosite massif. The oxygen and nitrogen fugacities are assumed to be buffered by the coexisting Fe-Ti oxides and Cr-carlsbergite, respectively. Many features of the natural fluid inclusions, including (1) the occurrence of CO2-N2-rich graphite-absent fluid inclusions near peak M2 metamorphic conditions (927° C and 400 MPa), (2) the non-existence of intermediate ternary CO2-CH4-N2 compositions and (3) the low-molar-volume CO2-rich fluid inclusions (36–42 cm3 mol?1), are reproduced in the calculated fluid system. The observed CO2-CH4-rich inclusions with minor N2 (5 mol%) should also include a large proportion of H2O according to the calculations. The absence of H2O from these natural high-molar-volume CO2-CH4-rich inclusions and the occurrence of natural CH4-N2-rich inclusions are both assumed to result from preferential leakage of H2O. This has been previously experimentally demonstrated for H2O-CO2-rich fluid inclusions, and has also been theoretically predicted. Fluid-deficient conditions may explain the relatively high molar volumes, but cannot be used to explain the occurrence of CH4-N2-rich inclusions and the absence of H2O.  相似文献   

3.
Fluid inclusions and clusters of water molecules at nanometer-to submicron-scale in size have been investigated using transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) in jadeite, quartz and symplectite aegirine–augite, albite, taramite and magnetite corona minerals from ultrahigh-pressure (UHP) jadeite–quartzite at Shuanghe, the Dabie Mountains, China. Fluid inclusions from 0.003 μm to 0.78 μm in size occur in jadeite and quartz crystals, and a small number of fluid inclusions from 0.001 μm to 0.25 μm have also been detected in symplectite-forming minerals. Most of the fluid inclusions have round or negative crystal morphology and contain aqueous fluids, but some contain CO2-rich fluids. They are usually connected to dislocations undetectable at an optical scale. The dislocations represent favorable paths for fluid leakage, accounting for non-decrepitation of most fluid inclusions when external pressure decreased at later stages, although there was partial decrepitation of some fluid inclusions unconnected to defect microstructures resulting from internal overpressure. Non-decrepitation and partial decrepitation of fluid inclusions resulted in changes of original composition and/or density. It is clear that identification of hidden re-equilibration features has significant implications for the petrological interpretation of post-peak metamorphic processes. Micro-FTIR results show that all jadeite and quartz samples contain structural water occurring as hydroxyl ions (OH) and free water (H2O) in the form of clusters of water molecules. The H2O transformed from OH during exhumation and could have triggered and enhanced early retrograde metamorphism of the host rocks and facilitated plastic deformation of jadeite and quartz grains by dislocation movement, and thus the H2O released during decompression might represent early-stage retrograde metamorphic fluid. The nominally anhydrous mineral (NAM) jadeite is able to transport aqueous fluids in concentrations of at least several hundred ppm water along a subduction zone to mantle depths in the form of clusters of water molecules and hydroxyl ions within crystals.  相似文献   

4.
A fluid inclusion study on metamorphic minerals of successive growth stages was performed on highly deformed paragneisses from the Nestos Shear Zone at Xanthi (Central Rhodope), in which microdiamonds provide unequivocal evidence for ultrahigh-pressure (UHP) metamorphism. The correlation of fluid inclusion density isochores and fluid inclusion reequilibration textures with geothermobarometric data and the relative chronology of micro- and macro-scale deformation stages allow a better understanding of both the fluid and metamorphic evolution along the PTd path. Textural evidence for subduction towards the NE is recorded by the orientation of intragranular NE-oriented fluid inclusion planes and the presence of single, annular fluid inclusion decrepitation textures. These textures occur within quartz “foam” structures enclosed in an earlier generation of garnets with prolate geometries and rarely within recrystallized matrix quartz, and reequilibrated both in composition and density during later stages of exhumation. No fluid inclusions pertaining to the postulated ultrahigh-pressure stage for microdiamond-bearing garnet–kyanite–gneisses have yet been found. The prolate shape of garnets developed during the earliest stages of exhumation that is recorded structurally by (L  S) tectonites, which subsequently accommodated progressive ductile SW shearing and folding up to shallow crustal levels. The majority of matrix kyanite and a later generation of garnet were formed during SW-directed shear under plane-strain conditions. Fluid inclusions entrapped in quartz during this stage of deformation underwent density loss and transformed to almost pure CO2 inclusions by preferential loss of H2O. Those inclusions armoured within garnet retained their primary 3-phase H2O–CO2 compositions. Reequilibration of fluid inclusions in quartz aggregates is most likely the result of recrystallization along with stress-induced, preferential H2O leakage along dislocations and planar lattice defects which results in the predominance of CO2 inclusions with supercritical densities. Carbonic fluid inclusions from adjacent kyanite–corundum-bearing pegmatoids and, the presence of shear-plane-parallel fluid inclusion planes within late quartz boudin structures consisting of pure CO2-fluid inclusions with negative crystal shapes, bear witness of the latest stage of deformation by NE-directed extensional shear.This study shows that the textures of early fluid inclusions that formed already during the prograde metamorphic path can be preserved and used to derive information about the kinematics of subduction that is difficult to obtain from other sources. The textures of early inclusions, together with later generations of unaltered primary and secondary inclusions in metamorphic index minerals that can be linked to specific deformation stages and even PT conditions, are a welcome supplement for the reconstruction of a rather detailed PTd path.  相似文献   

5.
Fluid inclusions from a biotite-garnet schist in the Southern Aravalli Mountain Belt (India) give information on both peak metamorphic conditions and post-peak metamorphic processes during uplift. A combination of careful petrography, microthermometry and Raman spectroscopy reveals the presence of at least five generations of enclosed fluids. Lower amphibolite-facies pressure-temperature conditions of the growth of garnet rims are reproduced by the highest fluid density of the relatively oldest inclusion type of CO2 (±N2)-rich compositions. A calculated fluid composition in the COH system, in equilibrium with the graphite buffer corresponds to a CO2-rich fluid at metamorphic conditions. However, the results of these calculations are very sensitive to small fluctuations in oxygen fugacity and the accuracy of thermodynamic properties of mineral equilibria. Re-equilibration, conceived by specific size-density distribution and the absence of an aqueous phase in inclusions that contain nahcolite crystals, is monitored in these inclusions as post-peak metamorphic processes, like partial decrepitation and preferential leakage. The other fluid types represent heterogeneous fluid trapping of coexisting aqueous NaCl-bearing solutions with CO2-CH4-rich vapour bubbles in healed cracks, and probably the introduction of external fluids containing high salinity aqueous CaCl2-rich solutions in nearly pure N2 vapour bubbles, at lower P-T conditions. This study illustrates that fluid inclusions remain a valuable database of peak metamorphic conditions, moreover, alterations of the entrapped fluids and surrounding crystals are illustrative for specific exhumation evolutions. Received: 24 March 1999 / Accepted: 13 January 2000  相似文献   

6.
The Southern Marginal Zone of the Limpopo Belt in South Africa is characterised by a granulite and retrograde hydrated granulite terrane. The Southern Marginal Zone is, therefore, perfectly suitable to study fluids during and after granulite facies metamorphism by means of fluid inclusions and equilibrium calculations. Isolated and clustered high-salinity aqueous and CO2(-CH4) fluid inclusions within quartz inclusions in garnet in metapelites demonstrate that these immiscible low H2O activity fluids were present under peak metamorphic conditions (800-850 °C, 7.5-8.5 kbar). The absence of widespread high-temperature metasomatic alteration indicates that the brine fluid was probably only locally present in small quantities. Thermocalc calculations demonstrate that the peak metamorphic mineral assemblage in mafic granulites was in equilibrium with a fluid with a low H2O activity (0.2-0.3). The absence of water in CO2-rich fluid inclusions is due to either observation difficulties or selective water leakage. The density of CO2 inclusions in trails suggests a retrograde P-T path dominated by decompression at T<600 °C. Re-evaluation of previously published data demonstrates that retrograde hydration of the granulites at 600 °C occurred in the presence of H2O and CO2-rich fluids under P-T conditions of 5-6 kbar and ~600 °C. The different compositions of the hydrating fluid suggest more than one fluid source.  相似文献   

7.
Fluid inclusions in quartz grains from five samples of high-grade rocks (two paragneisses, an amphibolite, a mafic gneiss and a tonalite dike) from the 2.7 Ga Kapuskasing structural zone (KSZ), Ontario, were examined with petrographic, microthermometric and laser Raman techniques. Three types of fluid inclusions were observed: CO2-rich, H2O-rich and mixed CO2-H2O. CO2-rich fluid inclusions are pseudosecondary or secondary in nature and are generally pure CO2; a few contain varying amounts of CH4·H2O-rich fluid inclusions are secondary in nature, contain variable amounts of dissolved salts, and generally contain daughter crystals. Mixed CO2-H2O fluid inclusions occur where trails of H2O-rich inclusions intersect trails of CO2-rich inclusions. Isochores for high density (p=1.03 g/cm3) pseudosecondary, pure CO2 inclusions intersect the lower pressure portion of the estimated P-T field for high-grade metamorphism, implying that pure CO2 was the peak metamorphic fluid. The variable CH4 content of CO2 inclusions within graphite-bearing samples suggests that CH4 was introduced locally after the formation of the CO2 inclusions; however the origin of the CH4 remains problematic. An aqueous fluid clearly penetrated the gneisses after the peak metamorphism (during uplift/erosion), forming secondary inclusions and contributing to the minor retrogressive hydration observed in these rocks. The presence of the pseudosecondary, high-density CO2 inclusions in quartz crystals in the KSZ rocks constrains the uplift/ erosion path for the KSZ to one of simultaneous decrease in pressure and temperature.  相似文献   

8.
小加山钨矿区位于东准噶尔成矿区中部南缘,处于博格达-哈尔里克构造带上。构造位置上矿区处于哈尔里克复式背斜中,构造线方向以EW向为主。矿区出露地层主要为中泥盆统大南湖组第一亚组第一段(D_2d_1~1)、和第二段(D_2d_1~2)。主要岩浆岩有石英闪长岩、黑云母二长花岗岩、钾长花岗岩及少量中酸性花岗闪长岩脉。矿体赋存于邻近海西晚期花岗岩侵入体附近的中泥盆统大南湖组第一亚组第二段(D_2d_1~2)的变质晶屑凝灰岩中。矿石类型为石英脉型黑钨矿石,有用金属主要为黑钨矿,黑钨矿石英脉分为灰色含钨石英脉和白色含钨石英脉2种。四极质谱分析法测得矿床流体包裹体气相成分以H_2O、CO_2为主,次为N_2、CH_4,此外还含有少量的Ar、C_2H_6,液相成分以Cl~-、Na~+为主,次为Ca~(2+),表明成矿流体主要为H_2O-CO_2-NaCl体系。矿床成因类型属于高温热液石英脉型黑钨矿床,矿体主要位于围岩裂隙构造。钨主要由侵入围岩地层中的地幔热液迁移富集而来,W元素迁移过程中,含钨络合物成矿流体分解进而沉淀成矿。  相似文献   

9.
Phase equilibria in the ternary system H2O-CO2-NaCl were studied at 800 °C and 9 kbar in internally heated gas pressure vessels using a modified synthetic fluid inclusion technique. The low rate of quartz overgrowth along the `b' and `a' axes of quartz crystals was used to avoid fluid inclusion formation during heating, prior to attainment of equilibrium run conditions. The density of CO2 in the synthetic fluid inclusions was calibrated using inclusions in the binary H2O-CO2 system synthesised by the same method and measured on the same heating-freezing stage. In the two-phase field, two types of fluid inclusions with different densities of CO2 were observed. Using mass balance calculations, these inclusions are used to constrain the miscibility gap and the orientation of two-phase tie-lines in the H2O-CO2-NaCl system at 800 °C and 9 kbar. The equation of state of Duan et al. (1995) approximately describes the P-T section of the ternary system up to about 40 wt% of NaCl. At higher NaCl concentrations the measured solubility of CO2 in the brine is much smaller than predicted by the EOS. A “salting out” effect must be added to the equation of state to include coulomb interaction in the model of Anderko and Pitzer (1993) and Pitzer and Jiang (1996). The new experimental data together with published data up to 5 kbar (Shmulovich et al. 1995) encompass practically all subsolidus crustal P-T conditions. A feature of the new experimental results is the large compositional range in the H2O-CO2-NaCl system occupied by the stability fields of halite + CO2-rich fluid ± H2O-NaCl brine. The prediction of halite stability in equilibrium with CO2-rich fluid in deep-crustal rocks is supported by recent petrological and fluid inclusion studies of granulites. Received: 29 June 1998 / Accepted: 17 March 1999  相似文献   

10.
Fluid inclusions at a nano to sub-micron scale in quartz from jadeite quartzite at Shuanghe, Dabie Mountains, have been investigated by using the transmission electron microscopy (TEM). Most fluid inclusions are spherical or negative crystal shaped, forming wide swarm-like trails. The TEM reveals that the relationship between coesite and the host quartz is syntaxic and provides strong evidence of the occurrence of high-salty fluids at peak metamorphic conditions. The fluid inclusions are often connected to dislocations, which are undetected at the scale of optical microscopy. Non-decrepitation leakage of fluid inclusions may occur by pipe diffusion of molecule H2O or CO2 along dislocations from the inclusions into the host quartz, thus leading to original inclusion density and composition changes. It should be taken into full account for the correct petrological interpretation of micro-thermometric results.  相似文献   

11.
12.
Naturally re-equilibrated fluid inclusions have been found in quartz crystals from alpine fissures of the Western Carpathians. Re-equilibration textures, such as planar arrangement of the decrepitation clusters as well as the quartz c- and a-axis oriented fracturing indicate explosion of fluid inclusions. The extent of fracturing, which is dependent on inclusion diameters, suggests inclusion fluid overpressures between 0.6–1.9 kb. Microthermometry data are controversial with the textures because of indicating roughly fixed initial fluid composition and density during re-equilibration, although inclusion volumes have been sometimes substantially reduced by crystallization of newly-formed quartz. It is concluded that fluid loss from re-equilibrated inclusions must have been compensated for by replacing equivalent quartz volume from cracks into parent inclusion. Such a mechanism has operated in a closed system and the re-equilibration related cracks have not been connected with mineral surface. The compositional and density differences between aqueous inclusions in decrepitation clusters and CO2-rich parent inclusions cannot be interpreted in terms of classical fluid immiscibility. Moreover, monophase liquid-filled aqueous inclusions and coexisting monophase CO2 vapour-filled inclusions in the decrepitation clusters are thermodynamically unacceptable under equilibrium metamorphic conditions. The effect of disjoining pressure resulting from structural and electrostatic forces in very thin fractures is suspected to have caused density and compositional inconsistencies between parent and cluster inclusions, as well as the unusual appearance of cluster inclusions. In high-grade metamorphic conditions, the re-equilibration probably leads to boundary layer-induced immiscibility of homogeneous H2O–CO2–NaCl fluids and to formation of compositionally contrasting CO2-rich and aqueous inclusions.  相似文献   

13.
The Wangfeng gold deposit is located in Western Tian Shan and the central section of the Central Asian Orogenic Belt (CAOB). The deposit is mainly hosted in Precambrian metamorphic rocks and Caledonian granites and is structurally controlled by the Shenglidaban ductile shear zone. The gold orebodies consist of gold-bearing quartz veins and altered mylonite. The mineralization can be divided into three stages: quartz–pyrite veins in the early stage, sulfide–quartz veins in the middle stage, and quartz–carbonate veins or veinlets in the late stage. Ore minerals and native gold mainly formed in the middle stage. Four types of fluid inclusions were identified based on petrography and laser Raman spectroscopy: CO2–H2O inclusions (C-type), pure CO2 inclusions (PC-type), NaCl–H2O inclusions (W-type), and daughter mineral-bearing inclusions (S-type). The early-stage quartz contains only primary CO2–H2O fluid inclusions with salinities of 1.62 to 8.03 wt.% NaCl equivalent, bulk densities of 0.73 to 0.89 g/cm3, and homogenization temperatures of 256 °C–390 °C. Vapor bubbles are composed of CO2. The middle-stage quartz contains all four types of fluid inclusions, of which the CO2–H2O and NaCl–H2O types yield homogenization temperatures of 210 °C–340 °C and 230 °C–300 °C, respectively. The CO2–H2O fluid inclusions have salinities of 0.83 to 9.59 wt.% NaCl equivalent and bulk densities of 0.77 to 0.95 g/cm3, with vapor bubbles composed of CO2, CH4, and N2. Fluid inclusions in the late-stage quartz are NaCl–H2O solution with low salinities (0.35–3.87 wt.% NaCl equivalent) and low homogenization temperatures (122 °C–214 °C). The coexistence of inclusions of these four types in middle-stage quartz suggests that fluid boiling occurred in the middle-stage mineralization. Trapping pressures estimated from CO2–H2O inclusions are 110–300 MPa and 90–250 MPa for the early and middle stages, respectively, suggesting that gold mineralization mainly occurred at depths of about 10 km. In general, the Wangfeng gold deposit originated from a metamorphic fluid system characterized by low salinity, low density, and enrichment of CO2. Depressurized fluid boiling caused gold precipitation. Given the regional geology, ore geology, fluid-inclusion features, and ore-forming age, the Wangfeng gold deposit can be classified as a hypozonal orogenic gold deposit.  相似文献   

14.
Re-equilibration processes of natural H2O–CO2–NaCl-rich fluid inclusions quartz are experimentally studied by exposing the samples to a pure H2O external fluid at 600 °C. Experimental conditions are selected at nearly constant pressure conditions (309 MPa) between fluid inclusions and pore fluid, with only fugacity gradients in H2O and CO2, and at differential pressure conditions (394–398 MPa, corresponding to an internal under-pressure) in addition to similar CO2 fugacity gradients and larger H2O fugacity gradients. Modifications of fluid inclusion composition and density are monitored with changes in ice dissolution temperature, clathrate dissolution temperature and volume fraction of the vapour phase at room temperature. Specific modification of these parameters can be assigned to specific processes, such as preferential loss/gain of H2O and CO2, or changes in total volume. A combination of these parameters can clearly distinguish between modifications according to bulk diffusion or deformation processes. Bulk diffusion of CO2 according to fugacity gradients is demonstrated at constant pressure conditions. The estimated preferential loss of H2O is not in accordance with those gradients in both constant pressure and differential pressure experiments. The development of deformation halos in quartz around fluid inclusions that are either under-pressurized or over-pressurized promotes absorption of H2O from the inclusions and inhibits bulk diffusion according to the applied fugacity gradients.  相似文献   

15.
Fluid inclusions in the leucosomes of Wadi Feiran migmatites showed that CO 2 , H2O and (H2O-CO2) fluids were likely to have been present when partial melting began in these rocks. Low salinity, aqueous fluid, to a lesser extent, CO2-rich fluids are the most abundant fluids. The present study suggests that high-density CO2 inclusions were formed at the earliest stage, while H2O inclusions were formed at the late stage. In an intermediate stage, low-density CO2 and H2O, CO2 inclusions were formed. At the early stage of uplift and during melt crystallization, the CO2-bearing vapour was trapped at grain boundaries. At the late stage of uplift, H2O released at the time of crystallization of the melt was trapped as inclusions.  相似文献   

16.
Fluid inclusions in quartz globules and quartz veins of a 3.8-3.7 Ga old, well-preserved pillow lava breccia in the northeastern Isua Greenstone Belt (IGB) were studied using microthermometry, Raman spectrometry and SEM Cathodoluminescence Imaging. Petrographic study of the different quartz segregations showed that they were affected by variable recrystallization which controlled their fluid inclusion content. The oldest unaltered fluid inclusions found are present in vein crystals that survived dynamic and static recrystallization. These crystals contain a cogenetic, immiscible assemblage of CO2-rich (+H2O, +graphite) and brine-rich (+CO2, +halite, +carbonate) inclusions. The gas-rich inclusions have molar volumes between 44.8 and 47.5 cm3/mol, while the brine inclusions have a salinity of ∼33 eq. wt% NaCl. Modeling equilibrium immiscibility using volumetric and compositional properties of the endmember fluids indicates that fluid unmixing occurred at or near peak-metamorphic conditions of ∼460 °C and ∼4 kbar. Carbonate and graphite were precipitated cogenetically from the physically separated endmember fluids and were trapped in fluid inclusions.In most quartz crystals, however, recrystallization obliterated such early fluid inclusion assemblages and left graphite and carbonate as solid inclusions in recrystallized grains. Intragranular fluid inclusion trails in the recrystallized grains of breccia cementing and crosscutting quartz veins have CO2-rich assemblages, with distinctly different molar volumes (either between 43.7 and 47.5 cm3/mol or between 53.5 and 74.1 cm3/mol), and immiscible, halite-saturated H2O-CO2-NaCl(-other salt) inclusions. Later intergranular trails have CH4-H2 (XH2 up to ∼0.3) inclusions of variable density (ranging from 48.0 to >105.3 cm3/mol) and metastable H2O-NaCl(-other salt?) brines (∼28 eq. wt% NaCl). Finally, the youngest fluid inclusion assemblages are found in non-luminescent secondary quartz and contain low-density CH4 (molar volume > 105.33 cm3/mol) and low-salinity H2O-NaCl (0.2-3.7 eq. wt% NaCl). These successive fluid inclusion assemblages record a retrograde P-T evolution close to a geothermal gradient of ∼30 °C/km, but also indicate fluid pressure variations and the introduction of highly reducing fluids at ∼200-300 °C and 0.5-2 kbar. The quartz globules in the pillow fragments only contain sporadic CH4(+H2) and brine inclusions, corresponding with the late generations present in the cementing and crosscutting veins. We argue that due to the large extent of static recrystallization in quartz globules in the pillow breccia fragments, only these relatively late fluid inclusions have been preserved, and that they do not represent remnants of an early, seafloor-hydrothermal system as was previously proposed.Modeling the oxidation state of the fluids indicates a rock buffered system at peak-metamorphic conditions, but suggests a change towards fluid-graphite disequilibrium and a logfH2/fH2O above the Quartz-Fayalite-Magnetite buffer during retrograde evolution. Most likely, this indicates a control on redox conditions and on fluid speciation by ultramafic rocks in the IGB.Finally, this study shows that microscopic solid graphite in recrystallized metamorphic rocks from Isua can be deposited inorganically from a fluid phase, adding to the complexity of processes that formed reduced carbon in the oldest, well-preserved supracrustal rocks on Earth.  相似文献   

17.
The small Pirilä gold deposit, which is located in the southeastern part of the Svecofennian complex near the Archean/Proterozoic boundary, is hosted by quartz veins and lenses occurring in mica schist. The rocks of the area were metamorphosed under conditions of amphibolite facies. Gold is invariably associated with sulphides. Microthermometry of fluid inclusions in quartz indicates four types of inclusions: (1) weakly saline H2O-CO2 (< 4.0 eq.wt% NaCl) with small amounts of CH4 (< 10 mole% CH4); (2) CO2 (< 10 mole% CH4); (3) CH4; and (4) H2O (< 25 eq.wt% NaCl) with less than 0.85 mole% CO2 in the vapour phase. Texturally these inclusion types are classified as primary (H2O-CO2) and secondary (H2O, CO2 and CH4). Leachate analysis shows that, in addition to Na, the aqueous fluids contain Ca and Fe with minor amounts of K and Mg. The primary H2O-CO2 and the secondary H2O inclusions contain sulphide and unidentified opaque grains, respectively. The secondary CH4 inclusions are often associated with short trails of arsenopyrite grains. Fluid inclusion and geological data suggest ore mineral mobilization, crystallization of host quartz, and deposition of sulphides controlled by the D2 and D3 structures in the presence of a H2O-CO2 fluid mainly during the plastic D3 deformation and during the amphibolite facies metamorphism (i.e. 3.4 kbars/540–670°C). During ductile-brittle deformation (probably D4), precipitation of tectonic remobilized gold from sulphides in fractures occurred in the presence of CH4 and H2O fluids at lowered temperature (< 440°C) and pressure (< 2 kbars).  相似文献   

18.
用透射电子显微镜(TEM)观察产于大剐山双河地区含柯石英硬玉石英岩矿物石英中纳米级至亚微米级的流体包裹体超微观结构特征发现:大多数包裹体呈圆形或负晶形(粒径大多为10nm~350nm),构成宽的密集的包裹体串。TEM揭示了柯石英和寄主矿物石英之间为共晶格取向连生关系,并寻找到在峰期变质条件下高盐流体存在的有力证据。流体包裹体经常伴随着许多相互连接的位错,并且与位错和位错壁等交生在一起,形成网络分布,这是在光学显微镜尺度下所不能探测到的。非爆裂的流体渗漏可能通过H2O或CO2分子沿位错的管道扩散,从包裹体进入寄主矿物石英,因而导致原来包裹体密度和成分的变化。  相似文献   

19.
Fluid inclusions and F, Cl concentration of hydrous minerals were analysed in the coesite-pyrope quartzite, the interlayered jadeite quartzite and their country-rock gneiss from the Dora-Maira massif using a combination of microthermometry, Raman spectrometry, synchrotron X-ray microfiuorescence and electron microprobe analysis. Three populations of fluid inclusions were recognized texturally and can be related to distinct metamorphic stages. A low-salinity aqueous fluid occurs in the retrogressed country gneiss and as late secondary inclusions in jadeite quartzite and chloritized pyrope. An earlier secondary population is found in matrix quartz of the jadeite- and pyro-pe-quartzites. This population can be related to the early decompression and so to incipient breakdown of garnet into phlogopite-bearing assemblages. The inclusion fluid is highly saline (up to 84 wt% equivalent NaCl) and contains Na, Ca, Fe, Cu and Zn as major cations. In pyrope quartzite, additional K was found in these brines, which locally coexist with CO2-rich inclusions. The oldest fluid inclusions are preserved in kyanite grains included in fresh pyrope and in pyrope itself. In pyrope, all inclusions have decrepitated and contain magnesite, an Mg-phosphate, sheet-silicate(s), a chloride and an opaque phase, with no fluid preser ved. In contrast, the kyanite inclusions in pyrope preserve primary H2O-CO2 low-salinity fluid inclusions, probably owing to the low compressibility of the kyanite inclusions and host garnet. In spite of in-situ re-equilibration, these inclusions can be interpreted as relics of the dehydration fluid that attended pyrope growth. These correlations between textural and chemical fluid inclusion data and metamorphic stages are consistent with the fluid composition calculated from the halogen content of different generations of phlogopite and biotite. The preservation of different fluid compositions, both in time and space, is evidence for local control and possibly origin of the fluids, in agreement with isotopic data. These results, in particular the absence of CO2 in the jadeite quartzite, are best interpreted in terms of a fluid-melt system evolution. With increasing metamorphism, partitioning of H2O, Na, Ca, Fe and heavy metals into melt (jadeite quartzite) and Mg, Na/K, F, CO2 and P(?) into a residual aqueous fluid can account for depletion in Na, Ca and Fe of the pyrope quartzite. During the retrograde path, a H 2 O rose as melt crystallized, generating the two populations of hypersaline and water-rich fluids that were highly reactive to pyrope. The process of fluid-melt interaction envisioned here coupled with models of melt extraction in subduction zones provides an attractive opportunity for the instantaneous ( < 1 Ma) and selective transport of elements between a downgoing slab and the overlying mantle wedge.  相似文献   

20.
Fine-grained peraluminous synkinematic leuco-monzogranites (SKG), of Cambro-Ordovician age, occur as veins and sills (up to 20–30 m thick) in the Deep Freeze Range, within the medium to high-grade metamorphics of the Wilson Terrane. Secondary fibrolite + graphite intergrowths occur in feldspars and subordinately in quartz. Four main solid and fluid inclusion populations are observed: primary mixed CO2+H2O inclusions + Al2SiO5 ± brines in garnet (type 1); early CO2-rich inclusions (± brines) in quartz (type 2); early CO2+CH4 (up to 4 mol%)±H2O inclusions + graphite + fibrolite in quartz (type 3); late CH4+CO2+N2 inclusions and H2O inclusions in quartz (type 4). Densities of type 1 inclusions are consistent with the crystallization conditions of SKG (750°C and 3 kbar). The other types are post-magmatic: densities of type 2 and 3 inclusions suggest isobaric cooling at high temperature (700–550°C). Type 4 inclusions were trapped below 500°C. The SKG crystallized from a magma that was at some stage vapour-saturated; fluids were CO2-rich, possibly with immiscible brines. CO2-rich fluids (±brines) characterize the transition from magmatic to post-magmatic stages; progressive isobaric cooling (T<670°C) led to a continuous decrease off O 2 can entering in the graphite stability field; at the same time, the feldspars reacted with CO2-rich fluids to give secondary fibrolite + graphite. Decrease ofT andf O 2 can explain the progressive variation in the fluid composition from CO2-rich to CH4 and water dominated in a closed system (in situ evolution). The presence of N2 the late stages indicates interaction with external metamorphic fluids.Contribution within the network Hydrothermal/metamorphic water-rock interactions in crystalline rocks: a multidisciplinary approach on paleofluid analysis. CEC program: Human Capital and Mobility  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号