首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kihun  Hang S.   《Ocean Engineering》2007,34(8-9):1138-1150
This paper describes the estimation of hydrodynamic coefficients and the control algorithm based on a nonlinear mathematical modeling for a test bed autonomous underwater vehicle (AUV) named by SNUUV I (Seoul National University Underwater Vehicle I).A six degree of freedom mathematical model for SNUUV I is derived with linear and nonlinear hydrodynamic coefficients, which are estimated with the help of a potential code and also the system identification using multi-variable regression.A navigation algorithm is developed using three ranging sonars, pressure sensor and two inclinometers keeping towing tank applications in mind. Based on the mathematical model, a simulation program using a model-based control algorithm is designed for heading control and wall following control of SNUUV I.It is demonstrated numerically that the navigation system together with controller guides the vehicle to follow the desired heading and path with a sufficient accuracy. Therefore the model-based control algorithm can be designed efficiently using the system identification method based on vehicle motion experiments with the appropriate navigation system.  相似文献   

2.
介绍多水下机器人(UUV)数字仿真平台的硬件结构以及单体UUV和多UUV系统的水动力计算流程,在此基础上利用Windows多线程技术实现多UUV的水动力计算,该方法已经用于多UUV数字仿真平台虚拟环境节点的设计中.系统仿真实验表明该方法设计的应用程序具有良好的执行效率和实时响应能力,为以后多UUV半物理仿真平台的水动力计算和实体多UUV系统水动力系数的验证奠定了基础.  相似文献   

3.
The very purpose of attaching fins to the hull is to reduce the roll motions of a ship. Roll minimization is a requisite for various operations in the seas. The presence of fin system provides enhanced state of stabilization especially when the vessel is performing a fast maneuvering amidst rough environmental disturbance. The fins in turn are activated by electro-hydraulic mechanism based on the in-built intelligence as per control theory like proportional–integral–derivative (PID) or fuzzy logic. As per this paper, fin system is activated using PID control algorithm. A frigate-type warship is considered for the demonstration purpose. Nonlinear roll motions are controlled using active fins. Lift characteristics of the fins in hydrodynamic flow were studied using CFD package fluent.Good amount of reduction in roll amplitude is achieved from various simulations in random sea. The approach can be used for any irregular sea conditions.  相似文献   

4.
《Ocean Engineering》2006,33(11-12):1413-1430
This paper presents the design of an adaptive input–output feedback linearizing dorsal fin control system for the yaw plane control of low-speed bio-robotic autonomous underwater vehicles (BAUVs). The control forces are generated by cambering two dorsal fins mounted in the vertical plane on either side of the vehicle. The BAUV model includes nonlinear hydrodynamics, and it is assumed that its hydrodynamic coefficients as well as the physical parameters are not known. For the purpose of design, a linear combination of the yaw angle tracking error and its derivative and integral is chosen as the controlled output variable. An adaptive input–output feedback linearizing control law is derived for the trajectory control of the yaw angle. Unlike indirect adaptive control, here the controller gains are directly tuned. The stability of the zero dynamics is examined. Simulation results are presented for tracking exponential and sinusoidal yaw angle trajectories and for turning maneuvers, and it is shown that the adaptive control system accomplishes precise yaw angle control of the BAUV using dorsal fins in spite of the nonlinearity and large uncertainties in the system parameters.  相似文献   

5.
仿鱼尾潜器推进系统的水动力分析   总被引:21,自引:3,他引:21  
以开发适用于小型潜器的仿生操纵与推进系统为研究背景 ,对金枪鱼的月牙形尾鳍进行水动力分析。文中将金枪鱼的尾鳍处理为在做横移和摇摆的耦合运动的同时 ,以某一匀速向前运动的月牙形刚性尾翼。计算中应用了双曲面元和压力库塔条件 ,利用面元法计算分析该三维尾翼的非定常水动力性能。探讨了前进速度、横荡和摇首的幅度、频率及其相位差对推进性能的影响  相似文献   

6.
The author presents an original algorithm aimed at automatically generating the hull shape of a sailing yacht starting from an initial set of parameters. The procedure consists of two steps. First one keel line and a Designed Water Line (DWL in the following) are faired according to a set of parameters, say length of water line, canoe body draft, stem angle and some adimensional coefficients. This information is then used to fair the hull surface, which must in turn fulfil more prerequisites (parameters like displaty cement, floatation area and related coefficients). The hull is defined by means of a B-spline surface, the fairing of which is ensured by allowing for all the imposed objectives and constraints. An optimisation technique based upon the gradient method ensures that a reliable solution is obtained in a very short time.  相似文献   

7.
《Ocean Engineering》2004,31(3-4):455-482
An adaptive algorithm for on-line estimation of physical coefficients of cables in viscous environment is presented. The procedure is useful for obtaining cable characteristics, which are needed in stability analysis and control system design for moored floating structures. It uses measurements of position and forces from on-board instrumentation. It is also able to track changes in the depth and to test for parameter consistency in order to confer the estimation robustness with respect to dynamic perturbations. It is based on nonlinear solvers, which can cope with transcendental functions of the model structure. The proof of asymptotic convergence is presented. Finally, three basic case studies are analyzed.  相似文献   

8.
为促进海南游艇旅游转型升级与空间布局优化,推动海南海洋经济高质量可持续发展,本文基于2013年、2017年、2021年海南游艇俱乐部、游艇会及游艇码头数据,利用标准差椭圆分析、平均最近邻指数、核密度分析、重心迁移模型对海南游艇旅游的时空演化特征进行研究,并利用近邻分析法、相关性分析法和政策文本分析法,从旅游资源禀赋、自然地理环境、区位交通条件、政策保障机制等四个维度剖析和阐释海南游艇旅游时空演化特征的影响因素。研究发现:(1)海南游艇旅游核心场所持续增加;(2)海南游艇旅游发展呈显著的空间聚集特征,聚集程度先上升后下降;(3)海南游艇旅游呈东北-西南走向迁移布局;(4)海南游艇旅游模式逐渐由“三亚-海口双核心”向“三亚单核心”演变;(5)自然地理环境和旅游资源禀赋是影响海南游艇旅游时空格局形成的基础性因素,区位交通条件是其时空演化特征的驱动性因素,政策支持是其时空演化形态的导向性因素。最后,对海南游艇旅游可持续发展提出四个方面的对策建议,以积极推动具有世界影响力的中国特色自由贸易港建设。  相似文献   

9.
衣凡  王磊  李博  余尚禹 《海洋工程》2019,37(4):16-26
针对带有禁止角的半潜平台动力定位系统推力分配算法功率较大的问题,提出了一种基于人工神经网络拟合桨—桨干扰推力损失函数的序列二次规划推力分配算法。该方法考虑了半潜平台桨—桨干扰造成的推力损失,引入推力系数来表达推力损失。利用人工神经网络拟合推力系数,将推力损失加入到推力分配的数学模型中,取消了禁止角。采用序列二次规划求解推力分配数学模型。最后以某半潜式钻井平台为例,选取三种浪向角工况进行推力分配仿真模拟,结果显示该算法在高效分配定位所需推力的同时有效减小了功率消耗,应用前景广泛。  相似文献   

10.
Computational fluid dynamics, CFD, is becoming an essential tool in the prediction of the hydrodynamic efforts and flow characteristics of underwater vehicles for manoeuvring studies. However, when applied to the manoeuvrability of autonomous underwater vehicles, AUVs, most studies have focused on the determination of static coefficients without considering the effects of the vehicle control surface deflection. This paper analyses the hydrodynamic efforts generated on an AUV considering the combined effects of the control surface deflection and the angle of attack using CFD software based on the Reynolds-averaged Navier–Stokes formulations. The CFD simulations are also independently conducted for the AUV bare hull and control surface to better identify their individual and interference efforts and to validate the simulations by comparing the experimental results obtained in a towing tank. Several simulations of the bare hull case were conducted to select the kω SST turbulent model with the viscosity approach that best predicts its hydrodynamic efforts. Mesh sensitivity analyses were conducted for all simulations. For the flow around the control surfaces, the CFD results were analysed according to two different methodologies, standard and nonlinear. The nonlinear regression methodology provides better results than the standard methodology does for predicting the stall at the control surface. The flow simulations have shown that the occurrence of the control surface stall depends on a linear relationship between the angle of attack and the control surface deflection. This type of information can be used in designing the vehicle's autopilot system.  相似文献   

11.
The paper treats the question of suboptimal dive plane control of autonomous underwater vehicles (AUVs) using the state-dependent Riccati equation (SDRE) technique. The SDRE method provides an effective mean of designing nonlinear control systems for minimum as well as nonminimum phase AUV models. It is assumed that the hydrodynamic parameters of the nonlinear vehicle model are imprecisely known, and in order to obtain a practical design, a hard constraint on control fin deflection is imposed. The problem of depth control is treated as a robust nonlinear output (depth) regulation problem with constant disturbance and reference exogenous signals. As such an internal model of first-order fed by the tracking error is constructed. A quadratic performance index is chosen for optimization and the algebraic Riccati equation is solved to obtain a suboptimal control law for the model with unconstrained input. For the design of model with fin angle constraints, a slack variable is introduced to transform the constrained control input problem into an unconstrained problem, and a suboptimal control law is designed for the augmented system using a modified performance index. Using the center manifold theorem, it is shown that in the closed-loop system, the system trajectories are regulated to a manifold (called output zeroing manifold) on which the depth tracking error is zero and the equilibrium state is asymptotically stable. Simulation results are presented which show that effective depth control is accomplished in spite of the uncertainties in the system parameters and control fin deflection constraints.  相似文献   

12.
设计了一种拉线机构驱动的仿鱼型自主巡游机器人,阐述了其机械结构、电路系统及控制算法的设计方案,同时开展开敞水域试验对其游动性能进行研究。研究表明,在直行及转弯试验中,当摆尾频率相同时,随着尾鳍摆动幅度的增加,机器鱼的游动速度上升;当尾鳍摆动幅度相同时,随着摆尾频率的增加,机器鱼游动速度先升后降,且在0.60 Hz附近时达到峰值;在目标角度转向试验中,当摆尾频率及目标角度相同时,随着尾鳍摆动幅度的增加,机器鱼的角度响应时间逐渐减小;当尾鳍摆动幅度及目标角度相同时,随着摆尾频率的增加,角度响应时间先降后升;当摆尾频率及摆动幅度相同时,目标角度的增加会使得角度响应时间呈上升趋势。研究成果验证了该机器鱼平台的可靠性,为将来进一步理论研究及实际应用提供了一定的参考。  相似文献   

13.
波浪滑翔机直接利用波浪能实现大范围长距离的机动运动观测,在海洋环境观测中可以发挥重要的作用。本文对波浪滑翔机推进装置在启动阶段的翼片的水动力学行为进行了研究。以波浪滑翔机水下推进装置的翼片为研究对象,运用雷诺平均Navier-Stokes方程(RANS),对给定垂荡和摆动运动的翼片水动力学进行了水动力分析和仿真,模拟了单个翼片、纵向阵列多翼片的运动状况,得到推进装置翼片附近的压力分布和整体推进动力,分析翼片间距变化在启动阶段对推进力的影响作用。通过该研究工作为深入理解波浪滑翔机推进装置工作状态提供了理论依据。  相似文献   

14.
Precise control of trawl systems is assumed to be beneficial from both economic and environmental reasons. Using the trawl doors as actuators could increase the amount of available control forces. Adequate mathematical models of the hydrodynamic fores on the trawl doors are needed for control system design and verification. This paper presents a method for mathematical modeling of the hydrodynamic forces on the trawl doors. These forces are divided into steady-state forces and transient effects. The six degrees of freedom (six dof) steady-state hydrodynamic coefficients of a trawl door have been found as a function of its angles of attack and slip, based on wind-tunnel experiments. The coefficients are parameterized for smoothing and computational performance, and methods for extending the validity of the model in terms of orientation and trawl door shape are presented. The transient effects are described as functions of relative accelerations between the trawl door and the ambient water, angular velocities of the trawl door and circulation buildup. These effects are manifestations of variations in the flow around the trawl door and its wake, and a numerical method based on potential theory is employed to investigate them. A computational efficient, nonlinear, state–space model of the hydrodynamic forces is finally proposed. It accounts for steady-state and unsteady hydrodynamic forces and moments in six dof, suitable for trawl control system design and analysis.  相似文献   

15.
In this work a method for estimating parameters of practical ship manoeuvring models based on the combination of RANSE computations and System Identification procedure is investigated, considering as test case a rather slender twin screw and two rudders ship. The approach consists in the estimation of the hydrodynamic coefficients applying System Identification to a set of free running manoeuvres obtained from an in-house unsteady RANS equations solver, which substitute the usually adopted experimental tests at model or full scale. In this alternative procedure the numerical quasi-trials (in terms of kinematic parameters time histories and, if needed, forces time histories) are used as input for the System Identification procedure; the aim of this approach is to reduce external disturbances that, if not properly considered in the mathematical model, may compromise the identification results, or at least amplify the well-known “cancellation effects”. Furthermore, the CFD results provide information both in terms of flow field variables and hydrodynamic forces on the manoeuvring ship. These data may be adopted for a better understanding of the complex flow during manoeuvres, especially at stern, providing also additional information about the interaction between the various appendages (including rudders) and the hull. The identification procedure is based on an off-line genetic algorithm used for minimizing the discrepancy between the reference manoeuvres from CFD and those simulated with the system based modular model. The discrepancy was measured considering different metric functions and simplified formulations which consider only the main macroscopic parameters of the manoeuvre; the metrics have been analyzed in terms of their capability in reproducing the time histories and in limiting the cancellation effect of the hydrodynamic derivatives.  相似文献   

16.
A numerical algorithm for modeling the vertical propagation and breaking of nonlinear acoustic-gravity waves (AGWs) from the Earth’s surface to the upper atmosphere is described in brief. Monochromatic variations in the vertical velocity at the Earth’s surface are used as an AGW source in the model. The algorithm for solving atmospheric hydrodynamic equations is based on three-dimensional finite-difference analogues of fundamental conservation laws. This approach selects physically correct generalized solutions to hydrodynamic equations. A numerical simulation is carried out in an altitude region from the Earth’s surface to 500 km. Vertical profiles of the background temperature, density, and coefficients of molecular viscosity and heat conduction are taken from the standard atmosphere models. Calculations are made for different amplitudes of lower-boundary wave forcing. The AGW amplitudes increase with altitude, and waves may break in the middle and upper atmosphere.  相似文献   

17.
摆动尾鳍水动力性能的试验和数值研究   总被引:1,自引:0,他引:1  
苏玉民  张曦  杨亮 《海洋工程》2012,30(3):150-158
鱼类能够在水下高速度、低噪音、高效率地游动。鱼类出色的推进性能通过其摆动尾鳍实现。这种摆动尾鳍推进方式已经用在了水下无人航行器上。因此研究摆动尾鳍的水动力性能是非常有意义的。对摆动尾鳍的推进水动力性能进行了详尽的研究。设计、装配了一套仿尾鳍推进系统,并对其进行了相应的水动力试验。在试验中研究了运动参数对摆动尾鳍水动力性能的影响。与此同时,采用基于雷诺平均N-S方程的数值方法对摆动尾鳍的水动力性能进行了研究。在数值计算中采用了k-ωSST湍流模型和有限体积法。数值计算结果和水动力试验结果进行了比较。对尾鳍表面的压力分布和流场中的尾涡结构进行了分析。水动力试验和数值计算都表明摆动尾鳍可以产生推进力和较高的推进效率。  相似文献   

18.
This documentation presents the parametric identification modeling of ship maneuvering motion with integral sample structure for identification (ISSI) and Euler sample structure for identification (ESSI) based on least square support vector machines (LS-SVM), where ISSI is used for the construction of in–out sample pairs. By using Mariner Class Vessel, the sample dataset are obtained from 15°/15° zigzag maneuvering simulation based on Abkowitz model. By analyzing the simulation data including rudder angle, surge velocity, sway velocity, yaw rate and so forth, the hydrodynamic derivatives in Abkowitz model are all identified. The validation of the proposed identification algorithm is verified by the high precisions of the identified hydrodynamic derivatives and maneuvering prediction results. The comparison is also conducted between the proposed ISSI and the conventional Euler sample structure for identification (ESSI), and the experimental results shows that ISSI is much more appropriate for parametric identification modeling of ship maneuvering motion.  相似文献   

19.
An integrated hydrodynamics and control model to simulate tethered underwater robot system is proposed. The governing equation of the umbilical cable is based on a finite difference method, the hydrodynamic behaviors of the underwater robot are described by the six-degrees-of-freedom equations of motion for submarine simulations, and a controller based on the fuzzy sliding mode control (FSMC) algorithm is also incorporated. Fluid motion around the main body of moving robot with running control ducted propellers is governed by the Navier–Stokes equations and these nonlinear differential equations are solved numerically via computational fluid dynamics (CFD) technique. The hydrodynamics and control behaviors of the tethered underwater robot under certain designated trajectory and attitude control manipulation are then investigated based on the established hydrodynamics and control model. The results indicate that satisfactory control effect can be achieved and hydrodynamic behavior under the control operation can be observed with the model; much kinematic and dynamic information about tethered underwater robot system can be forecasted, including translational and angular motions of the robot, hydrodynamic loading on the robot, manipulation actions produced by the control propellers, the kinematic and dynamic behaviors of the umbilical cable. Since these hydrodynamic effects are fed into the proposed coupled model, the mutual hydrodynamic influences of different portions of the robot system as well as the hydrological factors of the undersea environment for the robot operation are incorporated in the model.  相似文献   

20.
Jenhwa Guo   《Ocean Engineering》2006,33(17-18):2369-2380
This work develops a control system for the waypoint-tracking of a biomimetic autonomous underwater vehicle (BAUV). The BAUV swims forward by oscillating its body and caudal fin. It turns by bending its body and caudal fin toward the turning direction. The control algorithm uses the oscillating frequency to control the forward velocity, and applies a body-spline offset parameter to control the heading velocity. The motion of the BAUV is undulatory, so moving averages of swimming velocity and heading errors are used as feedback signals. The stability of the control system is discussed using a Lyapunov function. Finally, the effectiveness of the control algorithm is experimentally confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号