首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Morocco, no operational system actually exists for the early prediction of the grain yields of wheat (Triticum aestivum L.). This study proposes empirical ordinary least squares regression models to forecast the yields at provincial and national levels. The predictions were based on dekadal (10-daily) NDVI/AVHRR, dekadal rainfall sums and average monthly air temperatures. The Global Land Cover raster map (GLC2000) was used to select only the NDVI pixels that are related to agricultural land. Provincial wheat yields were assessed with errors varying from 80 to 762 kg ha−1, depending on the province. At national level, wheat yield was predicted at the third dekad of April with 73 kg ha−1 error, using NDVI and rainfall. However, earlier forecasts are possible, starting from the second dekad of March with 84 kg ha−1 error, at least 1 month before harvest. At the provincial and national levels, most of the yield variation was accounted for by NDVI. The proposed models can be used in an operational context to early forecast wheat yields in Morocco.  相似文献   

2.
This study analyses the relationship between fire incidence and some environmental factors, exploring the spatial non-stationarity of the phenomenon in sub-Saharan Africa. Geographically weighted regression (GWR) was used to study the above relationship. Environment covariates comprise land cover, anthropogenic and climatic variables. GWR was compared to ordinary least squares, and the hypothesis that GWR represents no improvement over the global model was tested. Local regression coefficients were mapped, interpreted and related with fire incidence. GWR revealed local patterns in parameter estimates and also reduced the spatial autocorrelation of model residuals. All the covariates were non-stationary and in terms of goodness of fit, the model replicates the data very well (R 2 = 87%). Vegetation has the most significant relationship with fire incidence, with climate variables being more important than anthropogenic variables in explaining variability of the response. Some coefficient estimates exhibit locally different signs, which would have gone undetected by a global approach. This study provides an improved understanding of spatial fire–environment relationships and shows that GWR is a valuable complement to global spatial analysis methods. When studying fire regimes, effects of spatial non-stationarity need to be incorporated in vegetation-fire modules to have better estimates of burned areas and to improve continental estimates of biomass burning and atmospheric emissions derived from vegetation fires.  相似文献   

3.
National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux between land and atmosphere. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale as well as national and continental scales. Existing satellite-based NPP products tend to underestimate NPP on croplands. An Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP over large multi-state regions. The method is documented here and evaluated for corn (Zea mays L.) and soybean (Glycine max L. Merr.) in Iowa and Illinois in 2006 and 2007. The method includes a crop-specific Enhanced Vegetation Index (EVI), shortwave radiation data estimated using the Mountain Climate Simulator (MTCLIM) algorithm, and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that corresponds to the Cropland Data Layer (CDL) land cover product. Results from the modeling framework captured the spatial NPP gradient across croplands of Iowa and Illinois, and also represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 917 g C m−2 yr−1 and 409 g C m−2 yr−1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Site comparisons with flux tower data show AgI-LUE NPP in close agreement with tower-derived NPP, lower than inventory-based NPP, and higher than MOD17A3 NPP. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.  相似文献   

4.
5.
Abstract

Currently, many soil erosion studies at local, regional, national or continental scale use models based on the USLE-family approaches. Applications of these models pay little attention to seasonal changes, despite evidence in the literature which suggests that erosion risk may change rapidly according to intra-annual rainfall figures and vegetation phenology. This paper emphasises the aspect of seasonality in soil erosion mapping by using month-step rainfall erosivity data and biophysical time series data derived from remote-sensing. The latter, together with other existing pan-European geo-databases sets the basis for a functional pan-European service for soil erosion monitoring at a scale of 1:500,000. This potential service has led to the establishment of a new modelling approach (called the G2 model) based on the inheritance of USLE-family models. The G2 model proposes innovative techniques for the estimation of vegetation and protection factors. The model has been applied in a 14,500 km2 study area in SE Europe covering a major part of the basin of the cross-border river, Strymonas. Model results were verified with erosion and sedimentation figures from previous research. The study confirmed that monthly erosion mapping would identify the critical months and would allow erosion figures to be linked to specific land uses.  相似文献   

6.
Research making use of satellite data for land change science has developed in the last decades. However, analysis of land use has not developed with the same speed as development of new satellite sensors and available land cover data. Improvement of land use analysis is possible, but more advanced methods are needed which make it possible to link image data to analysis of land use functions. To make this linking possible, variable which affect farmer's long term decisions must be taken into account in analysis as well as the relative importance of the landscape itself.A GIS-based tool for the measurement of local spatial context in satellite data is presented in this paper and used to explore the relationship between land covers present in satellite data and land use represented in official databases. By the use of the developed tool, a land configuration image (LCI) over the Siljan area in northern Sweden was produced and used for analysis. The results are twofold. First, the produced LCI holds new information about variables that are relevant for the interpretation of land use. Second, the comparison with statistics of agricultural production shows that production in the study area varies depending on the relative land configuration. Villages consisting of relatively large-scale arable fields and less diverse landscape are less diverse in production than villages which consist of smaller-scale and more heterogonous landscapes. The result is especially relevant for land use studies and policymakers working on environmental and agricultural policies. We conclude that local spatial context is an endogenous variable in the relation between landscape configuration and agricultural land use.  相似文献   

7.
A procedure for the monitoring an urban heat island (UHI) was developed and tested over a selected location in the Midwestern United States. Nine counties in central Indiana were selected and their UHI patterns were modeled. Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) images taken in 2005 were used for the research. The images were sorted based on cloud cover over the study area. The resulting 94 day and night images were used for the modeling. The technique of process convolution was then applied to the images in order to characterize the UHIs. This process helped to characterize the LST data into a continuous surface and the UHI data into a series of Gaussian functions. The diurnal temperature profiles and UHI intensity attributes (minimum, maximum and magnitude) of the characterized images were analyzed for variations. Skin temperatures within any given image varied between 2–15 °C and 2–8 °C for the day and night images, respectively. The magnitude of the UHI varied from 1–5 °C and 1–3 °C over the daytime and nighttime images, respectively. Three dimensional (3-D) models of the day and night images were generated and visually explored for patterns through animation. A strong and clearly evident UHI was identified extending north of Marion County well into Hamilton County. This information coincides with the development and expansion of northern Marion County during the past few years in contrast to the southern part. To further explore these results, an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 2004 land use land cover (LULC) dataset was analyzed with respect to the characterized UHI. The areas with maximum heat signatures were found to have a strong correlation with impervious surfaces. The entire process of information extraction was automated in order to facilitate the mining of UHI patterns at a global scale. This research has proved to be promising approach for the modeling and mining of UHIs from large amount of remote sensing images. Furthermore, this research also aids in 3-D diachronic analysis.  相似文献   

8.
This study contributes to the quality assessment of atmospherically corrected Landsat surface reflectance data that are routinely generated by the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). This dataset, named Landsat Surface Reflectance Climate Data Record (Landsat CDR), is available at global scale and offers unprecedented opportunities to land monitoring and management services that require atmospherically corrected Earth observation (EO) data. Our assessment is based on the comparison of the Landsat CDR data against a set of Landsat and DEIMOS-1 images processed to a high degree of accuracy using an industry-standard atmospheric correction algorithm (ATCOR-2). The software package has been used for many years and its correction procedures can be considered consolidated and well-established. The dataset of Landsat and DEIMOS-1 images was acquired over a semi-arid agricultural area located in Lower Austria and was independently corrected by using a manual fine-tuning of ATCOR-2 parameters to reach the highest possible accuracy. Results show a very good correspondence of the surface reflectance in each of the six reflective spectral channels as well as for the NDVI (Normalized Difference Vegetation Index). An additional comparison against a NDVI time series from MODIS revealed also a good correspondence. Coefficients of determination (R2) between the two multi-year and multi-seasonal Landsat/DEIMOS datasets range between 0.91 (blue band) and 0.98 (nIR, SWIR-1 and SWIR-2). The results obtained for our semi-arid test site in Austria confirm previous findings and suggest that automatic atmospheric procedures, such as the one implemented by LEDAPS are accurate enough to be used in land monitoring services that require consistent multi-temporal surface reflectance data.  相似文献   

9.
根据第二次全国土地调查有关技术文件的要求,各地汇总和提交的成果资料的数学基础必须是1980西安坐标系,而当前许多城市的土地调查工作是基于地方坐标系进行的.本文以厦门市为例,从技术路线、实现方法、精度检查等方面就地方坐标系下的调查成果如何转换为西安坐标系进行了较为详细的探讨,为其他地区的类似工作提供了有益的借鉴.  相似文献   

10.
This paper describes the results of a geo-statistical analysis carried out at the provincial level in Southern Europe to model wildfire occurrence from socio-economic and demographic indicators together with land cover and agricultural statistics. We applied a classical ordinary least squares (OLS) linear regression together with a geographically weighted regression (GWR) to explain long-term wild-fire occurrence patterns (mean annual density of >1 ha fires). The explanatory power of the OLS model increased from 52% to 78% as a result of the non-constant relationships between fire occurrence and the underlying explanatory variables throughout the Mediterranean Basin. The global model we developed (i.e., OLS regression) was not sufficient to fully describe the underlying causal factors in wildfire occurrence modeling. Indeed, local approaches (i.e., GWR) can complement the global model in overcoming the problem of non-stationarity or missing variables. Our results confirm the importance of agrarian activities, land abandonment, and development processes as underlying factors of fire occurrence. The identification of regions with spatially varying relationships can contribute to the better understanding of the fire problem, especially over large geographic areas, while at the same time recognizing its local character. This can be very important for fire management and policy.  相似文献   

11.
ABSTRACT

Large-scale gridded population datasets are usually produced for the year of input census data using a top-down approach and projected backward and forward in time using national growth rates. Such temporal projections do not include any subnational variation in population distribution trends and ignore changes in geographical covariates such as urban land cover changes. Improved predictions of population distribution changes over time require the use of a limited number of covariates that are time-invariant or temporally explicit. Here we make use of recently released multi-temporal high-resolution global settlement layers, historical census data and latest developments in population distribution modelling methods to reconstruct population distribution changes over 30 years across the Kenyan Coast. We explore the methodological challenges associated with the production of gridded population distribution time-series in data-scarce countries and show that trade-offs have to be found between spatial and temporal resolutions when selecting the best modelling approach. Strategies used to fill data gaps may vary according to the local context and the objective of the study. This work will hopefully serve as a benchmark for future developments of population distribution time-series that are increasingly required for population-at-risk estimations and spatial modelling in various fields.  相似文献   

12.
This paper investigates statistical relationships between land use/land cover (LULC), Landsat-7 ETM+ imagery and landscape mosaic structure in southern Cameroon where the conversion of tropical rain forest to shifting cultivation leads to dynamic processes, acting on the spatial aggregation of various LULC types. A Global Positioning System (GPS) was used in the field to identify a total of 171 shifting cultivation patches representing eight LULC types in two sub-areas. Because of the lack of a cloud-free image for the date of field sampling, the ETM+ imagery was acquired 2 months after field survey, during which it was assumed that no significant changes in LULC occurred (all dry season). Per pixel correlations were developed between spectral reflectance data, vegetation indices and LULC. As an exploratory study, several statistical methods (analysis of variance, means separations (Tukey HSD), principal component analysis (PCA), geo-statistical analysis, image classification and landscape metrics) were applied on point data and sensor images for evaluating the spatial variability within the landscape. Most variables explained 30–72% of LULC variation in the whole dataset. Those variables with high information content of LULC (infrared bands 4, 5, 7 and derived indices and PC1) also showed long ranges (6 km) spatial dependence as compared to those varying only within 1 km range. The results of these statistical analyses suggested the need to group some LULC types and the application of the Maximum Likelihood Classifier (MLC) for supervised classification provided a LULC map with the highest accuracy (81%) after consolidation of perennial LULC types, such as bush fallow, forest fallow and cocoa plantations. Landscape metrics computed from this map showed a high level of patch diversity and connectivity within the landscape and provided input data that can further be used to simulate predictive maps as substitute to cloud-covered sensor imageries. Landsat-7 ETM+ imagery proved to be useful in discriminating (with about 80% accuracy) the most dynamic LULC types such cropped plots and young fallow patches (shifting every season) and the extension front of the agricultural landscape.  相似文献   

13.
While crop production statistics are reported on a geopolitical – often national – basis, we often need to know, for example, the status of production or productivity within specific sub-regions, watersheds, or agro-ecological zones. Such re-aggregations are typically made using expert judgments or simple area-weighting rules. We describe a new, entropy-based approach to the plausible estimates of the spatial distribution of crop areas. Using this approach tabular crop production statistics are blended judiciously with an array of other secondary data to assess the areas of specific crops within individual ‘pixels’—typically 25–100 km2 in size. The information utilized includes crop production statistics, farming system characterization, satellite-based interpretation of land cover, biophysical crop suitability assessments, and population density. An application is presented in which Brazilian state level production statistics are used to generate pixel level crop area data for eight crops. To validate the spatial allocation we aggregated the pixel estimates to obtain synthetic estimates of municipality level areas in Brazil, and compared those estimates with actual municipality statistics. The approach produced extremely promising results. We then examined the robustness of these results compared to simplified approaches to spatializing crop production statistics and showed that, while computationally intensive, the cross-entropy method does provide more reliable spatial allocations.  相似文献   

14.
Global time series of low resolution images are available with high repeat frequency and at low cost, but their analysis is hampered by the presence of mixed pixels and the difficulty in locating detailed spatial features. This study examined the potential of sub-pixel classification for regional crop area estimation using time series of monthly NDVI-composites of the 1 km resolution sensor SPOT-VEGETATION. Belgium was selected as test zone, because of the availability of ample reference data in the form of a vectorial GIS with the boundaries and cover type of the large majority of agricultural fields. Two different methods were investigated: the linear mixture model and neural networks. Both result in area fraction images (AFIs), which contain for each 1 km pixel the estimated area proportions occupied by the different cover types (crops or other land use). Both algorithms were trained with part of the reference data and validated with the remainder. Validation was repeated at three different levels: the 1 km pixel, the municipality and the agro-statistical district. In general, the neural network outperformed the linear mixture model. For the major classes (winter wheat, maize, forest) the obtained acreage estimates showed good agreement with the true values, especially when aggregated to the level of the municipality (R2 ≈ 85%) or district (R2 ≈ 95%). The method seems attractive for wide-scale, regional area estimation in data-poor countries.  相似文献   

15.
Measuring forest degradation and related forest carbon stock changes is more challenging than measuring deforestation since degradation implies changes in the structure of the forest and does not entail a change in land use, making it less easily detectable through remote sensing. Although we anticipate the use of the IPCC guidance under the United Framework Convention on Climate Change (UNFCCC), there is no one single method for monitoring forest degradation for the case of REDD+ policy. In this review paper we highlight that the choice depends upon a number of factors including the type of degradation, available historical data, capacities and resources, and the potentials and limitations of various measurement and monitoring approaches. Current degradation rates can be measured through field data (i.e. multi-date national forest inventories and permanent sample plot data, commercial forestry data sets, proxy data from domestic markets) and/or remote sensing data (i.e. direct mapping of canopy and forest structural changes or indirect mapping through modelling approaches), with the combination of techniques providing the best options. Developing countries frequently lack consistent historical field data for assessing past forest degradation, and so must rely more on remote sensing approaches mixed with current field assessments of carbon stock changes. Historical degradation estimates will have larger uncertainties as it will be difficult to determine their accuracy. However improving monitoring capacities for systematic forest degradation estimates today will help reduce uncertainties even for historical estimates.  相似文献   

16.
The European Space Agency (ESA) is currently implementing the BIOMASS mission as 7th Earth Explorer satellite. BIOMASS will provide for the first time global forest aboveground biomass estimates based on P-band synthetic aperture radar (SAR) imagery. This paper addresses an often overlooked element of the data processing chain required to ensure reliable and accurate forest biomass estimates: accurate identification of forest areas ahead of the inversion of radar data into forest biomass estimates.The use of the P-band data from BIOMASS itself for the classification into forest and non-forest land cover types is assessed in this paper. For airborne data in tropical, hemi-boreal and boreal forests we demonstrate that classification accuracies from 90 up to 97% can be achieved using radar backscatter and phase information. However, spaceborne data will have a lower resolution and higher noise level compared to airborne data and a higher probability of mixed pixels containing multiple land cover types. Therefore, airborne data was reduced to 50 m, 100 m and 200 m resolution. The analysis revealed that about 50–60% of the area within the resolution level must be covered by forest to classify a pixel with higher probability as forest compared to non-forest. This results in forest omission and commission leading to similar forest area estimation over all resolutions. However, the forest omission resulted in a biased underestimated biomass, which was not equaled by the forest commission. The results underline the necessity of a highly accurate pre-classification of SAR data for an accurate unbiased aboveground biomass estimation.  相似文献   

17.
Determining the location and nature of hazardous ground motion resulting from natural and anthropogenic processes such as landslides, tectonic movement and mining is essential for hazard mitigation and sustainable resource use. Ground motion estimates from satellite ERS-1/2 persistent scatterer interferometry (PSI) were combined with geospatial data to identify areas of observed geohazards in Stoke-on-Trent, UK. This investigation was performed within the framework of the EC FP7-SPACE PanGeo project which aimed to provide free and open access to geohazard information for 52 urban areas across Europe. Geohazards identified within the city of Stoke-on-Trent and neighbouring rural areas are presented here alongside an examination of the PanGeo methodology.A total of 14 areas experiencing ground instability caused by natural and anthropogenic processes have been defined, covering 122.35 km2. These are attributed to a range of geohazards, including landslides, ground dissolution, made ground and mining activities. The dominant geohazard (by area) is ground movement caused by post-mining groundwater recharge and mining-related subsidence (93.19% of total geohazard area), followed by landsliding (5.81%). Observed ground motions along the satellite line-of-sight reach maxima of +35.23 mm/yr and −22.57 mm/yr. A combination of uplift, subsidence and downslope movement is displayed.‘Construction sites’ and ‘continuous urban fabric’ (European Urban Atlas land use types) form the land uses most affected (by area) by ground motion and ‘discontinuous very low density urban fabric’ the least. Areas of ‘continuous urban fabric’ also show the highest average velocity towards the satellite (5.08 mm/yr) and the highest PS densities (1262.92 points/km2) along with one of the lowest standard deviations. Rural land uses tend to result in lower PS densities and higher standard deviations, a consequence of fewer suitable reflectors in these regions. PSI is also limited in its ability to identify especially rapid ground motion. As a consequence the supporting geospatial data proved especially useful for the identification of landslides and some areas of ground dissolution. The mapped areas of instability are also compared with modelled potential geohazards (the BGS GeoSure dataset).  相似文献   

18.
The Lower Mississippi Alluvial Valley (LMAV) was home to about ten million hectare bottomland hardwood (BLH) forests in the Southern U.S. It experienced over 80 % area loss of the BLH forests in the past centuries and large-scale afforestation in recent decades. Due to the lack of a high-resolution cropland dataset, impacts of land use change (LUC) on the LMAV ecosystem services have not been fully understood. In this study, we developed a novel framework by integrating the machine learning algorithm, county-level agricultural census, and satellite-based cropland products to reconstruct the LMAV cropland distribution during 1850–2018 at a 30-m resolution. Results showed that the LMAV cropland area increased from 0.78 × 104 km2 in 1850 to 6.64 × 104 km2 in 1980 and then decreased to 6.16 × 104 km2 in 2018. Cropland expansion rate was the largest in the 1960s (749 km2 yr−1) but decreased rapidly thereafter, whereas cropland abandonment rate increased substantially in recent decades with the largest rate of 514 km2 yr−1 in the 2010s. Our dataset has three notable features: (1) the depiction of fine spatial details, (2) the integration of the county-level census, and (3) the inclusion of a machine-learning algorithm trained by satellite-based land cover product. Most importantly, our dataset well captured the continuous increasing trend in cropland area from 1930–1960, which was misrepresented by other cropland datasets reconstructed from the state-level census. Our dataset would be important to accurately evaluate the impacts of historical deforestation and recent afforestation efforts on regional ecosystem services, attribute the observed hydrological changes to anthropogenic and natural driving factors, and investigate how the socioeconomic factors control regional LUC pattern. Our framework and dataset are crucial to developing managerial and policy strategies for conserving natural resources and enhancing ecosystem services in the LMAV.  相似文献   

19.
GIS and remote sensing (RS) techniques using Landsat ETM+ and objectoriented segmentation were developed to identify depressional isolated wetlands in a >2,600 km2 mixed land use area of north-central Florida, USA. Both the standalone RS method and the combined GIS/RS method were successful at identifying isolated wetlands > 0.20 ha. Combining the GIS and RS methods yielded producer and user accuracies ranging from 93 to 100% and 86 to 95%, respectively. The methods utilized successfully mapped isolated wetlands and could be used to address questions surrounding national estimates and areal distribution of isolated wetlands.  相似文献   

20.
王贺封  张安兵 《测绘科学》2010,35(2):155-157,172
采用遥感和GIS技术来监测矿区土地利用动态情况,对于矿区土地资源合理利用、科学管理和综合治理具有重要的意义。本文从数据的获取、遥感影像处理、年度变化信息提取、土地利用转移矩阵的建立等过程来分析土地利用RS与GIS动态监测过程。研究结果表明煤矿关闭前土地利用类型之间相互转换明显,呈现出建设用地和水域面积增加的趋势;关闭后水域面积趋于稳定,而农用地增加,土地利用集约化水平得到提高。总体来说矿区土地利用粗放,没有一个合理的土地利用结构方向,缺乏一个土地利用总体规划,但通过长期复垦整治,在一定程度上缓解了当地人地矛盾。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号