首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
汪玲瑶  谌芸  肖天贵  李晟祺  葛蕾 《气象》2018,44(6):771-780
本文首先给出江南地区暖区暴雨的定义,并按天气形势将其分为暖切变型、冷锋锋前型、副热带高压(以下简称副高)型和强西南急流型四类。然后利用2010—2016年5—9月常规和自动站逐时降水等非常规观测资料统计暖区暴雨的时空分布特征和降水性质等,并对暖区暴雨的形成原因进行初步分析。最后利用NCEP FNL全球分析资料,基于中尺度分析技术给出四类暖区暴雨的系统配置:(1)四类暖区暴雨均为分散性局地降水,降水多发生于山区、平原和湖泊交界处等不均匀下垫面附近。其中,暖切变型降水范围广、强度最大、极端性最明显且主要位于江南中西部;冷锋锋前型降水集中、强度较大且具有一定极端性,主要位于江南中部;副高型降水强度较弱,主要位于江南中东部;强西南急流主要位于江南西部。(2)暖切变型和强西南急流型以夜间降水为主,副高型降水集中在午后,冷锋锋前型降水日变化不明显。(3)暖区暴雨由稳定性和对流性降水共同组成且降水量越大,降水对流性越明显。(4)在低层高湿、不稳定能量积聚等有利背景下,暖切变型、冷锋型和副高型暖区降水多由边界层(地面)中尺度辐合线配合高低空急流耦合产生,强西南急流型一般形成于低空急流上的中尺度风速脉动及地面辐合线附近,且低空急流越强,暴雨强度越大。(5)暖切变型和冷锋型暖区暴雨的落区分别位于低层850hPa暖切变以南和地面锋前的显著湿区内,副高型和强西南急流型的暴雨落区分别位于副高内和强低空急流出口区左前侧的水汽充沛且大气层结不稳定区内。四类暖区暴雨常表现为长生命史的移动型中尺度雨团途经山区或河流湖泊等不均匀下垫面时,强度增大、移速减慢,形成暖区局地强降水。  相似文献   

2.
付炜  唐明晖  叶成志 《气象》2020,46(8):1001-1014
利用常规观测资料、FY-2G卫星黑体亮温(TBB)资料、多普勒天气雷达资料以及ERA-Interim再分析资料,对2016年5月5日(以下简称"16·5"过程)和2018年4月23日(以下简称"18·4"过程)两次强西南急流背景下的暖区暴雨预报失败案例进行对比分析。结果表明:两次暖区暴雨过程的水汽分别来源于925 hPa西南急流和显著西南风,"16·5"过程的水汽辐合强度及范围较"18·4"过程更强、更广,导致暴雨出现的范围更广;超低空急流断裂处的辐合区叠加在湘桂边界南岭山脉特殊地形上,动力抬升触发及维持作用更加明显。大气层结稳定度对暖区暴雨的发生具有重要指示作用,"16·5"过程大气不稳定度更大导致了更强的暖区暴雨;两次暖区暴雨的湿层厚度较锋面暴雨浅薄,中低层的显著湿区导致了暴雨或大暴雨的出现;"16·5"暖区暴雨发生过程中能量长时间的维持,是西南低空急流暖湿输送导致高温、高湿、高能的对流不稳定层结反复重建的结果,最终导致强降水持续,进而导致了更大的总降水量。"18·4"过程冷锋前100 km外相对较弱的水汽辐合区,是暖区暴雨的一个重要预报指标;两次过程中高空槽的经向度是决定暖区暴雨范围大小的重要因子。地形在两次暖区暴雨过程中的降水增幅作用明显,降水中心主要出现在山谷或盆地的迎风坡位置;两次暖区暴雨与边界层的动力辐合、水汽供应关系密切,边界层辐合抬升和地形的作用明显,短期预报需重点关注边界层辐合区及特殊地形位置,对数值预报进行适当订正。雷达风廓线资料揭示了两次暖区暴雨过程西南风厚度的差异对降水强度的影响;垂直风切变的增强、环境风偏弱特征在这两次过程中分别提供了强降水持续维持的信息,对暴雨的预报预警的升级有一定的指示作用。  相似文献   

3.
北方一次暖区大暴雨强降水成因探讨   总被引:19,自引:11,他引:8  
徐珺  杨舒楠  孙军  张芳华  谌芸 《气象》2014,40(12):1455-1463
2012年7月7日黄淮出现一次典型暖区大暴雨过程,降水持续时间长、强度大和强降水范围集中,中尺度特征明显。本文通过常规和非常规观测、NCEP分析资料对该次黄淮暖切变线引发的豫东北、鲁南和苏北等地大暴雨天气过程的成因进行探讨,结果表明:整层高湿环境有利于降低暖区暴雨对抬升条件的要求、提高降水效率和局地不断产生中尺度对流系统;低层垂直风切变和超低空急流在对流触发和维持中可能有重要作用;次天气及以下尺度的抬升条件,如地面辐合线、925和850 hPa切变和低空急流出口区的风速辐合等均可导致强降水,降水落区一般位于低层多层风速辐合的叠置区;暖区暴雨的雷达回波具有明显的后向传播、列车效应和热带降水型特点。  相似文献   

4.
利用常规气象观测资料、NCEP 1°×1°再分析资料以及卫星和雷达资料,对2018年6月25—26日副热带高压(简称“副高”)边缘切变线暖区暴雨的大尺度环流背景、雨带的移动与传播、中尺度特征以及温湿特征等方面进行分析。结果表明:此次暖区暴雨过程是在副高稳定维持,500 hPa西风槽东移,并有低空急流配合,低空暖切变线触发不稳定能量释放的有利背景下产生的;暴雨落区位于700 hPa暖切变线和925 hPa暖切变线之间;暴雨期间,小尺度对流单体在鲁南地区触发,云顶亮温tbb≤-60 ℃,并沿引导气流向东北方向移动;强降水区域有多个强回波中心持续影响,有明显的“列车效应”,强回波持续时间长;红外云图能很好地反映天气系统的发生、发展和消亡,而水汽图像上色调暗区不明显,冷空气活动较弱;低层暖湿气流强烈发展,是造成此次暖区暴雨过程层结不稳定的主要原因;暴雨的水汽源地是孟加拉湾和南海,且强降水期间,随着西南暖湿气流的增强,水汽通量有一个跃增现象;云顶tbb≤-70 ℃覆盖的区域、水汽通量散度负值中心可以作为暖区暴雨落区预报的参考点。  相似文献   

5.
山东省极端强降水天气概念模型研究   总被引:4,自引:0,他引:4       下载免费PDF全文
利用山东省1971—1999年逐日降水资料,采用百分位法确定各站极端强降水阈值。据此阈值,在2000—2009年中挑选了39个极端强降水天气过程并进行天气分型,得到高空槽类、副高外围类、切变线类、气旋类、热带气旋类5类极端强降水概念模型。研究表明:切变线类、气旋类和热带气旋类暴雨区范围较大,而高空槽类和副高外围类暴雨区范围较零散;5类极端强降水均伴有低空急流,暴雨区一般位于700 hPa与850 hPa切变线(或槽线)之间、低空急流左侧风向风速辐合处;高空槽类、副高外围类、切变线类一型和气旋类均有冷空气影响,暴雨区位于850 hPa冷温度槽前部;5类极端强降水的产生机制不同,落区与θse的配置也不尽相同。  相似文献   

6.
利用多普勒雷达、气象卫星、自动气象站等监测数据以及NCEP再分析资料,对桂林2019年6月6-12日接连3次强降水天气过程的环流背景、影响系统与形成原因进行了对比分析。结果表明:(1)3次过程按影响系统分属暖区暴雨、低涡暴雨和锋面暴雨过程,均发生在高空急流右侧辐散、低空急流左侧辐合叠加区。(2)3次过程均受500 hPa短波槽和地面中尺度辐合线影响,但第1次过程中西南急流及地形等、第2次过程中低涡切变线、第3次过程中冷锋也起到重要作用。(3)3次过程的触发系统不同,第1次暖区暴雨过程迎风坡地形对其起触发作用,西南急流使得后向传播的对流云带维持;第2次低涡暴雨过程的触发系统为低层位于贵州一带的西南涡,西部冷空气侵入与西南急流加强是低涡对流云团维持较长时间的原因;第3次锋面暴雨的触发系统为冷锋,锋面配合锋前暖湿气流使对流云带加强。(4)第1次过程暖区暴雨MCS模态主要为线状后向扩建类,极端强降水出现在线对流中后端;第2次过程低涡暴雨MCS模态为涡旋类,极端强降水出现在涡旋中心附近;第3次过程锋面暴雨MCS模态由前期后部层云区线状对流转为层状云包裹对流系统,强降水发生在线对流弯曲或中心强回波处。  相似文献   

7.
切变线冷区和暖区暴雨落区分析   总被引:5,自引:1,他引:4  
利用常规、自动气象站、NCEP/NCAR再分析资料(1°×1°,逐6h)和WRF模式逐小时资料,对2010年6月30日—7月2日山东省暴雨过程的落区进行了分析.结果表明:本次暴雨过程具有暖区暴雨和冷区暴雨两种特征.暖区暴雨强度强、范围广、落区集中,位于925 hPa经向切变线右侧或者低涡的东南象限“人”字型切变线内、暖温度脊后部、地面低压前部南风区内;冷区暴雨区强度弱、范围小、落区分散,位于925 hPa经向切变线左侧、冷温度槽前、地面低压后部北风区内.冷区和暖区暴雨均位于大气可降水量大于70 kg/m^2的区域、低空急流顶端的左侧.低空急流与强降水同时开始或者低空急流提前1h开始,降水强度最大时段出现在850 hPa风速跃增后1~3h.只有冷区暴雨时,冷空气较弱,冷锋伸展高度较低,暴雨区位于冷锋后部θse锋区前沿、θse暖脊脊线顶点、强上升运动中心.冷区与暖区暴雨共存时,冷暖空气势力均比只有冷区暴雨时强,冷锋伸展高度较高,冷区与暖区暴雨均位于强上升运动中心南侧1个纬距内风速辐合处.只有暖区暴雨时,冷空气较强,冷锋伸展高度较高,暴雨区位于冷锋前1个纬距内、θse暖脊脊线与地面交点、上升运动中心.低层向北倾斜锋区的南北跨度与中层向南倾斜锋区的南北跨度的差值大小,直接影响上升运动的强度和暴雨区的分布.  相似文献   

8.
李欣  张璐  江敦双 《气象科学》2021,41(2):270-277
利用2011—2018年常规和非常规气象观测资料,统计分析青岛地区38个暖区暴雨日的基本特征。结果表明:(1)青岛地区暖区暴雨按发生的天气形势主要可分为暖切变型、冷锋型、副高边缘I型及产生连续性暴雨的副高边缘II型。(2)暖区暴雨主要发生在7—9月,其中7、8月发生次数较高。暴雨落区和青岛的地形关系密切,在南北山区形成两条暖区暴雨高发生带。(3)暖区暴雨的强对流特征明显,短时强降水的贡献随总雨量的增加而加大,且降水时段集中,主要降水产生在6 h以内。(4)冷锋型和暖切变型的天气形势均为北部西风槽配合偏南的副热带高压,低层有明显的西南暖湿气流输送水汽,其中冷锋型有明显冷空气南下在华北南部形成东北西南向冷锋,而暖切变型的中支槽前在渤海西部有低涡生成,前部暖切位于半岛北部地区。两类副高边缘型均为西低东高形势,青岛处于副高西侧,且副高边缘II型的副高位置更为偏北,东移的西风槽更加深厚,与副高形成东西对峙,易出现连续性暴雨。(5)各型暖区暴雨基本发生在低层高能舌的顶端及由于风速切变和地形抬升造成的水汽辐合区域。  相似文献   

9.
四川盆地暖区暴雨特征分析   总被引:2,自引:0,他引:2  
给出四川盆地暖区暴雨的定义,并根据天气形势和影响系统将其分为西南涡型、副热带高压边缘型、西南急流型和东南风型四类。然后利用2008—2018年5—9月常规和自动站逐时降水资料统计分析四类暖区暴雨的时空分布特征和降水性质,并选取典型个例,对暴雨中尺度特征和成因进行了分析。主要结论包括:四类暖区暴雨易发于山脉迎风坡、喇叭口地形、平原和丘陵山地不均匀下垫面附近。西南涡型和西南急流型暴雨范围广且成片,西南涡型暴雨主要位于盆地中部和南部,西南急流型暴雨主要出现在盆地中部到龙门山脉北段和大巴山脉;副热带高压边缘型和东南风型暴雨分散,主要出现在盆地西部;降水都具有明显的日变化,呈现为单峰型,夜间加强,白天减弱;暖区暴雨由对流性和稳定性降水组成,降水量级越大,对流性越明显,其中,副热带高压边缘型和东南风型对流性降水明显,西南涡型和西南急流型稳定性降水明显;暖区暴雨直接由β中尺度云团发展造成,西南涡型和西南急流型中尺度对流系统持续时间≥6 h,副热带高压边缘型和东南风型中尺度对流系统持续时间≤6 h,但四类暖区暴雨单站对流性降水(20~50 mm·h-1)的持续时间一般不超过3 h,≥50 mm·h-1的短时强降水维持时间不超过1 h,若超过1 h易造成极端降水事件,西南涡型和西南急流型容易出现极端强降水;四类暖区暴雨发生在高能高湿不稳定环境条件下,平均CAPE值超过1000 J·kg-1,K指数在40℃左右,850 hPa平均假相当位温在85℃左右,平均比湿可达16 g·kg-1。  相似文献   

10.
《湖北气象》2021,40(2)
利用常规气象观测资料、卫星云图、多普勒天气雷达资料、区域自动气象站资料与NECP/NCAR 1°×1°逐6 h全球再分析资料,对2016年7月3—4日梵净山东南侧暖区特大暴雨的中尺度系统演变与环境场特征进行了分析。结果表明:(1)该过程暴雨发生在副热带高压西北侧高空槽区、低层暖切变南侧、低空急流左前端及高空200 hPa分流辐散区,主要影响系统为500 hPa高空槽和850 hPa暖切变线,地面无明显冷空气影响,属贵州暖区极端暴雨。(2)此次暖区暴雨是由4个对流云团连续影响直接造成,强降雨出现在对流云团中心附近及其后侧云顶亮温(T_(BB))等值线梯度大值区。(3)暴雨由积状云为主的混合降水回波造成;暖云层和湿层深厚、低层水汽输送充沛、异常偏低的自由对流高度(LFC)和抬升凝结高度(LCL)及中等强度"瘦高"型对流有效位能分布,是形成高效率降水的有利环境条件。(4)梵净山对水汽向北输送具有阻挡作用,使水汽通量大值带和水汽辐合中心集中在其东南侧;边界层偏东风在山前转向南流与南来偏南气流在暴雨区形成东西向稳定中尺度辐合线,对流在辐合线附近触发、合并、加强和东移是造成特大暴雨的重要原因;迎风坡和喇叭口地形的中小尺度动力强迫有利于边界层水汽输送和抬升凝结。  相似文献   

11.
一次区域暴雨过程综合诊断分析   总被引:3,自引:0,他引:3  
利用NCEP 1°×1°的6h再分析资料对2008年7月22日河南省南阳市的区域性暴雨天气进行了综合诊断分析,结果表明:此次暴雨过程是中低层的西南涡在高空急流的引导下,沿着河套高压与副高之间的辐合带移出造成的。降雨的水汽供应主要来自对流层中低层,且水汽强辐合出现在强降雨前。随着对流活动的发展,水汽通量和水汽辐合都向高层发展,湿层明显增厚。在整个降雨过程中,700hPa垂直螺旋度正值中心的位置和强度与西南涡的移动和强弱变化有很好的对应关系,垂直螺旋度正值长轴区与切变线辐合区相吻合,在某种程度上能反映出西南涡的移动和强度的演变;垂直螺旋度强弱的变化与暴雨强度变化基本一致。高层辐散、低层辐合的大气垂直结构能增强大气的抽吸作用,促进垂直上升运动的发展,反之,抑制垂直上升运动,降雨减弱。上、下层负、正垂直螺旋度耦合的结构对暴雨的发生和维持非常有利。在雷达速度PPI上,逆风区的出现预示着局地强降雨的产生。  相似文献   

12.
利用2008-2018年常规地面资料、探空站资料、逐小时自动站降水资料,NCEP/NCAR再分析资料及FY2E卫星TBB资料对江南暖区暴雨进行了统计分析和可能影响因子研究.2008-2018年共发生65次江南暖区暴雨,分为切变型、副高型、副高和切变相互作用型和西南急流型4类,可进一步细分为暖切变型、冷切变型、暖切变与副...  相似文献   

13.
1998年7月河套气旋强烈发展时的暴雨过程分析   总被引:1,自引:1,他引:1       下载免费PDF全文
采用位涡理论对1998年7月4—7日的一次河套气旋强烈发展中的暴雨过程进行分析。结果表明:此次夏季河套气旋的强烈发展是在高层正位涡平流和低层暖平流的共同作用下产生的。高空双急流结构产生的强烈辐散加强了低层辐合,有利于气旋的加强。强降水出现在河套气旋强烈发展过程中,是由高层冷空气与季风涌带来的西南暖湿气流辐合而引起的大尺度降水过程。在这次气旋强烈发展过程中,对流层低层到中上层均出现强的上升气流,使得南方深厚的暖湿空气不断随西南风流入暴雨区上空。暴雨发生时,华北地区处于地面Ω型的θse高能舌之中,其上空500 hPa存在一个由大尺度动力强迫形成的东北—西南向的非地转湿 Q 矢量辐合带,对流云带与 Q 矢量辐合中心有非常好的对应关系。  相似文献   

14.
利用常规观测资料、区域自动站及NCEP再分析资料,对2018年5月15—16日山东暴雨过程的环境场特征和触发机制进行分析。结果表明:(1)该暴雨过程分为暖区暴雨和锋面暴雨2个时段,高空槽、暖切变线和地面辐合线是造成暖区暴雨的主要影响系统;(2)暖区暴雨开始前大气具有产生对流的不稳定环境条件;(3)850 hPa暖切变附近的暖区暴雨有明显的能量锋区,而发生在暖切变南侧暖区的暴雨锋区不明显;(4)暖区暴雨期间,暴雨区上空的垂直风切变均达到中等以上强度,垂直环境条件有利于暖区对流天气的发生、发展;(5)地面中尺度辐合线是暖区暴雨的触发机制,辐合线的位置和移动方向与雨带的落区和移动方向一致;(6)低空急流和超低空急流的加强和向下传播也会触发不稳定能量的释放。  相似文献   

15.
一次区域暴雨过程综合诊断分析   总被引:13,自引:10,他引:3  
利用NCEP 1°×1°的6h再分析资料对2008年7月22日河南省南阳市的区域性暴雨天气进行了综合诊断分析,结果表明:此次暴雨过程是中低层的西南涡在高空急流的引导下,沿着河套高压与副高之间的辐合带移出造成的。降雨的水汽供应主要来自对流层中低层,且水汽强辐合出现在强降雨前。随着对流活动的发展,水汽通量和水汽辐合都向高层发展,湿层明显增厚。在整个降雨过程中,700hPa垂直螺旋度正值中心的位置和强度与西南涡的移动和强弱变化有很好的对应关系,垂直螺旋度正值长轴区与切变线辐合区相吻合,在某种程度上能反映出西南涡的移动和强度的演变;垂直螺旋度强弱的变化与暴雨强度变化基本一致。高层辐散、低层辐合的大气垂直结构能增强大气的抽吸作用,促进垂直上升运动的发展,反之,抑制垂直上升运动,降雨减弱。上、下层负、正垂直螺旋度耦合的结构对暴雨的发生和维持非常有利。在雷达速度PPI上,逆风区的出现预示着局地强降雨的产生。  相似文献   

16.
2014年7月19日夜间黑龙江克山出现雨强超过90 mm的短时强降水,利用常规观测资料、区域站资料、NCEP/NCAR再分析资料等对此次冷锋前部的暖区强降水成因进行分析。结果表明:(1)此次强降水出现在580 dagpm线附近,副高诱发的超低空急流为强降水提供了充沛的水汽和不稳定能量。(2)地面辐合线和地形抬升触发对流。高空急流东移,高空急流出口区左侧和辐散区与低层辐合相耦合促使对流快速发展增强。耦合消失,强降水则快速减弱。(3)低层暖平流明显,尤其地面具有暖锋锋生特征。强降水出现在不稳定层结和上升运动快速增强的阶段。(4)地面~200 hPa辐合层形成深厚的上升运动区,促使对流快速发展。(5)中尺度对流雨带沿地面辐合线生消。降水先出现在暖湿舌前部。随后,强降水产生的冷空气抬升暖湿空气形成冷锋特征的降水,由于强降水和冷空气的正反馈作用,降水持续时间长。冷空气势力最强时,伴随中尺度气旋性环流及0~1 km强垂直风切变有利于龙卷产生。(6)开口状地形的辐合作用、抬升及局地地形导致的中尺度环流风场对暖区降水的形成和维持作用显著。  相似文献   

17.
华北一次暖区暴雨雷暴触发及传播机制研究   总被引:3,自引:2,他引:1  
孙密娜  王秀明  胡玲  陈宏  韩婷婷 《气象》2018,44(10):1255-1266
2016年7月24日午后河北中东部至天津南部出现了一次短历时暴雨过程,暴雨中心位于天津南部,模式客观预报和预报员主观预报均存在偏差。利用常规地面高空观测资料、卫星云图、多普勒雷达探测资料和同化了雷达和地面加密资料的VDRAS资料等,对导致此次强降水过程形成原因进行分析,特别是对本次暴雨最为关键的问题——雷暴触发和传播机制进行了深入细致的分析,结果表明:(1)本次暴雨过程发生在副热带高压加强北上过程中,从传统流型识别的角度看不利于副热带高压西北侧的高空槽东移影响华北东南部,这是一次发生在副热带高压588 dagpm线控制下的暖区暴雨,是非典型流型下的短历时暴雨,预报难度大;(2)邢台探空较北京探空距离暴雨区更远,但对于副热带高压西北侧西南气流影响下的暖区暴雨,位于暴雨区西南的邢台探空更具参考价值,邢台站24日11时的订正探空显示:大气层结极不稳定、低层水汽异常充沛且湿层深厚,CAPE值达3874 J·kg~(-1),对流抑制仅为22 J·kg~(-1),8 g·kg~(-1)比湿达600 hPa,地面露点出现接近30℃的极端高值;(3)850 hPa暖式切变线附近,两条地面辐合线合并和中尺度锋生是触发中尺度对流系统的重要因素,卫星云图上亦可见两条云带合并,其合并使得边界层辐合加强,因而积云在辐合区发展,暖切变线附近上午有小积云发展,随着辐合加强形成东西向排列中尺度对流系统;(4)雷暴触发后,其移动和传播是预报的难点,因其决定了对流降水持续时间,本例中受辐合线和风暴阵风出流共同作用,切变线西段有新的雷暴触发,加之切变线南侧南北向的云街与切变线相遇,使得雷暴在向西传播的同时向南发展,即传播方向为西偏南,在环境西南气流的作用下,对流单体向东偏北方向移动,即平流方向东偏北,平流与传播方向相反,因而形成"列车效应",另外,南北向云街表明切变线南侧逆温层之下有偏南暖湿气流补充,加之对流风暴阵风的出流再次触发雷暴使得对流风暴持续。  相似文献   

18.
对2005年9月18—19日发生在山东省的一次区域性暴雨过程进行了分析。结果表明:该过程是由850hPa暖切变线北上引发的,暴雨主要产生在暖切变线强盛时期和转为冷槽时的变性阶段。西风带小高压在鲁北地区的滞留对稳定和延长暖切变线对暴雨区的影响时间起了关键作用。高空急流与低空较强西南气流的有利配置为暴雨区的对流运动提供了大尺度环境场。0516号台风和副高西北侧的两支偏南气流结合,为暴雨区输送了充足的水汽和不稳定能量。500hPa短波槽和850hPa湿静力能量锋是触发不稳定能量释放的主要系统。  相似文献   

19.
利用NCEP/NCAR再分析资料和其他常规观测资料,对湖北省西南气流型暖区暴雨相关特征进行分析,结果表明:该类暖区暴雨主要发生在鄂东南地区,容易形成极端暴雨;低空急流是最主要的一个影响系统,低层强烈暖平流配合中层小股弱干冷空气,形成上干冷下暖湿层结,是本类暖区暴雨主要的不稳定建立机制;主要水汽输送通道有3条,水汽输送高度主要位于850 hPa附近,水汽辐合高度则位于850 hPa以下;暴雨发生过程中,0~1 km和0~3 km垂直风切变增长明显,其中0~3 km垂直风切变平均值可达11.6 m/s以上,对暴雨区的指示作用更显著;主要动力启动机制是低层风速辐合,而动力加强机制则来自于高低空急流耦合,在这个过程中,高空辐散加强,次级环流形成,从而形成强烈上升运动。  相似文献   

20.
利用常规观测资料及卫星云图,对2012年6月21-25日广西持续暴雨过程的环境场进行诊断分析.结果表明:这次广西持续性暴雨出现在副高偏强且稳定的背景下,由副高西侧云系的维持造成,低层西南气流的辐合是导致这场暴雨的根本原因;高空低槽与低层的低涡切变线是影响这次暴雨分布的主导系统,700hPa湿度大值区与与暴雨区域对应很好;低层辐合对暴雨落区起决定作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号