首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 808 毫秒
1.
The increasing demand for freshwater has necessitated the exploration for new sources of groundwater, particularly in hard rock terrain, where groundwater is a vital source of freshwater. A fast, cost effective, and economical way of exploration is to study and analyze geophysical resistivity survey data. The present study area Omalur taluk, Salem District, Tamil Nadu, India, is overlain by Archaean crystalline metamorphic complex. The study area is a characteristic region of unconfined aquifer system. The potential for occurrence of groundwater in the study areas was classified as very good, good, moderate, and poor by interpreting the subsurface geophysical investigations, namely vertical electrical soundings, were carried out to delineate potential water-bearing zones. The studies reveal that the groundwater potential of shallow aquifers is due to weathered zone very low resistivity and very high thickness and the potential of deeper aquifers is determined by fracture zone very low resistivity and very high thickness area. By using conventional GIS method, the spatial distribution maps for different layer (top soil, weathered zone, first fracture zone, and second fracture zone) thicknesses were prepared. The geoelectrical approach was successfully applied in the study area and can be therefore easily adopted for similar environments.  相似文献   

2.
Groundwater preservation comprises a major problem in water policy. The comprehension of the groundwater/hydraulic systems can provide the means to approach this problem. Generally, drilling is expensive and time-consuming. On the other hand, new techniques have been applied during the last few decades that provide useful information on the depth and quality of aquifers. Among them, transient electromagnetic method (TEM) is an appealing method that provides fast results with minimum field crew and solves several hydrogeological problems. Many portable systems for single-site measurements are commercially available. The TEM-Fast 48HPC was used for acquiring 106 soundings in the northwestern Crete in Greece for defining the hydrogeological characteristics of the study area, since there were no available data from boreholes. Detailed geological, hydrolithological and tectonic survey was applied prior to the geophysical measurements. All the data were integrated to produce a secure and reliable hydrogeological model for the study area prior to any future hydrowell. Specifically, geometrical and hydraulic data of the study area groundwater were acquired. Two unconnected aquifers were detected and their possible contamination due to saltwater intrusion was analyzed and eliminated. Moreover, a location for borehole construction and groundwater pumping based on the potential of the aquifer system was proposed. Finally, the contribution of TEM (and electrical resistivity tomography) geophysical methods in studying complex coastal aquifers is shown by this work.  相似文献   

3.
Low-frequency geoelectrical methods include mainly self-potential, resistivity, and induced polarization techniques, which have potential in many environmental and hydrogeological applications. They provide complementary information to each other and to in-situ measurements. The self-potential method is a passive measurement of the electrical response associated with the in-situ generation of electrical current due to the flow of pore water in porous media, a salinity gradient, and/or the concentration of redox-active species. Under some conditions, this method can be used to visualize groundwater flow, to determine permeability, and to detect preferential flow paths. Electrical resistivity is dependent on the water content, the temperature, the salinity of the pore water, and the clay content and mineralogy. Time-lapse resistivity can be used to assess the permeability and dispersivity distributions and to monitor contaminant plumes. Induced polarization characterizes the ability of rocks to reversibly store electrical energy. It can be used to image permeability and to monitor chemistry of the pore water–minerals interface. These geophysical methods, reviewed in this paper, should always be used in concert with additional in-situ measurements (e.g. in-situ pumping tests, chemical measurements of the pore water), for instance through joint inversion schemes, which is an area of fertile on-going research.  相似文献   

4.
Karstic aquifers can be particularly vulnerable to both pollution from surface activities and large-scale dewatering from mineral winning operations. This is because of the enhanced vertical and lateral flow paths, resulting from the dissolution of carbonate species by rainfall. Often this process results in the development of voids that can range in size from several centimetres to several tens of metres. To date, groundwater vulnerability maps for England and Wales, including karst areas, have been produced using a methodology that does not consider the presence of karst features. The uncertainties that are presented by the potential for pollution by the presence of water-carrying conduits in karst areas, where there are proposed or existing limestone quarries, require new techniques for detecting and delineating underground cave systems. In order for any mapping technique to provide an acceptable assessment of vulnerability, the location and spatial distribution of high permeability flow paths need to be established. Of the available geophysics techniques that may allow for the identification of such features, microgravity and resistivity imaging are likely to be the most successful. Microgravity surveying has the potential to identify the presence and location of such voids, and with the integration of electrical tomographic work, can provide 'targets' for the location of monitoring boreholes. Whilst these techniques are intensive and may not be cost effective on a regional scale, they do have the potential to provide high-resolution data over smaller areas, which would be invaluable to any site or area-specific assessment of vulnerability.  相似文献   

5.
Integrated surface electrical resistivity and electromagnetic (EM) surveys were conducted in a hard-rock terrain of Southwestern Nigeria in the vicinity of active oxidation sewage treatment ponds. The aim was to detect soil contamination due to the spread of sewage effluent, locate possible leachate plumes and conductive lithologic layers, and access the risk of groundwater pollution in the vicinity of the sewage-ponds. Dipole–dipole resistivity profiling and very low frequency (VLF) data were acquired at 10-m intervals along five 200-m long east-west geophysical traverses. Resistivity sections obtained revealed four subsurface geologic layers comprised of lateritic clay, clayey sand/sand, weathered/fractured bedrock, and competent bedrock. A distinct low resistivity zone corresponding to the contamination plume (labeled B) was delineated from all the resistivity sections. This low zone extends into the weathered bedrock and possibly suggests contamination of this layer. The filtered real component of the processed VLF data detected three distinct anomaly zones that are representative of fractured zones filled with conductive fluids and/or lithologic boundaries that possibly serve as conduits for the movement of contaminated effluents. The results obtained from the two methods suggest possible contamination of the subsurface soil layers and groundwater in the vicinity of the sewage-ponds. The existence of this contaminated plume poses a serious threat to the ecosystem and health of the people living in the vicinity of the sewage-ponds.  相似文献   

6.
Coastal aquifers can become polluted due to natural and human activities, such as intrusion of saline water, discharge of effluents in industrial areas and chemical weathering of natural geological deposits. The present study is aimed mainly at understanding the geophysical and chemical characteristics of groundwater near Tuticorin, Tamilnadu, India by studying the electrical resistivity distribution of the subsurface groundwater by applying the Schlumberger vertical electrical sounding (VES) technique followed by chemical analysis of water samples. A total of 20 VES soundings were carried out to understand the resistivity distribution of the area and 21 water samples were collected to analyze the chemical quality. The interpretation and analysis of the results have identified different hydrogeologic behaviors, a highly saline coastal aquifer and freshwater locations. The results obtained from geophysical and geochemical sampling are in good agreement with each other. The approach shows the efficacy of the combination of geophysical and geochemical methods to map groundwater contamination zones in the study area.  相似文献   

7.
Self potential (SP) and electrical resistivity tomography (ERT) methods are used together with the results of groundwater samples hydrogeochemical analysis to assess the impact of the water leak from the landfill garbage site at NamSon located in Northern Hanoi on causing pollution to the surrounding environment and affecting geological structure. Selected survey area covers an area of 180 × 300 m lying in the low land of the NamSon site with a slope ranging about 8 m in direction NW–SE. There are three geophysical measurements lines denoted as T1, T2 and T3. Processing 180 SP data points has allowed to draw maps of equipotential epoch in the two periods in 2015 and 2016. The maps show four zones of SP positive anomalies with maximum amplitudes of about +20 mV where the groundwater flow direction is downward and five zones of SP negative anomalies with minimum values in a range from ?180 to ?260 mV where the groundwater flow direction is upward. Resistivity values of the subsurface layers of soils and rocks have been aquired from 2D inverse model for measuring ERT in March 2015 and March 2016. The results of the ERT allowed to define the low resistivity in the range 15–20 Ωm related to leachate plume from NamSon landfill site. Results of the physico-chemical analysis of groundwater samples from the existing six boreholes show increases in concentration of the measured pollutant parameters indicating contamination of the groundwater as a result of solid waste leachate accumulation. This result is affirmative evidence for the survey results by geophysical technique. The rapid decrease in quality of groundwater over the last year is probably due to the influence of the leachate from the NamSon landfill site.  相似文献   

8.
The protection of groundwater has become one of the most important European environmental policies as evidenced by the Orders relating to the protection of water from contamination, Directive 2000/60/CE of the European Parliament and the European Union Council, and more concretely Directive 2006/118/118/CE, related to the protection of groundwater from pollution and degradation. Traditional methods for assessing vulnerability include soil surveys, drilling and analysis of lithology logs from wells with the objective of characterising the thickness, hydraulic properties and lateral extend of the protective layers. However, such studies can be labour-intensive and expensive. In addition, the parameters measured may have high spatial variability, which makes accurate characterization over large areas difficult. Fortunately, a numerical index of protection can be assigned from the longitudinal electrical conductance parameter derived from electrical resistivity surveys (VES, ERT or any other electrical or EM method). This can be more accurate and reliable than any other vulnerability index derived only from visual inspection or interpolated from sparse borehole data.  相似文献   

9.
A combination of vertical electrical soundings (VES), 2D electrical resistivity imaging (ERI) surveys and borehole logs were conducted at Magodo, Government Reserve Area (GRA) Phase 1, Isheri, Southwestern Nigeria, with the aim of delineating the different aquifers present and assessing the groundwater safety in the area. The Schlumberger electrode array was adopted for the VES and dipole-dipole array was used for the 2D imaging. The maximum current electrode spread (AB) was 800 m and the 2D traverse range between 280 and 350 m in the east-west direction. The thickness of impermeable layer overlying the confined aquifer was used for the vulnerability ratings of the study area. Five lithological units were delineated: the topsoil, clayey sand, unconsolidated sand which is the first aquifer, a clay stratum and the sand layer that constitutes the confined aquifer horizon. The topsoil thickness varies from 0.6 to 2.6 m, while its resistivity values vary between 55.4 and 510.6 Ω/m. The clayey sand layers have resistivity values ranging from 104.2 to 143.9 Ω/m with thickness varying between 0.6 and 14.7 m. The resistivity values of the upper sandy layer range from 120.7 to 2195.2 Ω/m and thickness varies from 3.3 to 94.0 m. The resistivity of the clay layer varies from 11.3 to 96.1 Ω/m and the thickness ranges from 29.6 to 76.1 m. The resistivity value of the confined aquifer ranges between 223 and 1197.4 Ω/m. The longitudinal conductance (0.0017–0.02 mhos) assessment of the topsoil shows that the topsoil within the study area has poor overburden protective capacity, and the compacted impermeable clay layer shows that the underlying confined aquifer is well protected from contamination and can be utilized as a source of portable groundwater in the study area. This study therefore enabled the delineation of shallow aquifers, the variation of their thicknesses and presented a basis for safety assessment of groundwater potential zones in the study area.  相似文献   

10.
Electrical resistivity methods are applied extensively for shallow sub-surface objectives but it has constraints in distinguishing the chemical characteristics of the medium. However, this complexity can be resolved by integrated investigations where geophysical anomaly would be validated with hydro-geochemical data. The present study highlights the notable importance of integrated geophysical and hydrogeological investigations in demarcating sub-surface pollution due to saline water intrusion and industrial effluents at Cuddalore coast in India. Geophysical scanning encompassing a total of 35 vertical electrical sounding (VES) were validated with drilling lithologs, water level and water quality parameters from a network of 125 observation wells at a test site of 17 km2. To understand the spatial variation of sub-surface contamination, two profiles of apparent resistivity sections were generated covering VES points parallel to the coast. Results revealed that, the low order of resistivity range 3 to 10 Ω-m (up to 30–40 m depth) and total dissolved solids range 2000 to 10,000 mg/l of groundwater reflects sub-surface contamination but cannot distinguish kind of salinity which is further verified by chemical analysis of Ca2+ (1200–2041 mg/l), SO4 2? (3000–9480 mg/l) which confirms the gypsum pollution and Na+ (750–1000 mg/l), Cl? (1000–2000 mg/l) designate the marine water contamination. Further, static groundwater head measurements demarcate the study area into above mean sea level (MSL) and below MSL zones. This study has provided a rapid and comprehensive picture about spatial variations of groundwater contamination which can help in planning, protection and safe management of coastal aquifers in India and worldwide.  相似文献   

11.
Groundwater resources have become more vulnerable to contamination due to rapid population growth and economic development. This study aimed to assess the groundwater contamination risk in the Weining Plain, China. Based on the specific conditions of the Weining Plain, a new model DRTSWI with a weighting scheme determined by analytic hierarchy process was developed to evaluate the intrinsic groundwater vulnerability for the study area. An integrated approach, combining the toxicity, the release possibility, and the potential release quantity of the pollutants, was used to estimate the pollution loading. The groundwater contamination risk results were obtained by overlaying the intrinsic vulnerability and pollution loading maps. These indicated that two industrial parks pose the main threat to groundwater quality, due to their unfavorable hydrogeological setting and potential pollution sources on the surface. Some areas in and around the industrial parks exhibit groundwater pollution, which was identified on the contamination risk map using buffer analysis. High risk areas are industries with high or medium vulnerability. The vulnerability and contamination risk maps developed for this study are valuable tools for environmental planning and can be used for predictive management of groundwater resources.  相似文献   

12.
Current assessments of slope stability rely on point sensors, the results of which are often difficult to interpret, have relatively high costs and do not provide large-area coverage. A new system is under development, based on integrated geophysical–geotechnical sensors to monitor groundwater conditions via electrical resistivity tomography. So that this system can provide end users with reliable information, it is essential that the relationships between resistivity, shear strength, suction and water content are fully resolved, particularly where soils undergo significant cycles of drying and wetting, with associated soil fabric changes. This paper presents a study to establish these relationships for a remoulded clay taken from a test site in Northumberland, UK. A rigorous testing programme has been undertaken, integrating the results of multi-scalar laboratory and field experiments, comparing two-point and four-point resistivity testing methods. Shear strength and water content were investigated using standard methods, whilst a soil water retention curve was derived using a WP4 dewpoint potentiometer. To simulate seasonal effects, drying and wetting cycles were imposed on prepared soil specimens. Results indicated an inverse power relationship between resistivity and water content with limited hysteresis between drying and wetting cycles. Soil resistivity at lower water contents was, however, observed to increase with ongoing seasonal cycling. Linear hysteretic relationships were established between undrained shear strength and water content, principally affected by two mechanisms: soil fabric deterioration and soil suction loss between drying and wetting events. These trends were supported by images obtained from scanning electron microscopy.  相似文献   

13.
A combined geophysical investigation consisting of vertical electrical sounding (VES) and multielectrode system was carried out to map the subsurface resistivity in all major lakes which are highly polluted by the discharge of sewage and other chemical effluents in greater Hyderabad, India. The structural features identified in the study area play a major role in groundwater flow and storage. The interpretation of geophysical data and lithologs indicates that a silt/clay zone (predominantly silt) has a thickness of 5–10 m all along the drainage from Patelcheruvu to the Musi River. The silt/clay zone inferred close to the lakes is a mixture of clay, silt and sand with more silt content as indicated from the lithologs during drilling. The low resistivity values obtained can be attributed to the pollutant accumulated in the silt which can reduce the resistivity values. Further, the TDS of the water samples in these wells are more than 1,000 mg/l which further confirms the above scenario. The pollution spread is less in the upstream areas whereas it is more in the downstream which can be attributed to the shallow water table conditions and also due to the interaction of surface water and groundwater.  相似文献   

14.
A detailed hydrogeological and hydrochemical study was carried out in Yamuna-Krishni sub-basin which is a part of the vast central Ganga plain. Groundwater is the major source of water supply for agricultural, domestic and industrial uses. The excess use of groundwater has resulted in depletion of water levels. The groundwater quality, too, has deteriorated in areas dominated by industrial activity. This has led to the preparation of a groundwater vulnerability map in relation to contamination. Groundwater vulnerability maps are valuable derivative maps that show, quantitatively or qualitatively, certain characteristics of the sub-surface environment that determine vulnerability of groundwater to contamination. The modified DRASTIC method was used to prepare vulnerability map. The parameters like depth to water, net recharge, aquifer media, soil media, impact of vadose zone, hydraulic conductivity and land use pattern, owing to its bearing on groundwater regime, were considered to prepare vulnerability map. The vulnerability index is computed as the sum of the products of weight and rating assigned to each of the input considered as above. The vulnerability index ranges from 140 to 180, and is classified into four classes i.e. 140–150, 150–160, 160–170 and 170–180 corresponding to low, medium, high and very high vulnerability zones respectively. Using this index, a groundwater vulnerability potential map was generated which shows that 7%, 40% and 53% of the study area falls in low, medium and high to very high vulnerability zones respectively. The map, thus generated, can be used as a tool for protection and management of aquifers from contamination.  相似文献   

15.
Subsurface geophysical surveys were carried out using a large range of methods in an unconfined sandstone aquifer in semiarid south-western Niger for improving both the conceptual model of water flow through the unsaturated zone and the parameterization of numerical a groundwater model of the aquifer. Methods included: electromagnetic mapping, electrical resistivity tomography (ERT), resistivity logging, time domain electromagnetic sounding (TDEM), and magnetic resonance sounding (MRS). Analyses of electrical conductivities, complemented by geochemical measurements, allowed us to identify preferential pathways for infiltration and drainage beneath gullies and alluvial fans. The mean water content estimated by MRS (13%) was used for computing the regional groundwater recharge from long-term change in the water table. The ranges in permeability and water content obtained with MRS allowed a reduction of the degree of freedom of aquifer parameters used in groundwater modelling.  相似文献   

16.

Fluvio-deltaic aquifers are the primary source of drinking water for the people of Bangladesh. Such aquifers, which comprise the Ganges-Brahmaputra-Meghna Delta, are hydrogeologically heterogeneous. Because of widespread groundwater quality issues in Bangladesh, it is crucial to know the hydrostratigraphic architecture and hydrochemistry, as some aquifer units are contaminated, whereas others are safe. Geophysical methods provide a potentially effective and noninvasive method for extensive characterization of these aquifers. This study applies and investigates the limitations of using electrical resistivity imaging (ERI) for mapping the hydrostratigraphy and salinity of an aquifer-aquitard system adjacent to the Meghna River. Some electrical resistivity (ER) sections showed excellent correlation between resistivity and grain size. These suggest that ERI is a powerful tool for mapping internal aquifer architecture and their boundaries with finer-grained aquitards which clearly appear as low-ER zones. However, in parts of some ER sections, variations in electrical properties were determined by porewater resistivity. In these cases, low ER was indicative of brine and did not indicate the presence of finer-grained materials such as silt or clay. Accordingly, the following hydrostratigraphic zones with different resistivities were detected: (1) aquifers saturated with fresh groundwater, (2) a regional silt/clay aquitard, and (3) a deeper brine-saturated formation. In addition, shallow silt/clay pockets were detected close to the river and below the vadose zone. ERI is thus a promising technique for mapping aquifers versus aquitards; however, the observations are easily confounded by porewater salinity. In such cases, borehole information and groundwater salinity measurements are necessary for ground-truthing.

  相似文献   

17.
The existing different human activities and planned land uses put the groundwater resources in Jordan at considerable risk. There are evidences suggesting that the quality of groundwater supplies in north Jordan is under threat from a wide variety of point and non-point sources including agricultural, domestic, and industrial. Vulnerability maps are designed to show areas of greatest potential for groundwater contamination on the basis of hydrogeological conditions and human impacts. DRASTIC method incorporates the major geological and hydrogeological factors that affect and control groundwater movement: depth to groundwater (D), net recharge (R), lithology of the aquifer (A), soil texture (S), topography (T), lithology of vadose zone (I), and hydraulic conductivity (C). The main goal of this study is to produce vulnerability maps of groundwater resources in the Yarmouk River basin by applying the DRASTIC method to determine areas where groundwater protection or monitoring is critical. ArcGIS 9.2 was used to create the groundwater vulnerability maps by overlaying the available hydrogeological data. The resulting vulnerability maps were then integrated with lineament and land use maps as additional parameters in the DRASTIC model to assess more accurately the potential risk of groundwater to pollution. The general DRASTIC index indicates that the potential for polluting groundwater is low in the whole basin, whereas the resulting pesticide DRASTIC vulnerability map indicates that about 31% of the basin is classified as having moderate vulnerability, which may be attributed to agricultural activities in the area. Although high nitrate concentrations were found in areas of moderate vulnerability, DRASTIC method did not depict accurately the nitrate distribution in the area.  相似文献   

18.
Karst aquifers supply a significant fraction of the world's drinking water. These types of aquifers are alsohighly susceptible to pollution from the surface with recharge usually occurring through fractures and solution openings at the bedrock surface. Thickness of the protective soil cover, macropores and openings within the soil cover, and the nature of the weathered bedrock surface all influence infiltration. Recharge openings at the bedrock surface, however, are often covered by unconsolidated sediments, resulting in the inadvertent placement of landfills, unregulated dump sites, tailing piles, waste lagoons and septic systems over recharge zones. In these settings surface geophysical surveys, calibrated by a few soil cores, could be employed to identify these recharge openings, and qualitatively assess the protection afforded by the soil cover. In a test of this hypothesis, geophysical measurements accurately predicted the thickness of unconsolidated deposits overlying karstic dolomite at a site ab  相似文献   

19.
Shallow clay-rich aquitards limit groundwater recharge to underlying aquifers, but they also protect the aquifers from contamination. The bulk hydraulic conductivity of such shallow aquitards can range from less than 1 mm/year to more than 100 m/year and may be much greater than the hydraulic conductivity of small intact samples of the aquitard material. This enhanced hydraulic conductivity diminishes the qualities of the aquitards for the protection of underlying aquifers but allows a higher rate of recharge. For aquifers that are overlain by aquitards, management and protection of groundwater resources may be critically dependent on reliable determinations of aquitard permeability. A variety of methods for determining bulk hydraulic conductivities of shallow clay aquitards is available; each has drawbacks and advantages, and each is based on simplifying assumptions. These methods include slug tests, pumping tests, response of the aquitard to mechanical loading, and analysis of natural pore-pressure fluctuations. Several of the commonly used methods require an independent measurement of specific storage. Laboratory methods for determining specific storage are probably not representative of in situ conditions and may lead to overestimation of aquitard permeability. Much of the theory developed to date depends on the assumption that horizontal displacement of the solid material is negligible, and this may not be a valid assumption for highly deformable media such as clay aquitards. However, with judicious selection of the most suitable methods for a particular site, good test design, careful instrumentation, and respect for the underlying assumptions, reliable determinations of aquitard permeability can be obtained. Electronic Publication  相似文献   

20.
The use of wastewater for irrigation in sandy soil increases the pollution risk of the soil and may infiltrate to the shallow groundwater aquifer. In such environment, some important parameters need to be obtained for monitoring the wastewater in the unsaturated zone over the aquifer. These parameters include clay content, heterogeneities of the upper soils, depth to the aquifer and the variations of groundwater quality. In the present work, the efficiency of DC resistivity method in forms of 1-D and 2-D measurements was studied for wastewater monitoring in the Gabal el Asfar farm, northeast of Cairo, Egypt. Forty-one Schlumberger soundings (VES) were performed then followed by three pole-dipole 2-D profiles along some considered regions within the area. The resistivity measurements were integrated with the boreholes, hydrogeological and hydrochemical (surface and groundwater samples) information to draw a clear picture for the subsurface conditions. The obtained results were presented as cross sections and 3-D visualization to trace the clay intercalations within the unsaturated zone. In addition, a vulnerability map was created using the obtained results from 1-D Schlumberger survey and confirmed with the 2-D resistivity profiling. The obtained results have shown that the 2-D resistivity imaging technique is a powerful tool for mapping the small-scale variability within the unsaturated zone and the wastewater infiltration. However, limitations of resistivity techniques were observed in the area with limited resistivity contrast such as thin clay layers with brackish water background. Under that condition, the measured pattern of resistivity distributions depends on the applied electrode array, electrode spacing and using the available geological information during the inversion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号