首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have measured central line strengths for a complete sample of early-type galaxies in the Fornax Cluster comprising 11 elliptical and 11 lenticular galaxies, more luminous than M B=–17. We find that the centres of Fornax ellipticals follow the locus of galaxies of fixed age in Worthey's models and have metallicities varying roughly from half to 2.5 times solar. The centres of (relatively low luminosity) lenticular galaxies, however, exhibit a substantial spread to younger luminosity-weighted ages indicating amore extended star formation history. Our conclusions are based on two age/metallicity diagnostic diagrams in the Lick/IDS system comprising established indices such as [MgFe]and Hβ as well as new and more sensitive indices, such as Fe3and H . The inferred difference in the age distribution between lenticular and elliptical galaxies is a robust conclusion as the models generate consistent relative ages using different age and metallicity indicators even though the absolute ages remain uncertain. The absolute age uncertainty is caused mainly by the effects of non-solar abundance ratios, which are not accounted for in the stellar population models. We find that Es are generally overabundant in magnesium and the most luminous galaxies show stronger overabundances. The luminosity-weighted stellar populations of young S0s are consistent with solar abundance ratios or a weak Mg under abundance. Two of the faintest lenticular galaxies in our sample have blue continua and extremely strong Balmer-line absorptions suggesting starbursts <2 Gyr ago. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
We present BVI photometry of 190 galaxies in the central 4 ×3 deg2 region of the Fornax cluster observed with the Michigan Curtis Schmidt Telescope. Results from the Fornax Cluster Spectroscopic Survey (FCSS) and the Flair-II Fornax Surveys have been used to confirm the membership status of galaxies in the Fornax Cluster Catalogue (FCC). In our catalogue of 213 member galaxies, 92 (43 per cent) have confirmed radial velocities.
In this paper, we investigate the surface brightness–magnitude relation for Fornax cluster galaxies. Particular attention is given to the sample of cluster dwarfs and the newly discovered ultracompact dwarf galaxies (UCDs) from the FCSS. We examine the reliability of the surface brightness–magnitude relation as a method for determining cluster membership and find that at surface brightnesses fainter than 22 mag arcsec−2, it fails in its ability to distinguish between cluster members and barely resolved background galaxies. Cluster members exhibit a strong surface brightness–magnitude relation. Both elliptical (E) galaxies and dwarf elliptical (dE) galaxies increase in surface brightness as luminosity decreases. The UCDs lie off the locus of the relation.
  B − V   and   V − I   colours are determined for a sample of 113 cluster galaxies and the colour–magnitude relation is explored for each morphological type. The UCDs lie off the locus of the colour–magnitude relation. Their mean   V − I   colours (∼1.09) are similar to those of globular clusters associated with NGC 1399. The location of the UCDs on both surface brightness and colour–magnitude plots supports the 'galaxy threshing' model for infalling nucleated dwarf elliptical (dE, N) galaxies.  相似文献   

3.
We present a photometric study of the globular cluster systems (GCSs) of the Fornax cluster galaxies NGC 1374, NGC 1379 and NGC 1387. The data consist of images from the wide-field MOSAIC imager of the Cerro Tololo Inter-American Observatory (CTIO) 4-m telescope, obtained with Washington C and Kron–Cousins R filters. The images cover a field of  36 × 36 arcmin2  , corresponding to  200 × 200 kpc2  at the Fornax distance. Two of the galaxies, NGC 1374 and NGC 1379, are low-luminosity ellipticals while NGC 1387 is a low-luminosity lenticular. Their cluster systems are still embedded in the cluster system of NGC 1399. Therefore, the use of a large field is crucial and some differences to previous work can be explained by this. The colour distributions of all GCSs are bimodal. NGC 1387 presents a particularly distinct separation between red and blue clusters and an overproportionally large population of red clusters. The radial distribution is different for blue and red clusters, red clusters being more concentrated towards the respective galaxies. The different colour and radial distributions point to the existence of two globular cluster subpopulations in these galaxies. Specific frequencies are in the range   SN = 1.4–2.4  , smaller than the typical values for elliptical galaxies. These galaxies might have suffered tidal stripping of blue globular clusters by NGC 1399.  相似文献   

4.
We examine the evolutionary status of luminous, star-forming galaxies in intermediate-redshift clusters by considering their star formation rates (SFRs) and the chemical and ionization properties of their interstellar emitting gas. Our sample consists of 17 massive, star-forming, mostly disc galaxies with   MB ≲−20  , in clusters with redshifts in the range  0.31 ≲ z ≲ 0.59  , with a median of  〈 z 〉= 0.42  . We compare these galaxies with the identically selected and analysed intermediate-redshift field sample of Mouhcine et al., and with local galaxies from the Nearby Field Galaxy Survey of Jansen et al.
From our optical spectra, we measure the equivalent widths of  [O  ii ]λ3727, Hβ  and [O  iii ]λ5007 emission lines to determine diagnostic line ratios, oxygen abundances and extinction-corrected SFRs. The star-forming galaxies in intermediate-redshift clusters display emission-line equivalent widths which are, on average, significantly smaller than measured for field galaxies at comparable redshifts. However, a contrasting fraction of our cluster galaxies have equivalent widths similar to the highest observed in the field. This tentatively suggests a bimodality in the SFRs per unit luminosity for galaxies in distant clusters. We find no evidence for further bimodalities, or differences between our cluster and field samples, when examining additional diagnostics and the oxygen abundances of our galaxies. This maybe because no such differences exist, perhaps because the cluster galaxies which still display signs of star formation have recently arrived from the field. In order to examine this topic with more certainty, and to further investigate the way in which any disparity varies as a function of cluster properties, larger spectroscopic samples are needed.  相似文献   

5.
Stellar populations in spiral bulges are investigated using the Lick system of spectral indices. Long-slit spectroscopic observations of line strengths and kinematics made along the minor axes of four spiral bulges are reported. Comparisons are made between central line strengths in spiral bulges and those in other morphological types [elliptical, spheroidal (Sph) and S0]. The bulges investigated are found to have central line strengths comparable to those of single stellar populations of approximately solar abundance or above. Negative radial gradients are observed in line strengths, similar to those exhibited by elliptical galaxies. The bulge data are also consistent with correlations between Mg2, Mg2 gradient and central velocity dispersion observed in elliptical galaxies. In contrast to elliptical galaxies, central line strengths lie within the loci defining the range of 〈Fe〉 and Mg2 achieved by Worthey's solar abundance ratio, single stellar populations (SSPs). The implication of solar abundance ratios indicates significant differences in the star formation histories of spiral bulges and elliptical galaxies. A 'single zone with infall' model of galactic chemical evolution, using Worthey's SSPs, is used to constrain the possible star formation histories of our sample. We show that the 〈Fe〉, Mg2 and H β line strengths observed in these bulges cannot be reproduced using primordial collapse models of formation but can be reproduced by models with extended infall of gas and star formation (2–17 Gyr) in the region modelled. One galaxy (NGC 5689) shows a central population with a luminosity-weighted average age of ∼5 Gyr, supporting the idea of extended star formation. Kinematic substructure, possibly associated with a central spike in metallicity, is observed at the centre of the Sa galaxy NGC 3623.  相似文献   

6.
We describe ISAAC/ESO-VLT observations of the Hαλ6563 Balmer line of 33 field galaxies from the Canada–France Redshift Survey (CFRS) with redshifts selected between 0.5 and 1.1. We detect Hα in emission in 30 galaxies and compare the properties of this sample with the low-redshift sample of CFRS galaxies at   z ∼ 0.2  . We find that the Hα luminosity,   L (Hα)  , is tightly correlated to   M ( B AB)  in the same way for both the low- and high-redshift samples.   L (Hα)  is also correlated to L ([O  ii ]λ3727), and again the relation appears to be similar at low and high redshifts. The ratio L (lsqb;O  ii ])/   L (Hα)  decreases for brighter galaxies by as much as a factor of 2 on average. Derived from the Hα luminosity function, the comoving Hα luminosity density increases by a factor 12 from  〈 z 〉= 0.2  to  〈 z 〉= 1.3  . Our results confirm a strong rise of the star formation rate (SFR) at   z < 1.3  , proportional to  (1 + z )4.1±0.3  (with   H 0= 50 km s−1 Mpc−1, q 0= 0.5  ). We find an average  SFR(2800 Å)/SFR (Hα)  ratio of 3.2 using the Kennicutt SFR transformations. This corresponds to the dust correction that is required to make the near-ultraviolet data consistent with the reddening-corrected Hα data within the self-contained, I -selected CFRS sample.  相似文献   

7.
We investigate the evolution of the star formation rate in cluster galaxies. We complement data from the Canadian Network for Observational Cosmology 1 (CNOC1) cluster survey  (0.15 < z < 0.6)  with measurements from galaxy clusters in the Two-degree Field (2dF) galaxy redshift survey  (0.05 < z < 0.1)  and measurements from recently published work on higher-redshift clusters, up to almost   z = 1  . We focus our attention on galaxies in the cluster core, i.e. galaxies with   r < 0.7  h −170 Mpc  . Averaging over clusters in redshift bins, we find that the fraction of galaxies with strong [O  ii ] emission is ≲20 per cent in cluster cores, and the fraction evolves little with redshift. In contrast, field galaxies from the survey show a very strong increase over the same redshift range. It thus appears that the environment in the cores of rich clusters is hostile to star formation at all the redshifts studied. We compare this result with the evolution of the colours of galaxies in cluster cores, first reported by Butcher and Oemler. Using the same galaxies for our analysis of the [O  ii ] emission, we confirm that the fraction of blue galaxies, which are defined as galaxies 0.2 mag bluer in the rest-frame B – V than the red sequence of each cluster, increases strongly with redshift. Because the colours of galaxies retain a memory of their recent star formation history, while emission from the [O  ii ] line does not, we suggest that these two results can best be reconciled if the rate at which the clusters are being assembled is higher in the past, and the galaxies from which it is being assembled are typically bluer.  相似文献   

8.
We simulate the assembly of a massive rich cluster and the formation of its constituent galaxies in a flat, low-density universe. Our most accurate model follows the collapse, the star formation history and the orbital motion of all galaxies more luminous than the Fornax dwarf spheroidal, while dark halo structure is tracked consistently throughout the cluster for all galaxies more luminous than the SMC. Within its virial radius this model contains about     dark matter particles and almost 5000 distinct dynamically resolved galaxies. Simulations of this same cluster at a variety of resolutions allow us to check explicitly for numerical convergence both of the dark matter structures produced by our new parallel N -body and substructure identification codes, and of the galaxy populations produced by the phenomenological models we use to follow cooling, star formation, feedback and stellar aging. This baryonic modelling is tuned so that our simulations reproduce the observed properties of isolated spirals outside clusters. Without further parameter adjustment our simulations then produce a luminosity function, a mass-to-light ratio, luminosity, number and velocity dispersion profiles, and a morphology–radius relation which are similar to those observed in real clusters. In particular, since our simulations follow galaxy merging explicitly, we can demonstrate that it accounts quantitatively for the observed cluster population of bulges and elliptical galaxies.  相似文献   

9.
We present a possible star formation and chemical evolutionary history for two early-type galaxies NGC 1407 and NGC 1400. They are the two brightest galaxies of the NGC 1407 (or Eridanus-A) group, one of the 60 groups studied as part of the Group Evolution Multi-wavelength Study.
Our analysis is based on new high signal-to-noise ratio spatially resolved integrated spectra obtained at the ESO 3.6-m telescope, out to ∼0.6 (NGC 1407) and ∼1.3 (NGC 1400) effective radii. Using Lick/IDS indices, we estimate luminosity-weighted ages, metallicities and α-element abundance ratios. Colour radial distributions from HST /ACS and Subaru Suprime-Cam multiband wide-field imaging are compared to colours predicted from spectroscopically determined ages and metallicities using single stellar population (SSP) models. The galaxies formed over half of their mass in a single short-lived burst of star formation  (≥100 M yr−1)  at redshift z ≥ 5. This likely involved an outside–in mechanism with supernova-driven galactic winds, as suggested by the flatness of the α-element radial profiles and the strong negative metallicity gradients. Our results support the predictions of the revised version of the monolithic collapse model for galaxy formation and evolution. We speculate that, since formation, the galaxies have evolved quiescently and that we are witnessing the first infall of NGC 1400 in the group.  相似文献   

10.
Using high signal-to-noise ratio VLT/FORS2 long-slit spectroscopy, we have studied the properties of the central stellar populations and dynamics of a sample of S0 galaxies in the Fornax cluster. The central absorption-line indices in these galaxies correlate well with the central velocity dispersions (σ0) in accordance with what previous studies found for elliptical galaxies. However, contrary to what it is usually assumed for cluster ellipticals, the observed correlations seem to be driven by systematic age and α-element abundance variations, and not changes in overall metallicity. We also found that the observed scatter in the index–σ0 relations can be partially explained by the rotationally supported nature of these systems. Indeed, even tighter correlations exist between the line indices and the maximum circular velocity of the galaxies. This study suggests that the dynamical mass is the physical property driving these correlations, and for S0 galaxies such masses have to be estimated assuming a large degree of rotational support. The observed trends imply that the most massive S0s have the shortest star formation time-scales and the oldest stellar populations.  相似文献   

11.
Recent spectroscopic observations of galaxies in the Fornax Cluster reveal nearly unresolved 'star-like' objects with redshifts appropriate to the Fornax Cluster. These objects have intrinsic sizes of ≈100 pc and absolute B -band magnitudes in the range  −14< M B<−11.5 mag  and lower limits for the central surface brightness   μ B≳23 mag arcsec−2  , and so appear to constitute a new population of ultracompact dwarf galaxies (UCDs). Such compact dwarfs were predicted to form from the amalgamation of stellar superclusters (by Kroupa) , which are rich aggregates of young massive star clusters (YMCs) that can form in collisions between gas-rich galaxies. Here we present the evolution of superclusters in a tidal field. The YMCs merge on a few supercluster crossing times. Superclusters that are initially as concentrated and massive as knot S in the interacting Antennae galaxies evolve to merger objects that are long-lived and show properties comparable to the newly discovered UCDs. Less massive superclusters resembling knot 430 in the Antennae may evolve to ω Cen-type systems. Low-concentration superclusters are disrupted by the tidal field, dispersing their surviving star clusters while the remaining merger objects rapidly evolve into the   μ B− M B  region populated by low-mass Milky Way dSph satellites.  相似文献   

12.
In large spheroidal stellar systems, such as elliptical galaxies, one invariably finds a  106–109 M  supermassive black hole at their centre. In contrast, within dwarf elliptical galaxies one predominantly observes a  105–107 M  nuclear star cluster. To date, few galaxies have been found with both types of nuclei coexisting and even less have had the masses determined for both central components. Here, we identify one dozen galaxies housing nuclear star clusters and supermassive black holes whose masses have been measured. This doubles the known number of such hermaphrodite nuclei – which are expected to be fruitful sources of gravitational radiation. Over the host spheroid (stellar) mass range  108–1011 M  , we find that a galaxy's nucleus-to-spheroid (baryon) mass ratio is not a constant value but decreases from a few per cent to ∼0.3 per cent such that  log[( M BH+ M NC)/ M sph]=−(0.39 ± 0.07) log[ M sph/1010 M]− (2.18 ± 0.07)  . Once dry merging commences and the nuclear star clusters disappear, this ratio is expected to become a constant value.
As a byproduct of our investigation, we have found that the projected flux from resolved nuclear star clusters is well approximated with Sérsic functions having a range of indices from ∼0.5 to ∼3, the latter index describing the Milky Way's nuclear star cluster.  相似文献   

13.
New calibrations of spectrophotometric indices of elliptical galaxies as functions of spectrophotometric indices are presented, permitting estimates of mean stellar population ages and metallicities. These calibrations are based on evolutionary models including a two-phase interstellar medium, infall and a galactic wind. Free parameters were fixed by requiring that models reproduce the mean trend of data in the colour–magnitude diagram as well as in the plane of indices  Hβ–Mg2  and  Mg2–〈Fe〉  . To improve the location of faint ellipticals  ( M B > −20)  in the  Hβ–Mg2  diagram, downsizing was introduced. An application of our calibrations to a sample of ellipticals and a comparison with results derived from single stellar population models are given. Our models indicate that mean population ages span an interval of 7–12 Gyr and are correlated with metallicities, which range from approximately half up to three times solar.  相似文献   

14.
We present a Chandra study of 38 X-ray-luminous clusters of galaxies in the ROSAT Brightest Cluster Sample (BCS) that lie at moderate redshifts  ( z ≈ 0.15–0.4)  . Based primarily on power ratios and temperature maps, we find that the majority of clusters at moderate redshift generally have smooth, relaxed morphologies with some evidence for mild substructure perhaps indicative of recent minor merger activity. Using spatially resolved spectral analyses, we find that cool cores appear still to be common at moderate redshift. At a radius of 50 kpc, we find that at least 55 per cent of the clusters in our sample exhibit signs of mild cooling  ( t cool < 10 Gyr)  , while in the central bin at least 34 per cent demonstrate signs of strong cooling  ( t cool < 2 Gyr)  . These percentages are nearly identical to those found for luminous, low-redshift clusters of galaxies, indicating that there appears to be little evolution in cluster cores since   z ≈ 0.4  and suggesting that heating and cooling mechanisms may already have stabilized by this epoch. Comparing the central cooling times to catalogues of central Hα emission in BCS clusters, we find a strong correspondence between the detection of Hα and central cooling time. We also confirm a strong correlation between the central cooling time and cluster power ratios, indicating that crude morphological measures can be used as a proxy for more rigorous analysis in the face of limited signal-to-noise ratio data. Finally, we find that the central temperatures for our sample typically drop by no more than a factor of ∼3–4 from the peak cluster temperatures, similar to those of many nearby clusters.  相似文献   

15.
We present optical spectra of the nuclei of seven luminous ( P 178 MHz≳1025 W Hz−1 Sr−1) nearby ( z <0.08) radio galaxies, which mostly correspond to the FR II class. In two cases, Hydra A and 3C 285, the Balmer and λ 4000-Å break indices constrain the spectral types and luminosity classes of the stars involved, revealing that the blue spectra are dominated by blue supergiant and/or giant stars. The ages derived for the last burst of star formation in Hydra A are between 7 and 40 Myr, and in 3C 285 about 10 Myr. The rest of the narrow-line radio galaxies (four) have a λ 4000-Å break and metallic indices consistent with those of elliptical galaxies. The only broad-line radio galaxy in our sample, 3C 382, has a strong featureless blue continuum and broad emission lines that dilute the underlying blue stellar spectra. We are able to detect the Ca  ii triplet in absorption in the seven objects, with good quality data for only four of them. The strengths of the absorptions are similar to those found in normal elliptical galaxies, but these values are consistent both with stellar populations of roughly similar ages (as derived from the Balmer absorption and break strengths) and with mixed young+old populations.  相似文献   

16.
Dwarf galaxies, as the most numerous type of galaxy, offer the potential to study galaxy formation and evolution in detail in the nearby universe. Although they seem to be simple systems at first view, they remain poorly understood. In an attempt to alleviate this situation, the MAGPOP EU Research and Training Network embarked on a study of dwarf galaxies named MAGPOP-ITP. In this paper, we present the analysis of a sample of 24 dwarf elliptical galaxies (dEs) in the Virgo cluster and in the field, using optical long-slit spectroscopy. We examine their stellar populations in combination with their light distribution and environment. We confirm and strengthen previous results that dEs are, on average, younger and more metal-poor than normal elliptical galaxies, and that their [α/Fe] abundance ratios scatter around solar. This is in accordance with the downsizing picture of galaxy formation where mass is the main driver for the star formation history. We also find new correlations between the luminosity-weighted mean age, the large-scale asymmetry, and the projected Virgocentric distance. We find that environment plays an important role in the termination of the star formation activity by ram-pressure stripping of the gas in short time-scales, and in the transformation of discy dwarfs to more spheroidal objects by harassment over longer time-scales. This points towards a continuing infalling scenario for the evolution of dEs.  相似文献   

17.
The global star formation rate has decreased significantly since   z ∼ 1  , for reasons that are not well understood. Red-sequence galaxies, dominating in galaxy clusters, represent the population that have had their star formation shut off, and may therefore be the key to this problem. In this work, we select 127 rich galaxy clusters at  0.17 ≤ z ≤ 0.36  , from 119 deg2 of the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS) optical imaging data, and construct the r '-band red-sequence luminosity functions (LFs). We show that the faint end of the LF is very sensitive to how red-sequence galaxies are selected, and an optimal way to minimize the contamination from the blue cloud is to mirror galaxies on the redder side of the colour–magnitude relation. The LFs of our sample have a significant inflexion centred at     , suggesting a mixture of two populations. Combining our survey with low-redshift samples constructed from the Sloan Digital Sky Survey, we show that there is no strong evolution of the faint end of the LF (or the red-sequence dwarf-to-giant ratio) over the redshift range  0.2 ≲ z ≲ 0.4  , but from   z ∼ 0.2  to ∼0 the relative number of red-sequence dwarf galaxies has increased by a factor of ∼3, implying a significant build-up of the faint end of the cluster red sequence over the last 2.5 Gyr.  相似文献   

18.
This paper is part of a series devoted to the study of the stellar populations in brightest cluster galaxies (BCGs), aimed at setting constraints on the formation and evolution of these objects. We have obtained high signal-to-noise ratio, long-slit spectra of 49 BCGs in the nearby Universe. Here, we derive single stellar population (SSP)-equivalent ages, metallicities and α-abundance ratios in the centres of the galaxies using the Lick system of absorption line indices. We systematically compare the indices and derived parameters for the BCGs with those of large samples of ordinary elliptical galaxies in the same mass range. We find no significant differences between the index-velocity dispersion relations of the BCG data and those of normal ellipticals, but we do find subtle differences between the derived SSP parameters. The BCGs show, on average, higher metallicity ([ Z /H]) and α-abundance ([E/Fe]) values. We analyse possible correlations between the derived parameters and the internal properties of the galaxies (velocity dispersion, rotation, luminosity) and those of the host clusters (density, mass, distance from BCG to X-ray peak, presence of cooling flows), with the aim of dissentangling if the BCG properties are more influenced by their internal or host cluster properties. The SSP parameters show very little dependence on the mass or luminosity of the galaxies, or the mass or density of the host clusters. Of this sample, 26 per cent show luminosity-weighted ages younger than 6 Gyr, probably a consequence of recent – if small – episodes of star formation. In agreement with previous studies, the BCGs with intermediate ages tend to be found in cooling-flow clusters with large X-ray excess.  相似文献   

19.
The age of the Universe has been increasingly constrained by different techniques, such as the observations of type Ia supernovae (SNIa) at high redshift or dating the stellar populations of globular clusters. In this paper, we present a complementary approach using the colours of the brightest elliptical galaxies in clusters over a wide redshift range  ( z ≲ 1)  . We put new and independent bounds on the dark energy equation of state parametrized by a constant pressure-to-density ratio   w Q  and by a parameter (ξ) which determines the scaling between the matter and dark energy densities. We find that accurate estimates of the metallicities of the stellar populations in moderate and high-redshift cluster galaxies can pose stringent constraints on the parameters that describe dark energy. Our results are in good agreement with the analysis of dark energy models using SNIa data as a constraint. Accurate estimates of the metallicities of stellar populations in cluster galaxies at   z ≲ 2  will make this approach a powerful complement to studies of cosmological parameters using high-redshift SNIa.  相似文献   

20.
We present the K -band (2.2 μm) luminosity functions (LFs) of the X-ray-luminous clusters MS1054–0321 ( z  = 0.823), MS0451–0305 ( z  = 0.55), Abell 963 ( z  = 0.206), Abell 665 ( z  = 0.182) and Abell 1795 ( z  = 0.063) down to absolute magnitudes M K  = −20. Our measurements probe fainter absolute magnitudes than do any previous studies of the near-infrared LFs of clusters. All the clusters are found to have similar LFs within the errors, when the galaxy populations are evolved to redshift z  = 0. It is known that the most massive bound systems in the Universe at all redshifts are X-ray-luminous clusters. Therefore, assuming that the clusters in our sample correspond to a single population seen at different redshifts, the results here imply that not only had the stars in present-day ellipticals in rich clusters formed by z  = 0.8, but that they existed in as luminous galaxies then as they do today.   Additionally, the clusters have K -band LFs which appear to be consistent with the K -band field LF in the range −24 <  M K  < −22, although the uncertainties in both the field and cluster samples are large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号