首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Metamorphic xenoliths within the Nushan alkali basalt of northeastern Anhui (NEA),China ,are from the middle-lower crust.They could be divided into two end-members:basic and acid.Interme-diate xenoliths are scarcely found.Basic two-pyroxene granulites(pyriclasites) were formed at 720-810℃ and 7-8kb.Petrological and geochemical studies indicate that the primary magma of the protoliths of basic granulites was derived from the metasomatized upper mantle, while the pa-rental magma of the acid end-member was probably produced by partial melting of the basic rocks. The protoliths of charnockites and grey gneisses represent respectively the early and late crystallization products of the granitic magma.The Nushan granulites are much different in many aspects from the granulites exposed in the northern part of North China ,which implies the inhomogeneity regarding to the early evolution of the North China terranc.  相似文献   

2.
The collision of a divergent ocean ridge may evolve into two end cases:in the continuity of ocean-floor subduction.or in the detachment of the subducted plate.The northern Patagonia active plate margin has the unique situation that in Cenozoic time it has been subjected to two divergent ridge collisions,each one representing one of the end members.The Neogene Antarctica-Nazca divergent ridge collision evolved as a continuous ocean-floor subduction system,promoting a magmatic hiatus at the arc axis,the obduction of part of the ridge ocean-floor in the fore-arc.and basaltic volcanism in the back-arc.In contrast,the Paleogene Farallon-Aluk divergent ridge collision evolved into a transform margin,with the detachment and sinking of the Aluk plate and the development of a large slab window.As in the previous case,this collision promoted a magmatic hiatus at the arc axis,but the tectono-magmatic scenario changed to postorogenic synextensional volcanism that spread to the former fore-arc(basalt,andesite,rhyolite) and former back-arc(bimodal ignimbrite flare-up,basalt).Geochemistry of this slab window synextensional volcanism shows more MORB-like basalts towards the former fore-arc,and MORB-OIB-like basalts towards the former back-arc.Instead,an isolated undeformable crustal block in the former back-arc,with an "epeirogenic" response to the slab window and extensional regime,was covered by OIB-type basalts after uplift.Major elements show that slab window basalts reach TiCh values up to 3 wt%,as compared with the top value of 1.5 wt%of arc magmas.Besides,the MgO with respect to(FeOt + Al2O3) ratio helps to distinguish slab window magma changes from the former fore-arc to the former back-arc and also with respect to the "epeirogenic" block.Higher contents of HFS elements such as Nb and Ta also help to distinguish this slab window from arc magmas and also,to distinguish slab window magma changes from the former fore-arc to the former back-arc and "epeirogenic" block settings.The isotope compositions of slab window magmatism show a disparate coeval array from MORB to crustal sources,interpreted as a consequence of the lack of protracted storage and homogenization due to the extensional setting.  相似文献   

3.
于学元 《地球化学》1984,(3):247-255
The Nutoushan basaltic cone, eonsisting of subalkali (quartz-tholeiite and olivinetholeiite) and alkali basalts, is Late Tertiary in age. Its major characteristics are generalized as follows: (1) Both early subalkali and late alkali basalts are formed under the same geological environment. (2) The continuity in chemical composition from snbalkali to alkali and the low FeO/MgO in alkali basalts show that they arc the products of cognate magmatic diffcrcntiation. (3) The change from low REE abundance and weak enrichment of LREE in subalkali to high REE abundance and strong enrichment of LREE in alkali basalts indicates obvious REE cnrichment and fractionation during magmatic differentiation.Weak positive Eu anomalies in the REE patterns arc indicative of their formation under low oxygen fugacity conditions. (4) According to the calculated values, 70-75% of the primary olivine tholeiitic magma had been separated as subalkaline basalic magma, the rest residual magma became alkaline basaltic magma. This result is consistent to the field observation that the outcrop area of subalkali basalts is four times as much as that of alkali basalts. (5) The basaltic rocks of Nutoushan show an S-type distribution straddling the thermal barrier on Ol‘-Ne‘-Qu‘ diagram and an evolution tendency for Ne to increase with increasing FeO/MgO. This is in agreement with the melting experimental data on olivine basalts at 10-20 kb. (6) Mantle-derived inclusions (spinel lherzolite) in this area occur in both alkali olivine basalts and olivine tholeiites. The latter is of extremely rare oceurrence. The formation temperature and pressure of the inclusions in alkali basalts and olivine tholeiites have been calculated. The results silow that the alkaline basaltic magma was separated from the subalkaline basaltic magma at about 20 kb. Basaltic rocks in Nutoushan were formed through the soealled “high pressure differentiation”, that is, at about 20 kb the crystallization of clinopyroxene and orthpyroxene resulted in the separation of subalkaline basaltic magma from the primary olivine tholeiitic magma, and then the residue gradually became alkaline olivine basaltic magma.  相似文献   

4.
The Yangtze plate, extending from east to west in southern China, was formed about 800 Ma ago. Since the Sinian, two aulacogens trending east-northeast and connected at the east ends, have been initiated in the Jiangsu-Zhejiang-Anhui region on the east margin of the plate with a sedimentary sequence up to 10,000 m in thickness. At a later stage of sedimentologic evolution, flysch and molasse were produced. The flyseh was accumulated in the Late Ordovician, when the two aulacogens became bays that opened to the east; the elastic materials were derived from the Yangtze oldland on the northern and southern sides of the basins. The molasse was accumulated from the terminal Late Ordovician to the Middle Ordovician; the clastie materials came from an uplifted orogenic belt in the east. This indicates that a major change in the tectonic pattern of the basins has taken place.  相似文献   

5.
Trace elements, isotopic modeling and U-Th-Pb SHRIMP zircon age constraints are used to reconstruct the eruption history and magmatic processes of the Piedra Parada Caldera. In the early Eocene, the crystal-poor Barda Colorada ignimbrite(BCI), having 15% micro-porphyritic crystals with respect to magmatic components, erupted a volume estimated in more than 300 km~3. The Piedra Parada caldera is located in the Patagonian Andes foreland, at the southern end of the calderas field of the Pilcaniyeu Volcanic Belt(PVB). This belt is related to an extensional tectonic setting as a result of the collision of the Farallon-Aluk ridge with South America, which enabled the development of a transform ocean/continental plate margin followed by the detachment of the Aluk plate and the opening of a slab window. The BCI extra-caldera Plateau is a 100 m thick deposit, having a lower unit with high silica(Si O_2 76 wt.%),potassium poor rhyolitic composition(trondhjemitic like magma), and an upper unit with normal to high potassium rhyolitic composition(granitic like magma). A trace elements modeling of the BCI units shows that the BCI lower and upper units did not evolve from fractionation or immiscibility in the shallow magma reservoir. The BCI also have a primitive isotopic signature(initial87 Sr/86 Sr =0.7031-0.7049 and ε_(Nd)= +3.4 to +3.65). Thus, tectonic, compositional and isotopic constraints suggest the fast ascent of high silica magmas to a shallow reservoir, and point to an upper mantle origin for these rhyolitic magmas in a transitional(Orogenic-Anorogenic) tectono-magmatic setting. U-Th-Pb SHRIMP zircon crystallization ages of the Syn-caldera stage BCI units(56 -51.5 Ma) show a protracted life of 5 Ma for this caldera reservoir. The age of 52.9 ± 0.3 Ma is considered the best fit for the possible maximum age for the caldera collapse. The Late-caldera magmatism has trachyandesitic and rhyolitic compositions.The trace element modeling suggests that these rhyolites evolve from the trachyandesites and do not evolve from the BCI residual magma. The trachyandesites have U-Th-Pb SHRIMP zircon crystallization ages of 52 ± 1 Ma, suggesting that the caldera eruption was triggered by the arrival of the trachyandesitic magma.  相似文献   

6.
The early Jurassic Dashipo-Heishantuo batholith in Beijing, which consists of the Dashipo hornblende-biotite syenite and Heishantuo granite, exposed in the western Yanshan orogenic belt, eastern North China Craton. The Dashipo syenite is magnesian potassic intermediate rock enriched in large ion lithophile elements such as Rb, Ba, Sr, Pb and LREE, and relatively depleted in high field strength elements such as Nb, Ta, U, Th, Zr, Hf as well as P and Ti, with εNd(t) values from -12.1 to -12.2 and ISr values of 0.70506-0.70464. The Heishantuo granite is magnesian peraluminous high K calc-alkaline, with an enrichment of large ion lithophile elements and radioactive elements such as Rb, Ba, Th, U and Pb, and a depletion of HREE and high field strength elements such as Nb, Ta, Zr and Hf as well as Sr, P and Ti, with εNd(t) values from -15.5 to -18.0 and ISr values of 0.70516-0.70593. The magma of the Dashipo syenite is produced by fractional crystallization of mantle-derived K-rich mafic magma under high pressure. The partial melting of the lower crust, which was heated and metasomatised by the mantle-derived magma, produced granitic magma that intruded into the unconsolidated Dashipo syenite to form the concentric batholith. The petrology and geochemistry of the Dashipo hornblende-biotite syenite indicate that the water weakening was important for the lithospheric destruction within the interior part of the North China Craton. Meanwhile, the partial melting related to the double-diffusion of energy and chemical composition between mantle-derived magma and crustal rocks was an important mechanism for the Mesozoic calc-alkaline felsic magmatism occurred in the interior of the North China Craton. ©, 2015, Science Press. All right reserved.  相似文献   

7.
The characteristics of the Triassic sequences developed in the Lower Yangtze area display some great changes in both environment and climate. The change of environment was a transition from marine to continent via alternating environments. The change of climate was a transition from tropic (torrid) to warm and wet climate via subtropic dry climate. The type variations of the sequences were from the marine sequences to the continental sequences, corresponding to the changes of environments and climates. Sequence 1 is a type II of sequence of mixed elastic and carbonate sediments; sequence 2 is a type I of sequence of carbonate platform; sequence 3 is a type I of sequence of carbonate tidal flat-salt lagoon, sequence 4 is a type iI of sequence of lacustrine within marine layers, and sequence 5 is a sequence of lacustrine-swamp. The development, distribution and preservation of those sequences reveal the tectonic controls and their changes in the background. The collision between the Yangtze plate and the North China plate was a great geological event in the geological history, but the timing of the collision is still disputed. However, the characteristics of Triassic sequence stratigraphy and sea level changes in the Lower Yangtze area responded to this collision. The collision started at the beginning of middle Triassic and the great regression in the Lower Yangtze area started 22Ma earlier than those in the world. The tectonic conditions occurred before and during the collision controlled the development of sequences and type changes.  相似文献   

8.
Greenstone basalts and komatiites provide a means to track both mantle composition and magma generation temperature with time.Four types of mantle are characterized from incompatible element distributions in basalts and komatiites:depleted,hydrated,enriched and mantle from which komatiites are derived.Our most important observation is the recognition for the first time of what we refer to as a Great Thermal Divergence within the mantle beginning near the end of the Archean,which we ascribe to thermal and convective evolution.Prior to 2.5 Ga,depleted and enriched mantle have indistinguishable thermal histories,whereas at 2.5-2.0 Ga a divergence in mantle magma generation temperature begins between these two types of mantle.Major and incompatible element distributions and calculated magma generation temperatures suggest that Archean enriched mantle did not come from mantle plumes,but was part of an undifferentiated or well-mixed mantle similar in composition to calculated primitive mantle.During this time,however,high-temperature mantle plumes from dominantly depleted sources gave rise to komatiites and associated basalts.Recycling of oceanic crust into the deep mantle after the Archean may have contributed to enrichment of Ti,Al,Ca and Na in basalts derived from enriched mantle sources.After 2.5 Ga,increases in Mg~# in basalts from depleted mantle and decreases in Fe and Mn reflect some combination of growing depletion and cooling of depleted mantle with time.A delay in cooling of depleted mantle until after the Archean probably reflects a combination of greater radiogenic heat sources in the Archean mantle and the propagation of plate tectonics after 3 Ga.  相似文献   

9.
This paper deals with the high-K,potassic dike rocks in two types of gold ore fields at Linglong and Dayigezhuang,Northwest Jiaodong.The rocks can be divided into three types.i.e.,(1) lamprophyre,(2) andesite porphyrite,and (3) dacite porphyrite,based on their geological occurrence and space-time relationship with gold mineralization.These rocks were the products of early,synchronous and late mineralization.respectively,Element geochemistry shows that variations in chemical composition of major oxides follow the general rules of magmatic fractional crystallization.The fractional crystallization of mineral phases of augite in the early stage(namely in the lamprophyre stage)and hornblende and plagioclase in the late stge(namely from the andesite-porphyrite to dacite porphyrite stage)controlled the magma evolution.The rocks are enriched in alkili and have higher K2O and lower TiO2 contents,as well as strongly enriched in large ion lithophile elements such as Ba,Sr and Rb,and LREE but strongly depleted in transition elements such as Cr and Ni,Rb is depleted relative to Sr and Ba,and Rb/Sr ratios are low.Volatile constituents are abundant.These characteristics indicate that the initial magma originated from the metamorphic subduction ocean-crust that had been intensively contaminated by crustal materials,and retrogressive metamorphism is characterized by low-degree partial melting during back-arc spreading,Varying degrees of partial melting and different emplacement enviornments may be the main causes for the evolution of the rocks and mineralization in different degrees in the two gold ore fields at Linglong and Dayigezhuang,Shandong.  相似文献   

10.
A systematic account of micro-textures and a few compositional profles of plagioclase from high-alumina basaltic aa lava erupted during the year 1994-1995,from Barren Island Volcano,NE India ocean,are presented for the frst time.The identifed micro-textures can be grouped into two categories:(i)Growth related textures in the form of coarse/fne-sieve morphology,fne-scale oscillatory zoning and resorption surfaces resulted when the equilibrium at the crystal-melt interface was fuctuated due to change in temperature or H2O or pressure or composition of the crystallizing melt;and(ii)morphological texture,like glomerocryst,synneusis,swallow-tailed crystal,microlite and broken crystals,formed by the infuence of dynamic behavior of the crystallizing magma(convection,turbulence,degassing,etc.).Each micro-texture has developed in a specifc magmatic environment,accordingly,a frst order magma plumbing model and crystallization dynamics are envisaged for the studied lava unit.Magma generated has undergone extensive fractional crystallization of An-rich plagioclase in stable magmatic environment at a deeper depth.Subsequently they ascend to a shallow chamber where the newly brought crystals and pre-existing crystals have undergone dynamic crystallization via dissolution-regrowth processes in a convective selfmixing environment.Such repeated recharge-recycling processes have produced various populations of plagioclase with different micro-textural stratigraphy in the studied lava unit.Intermittent degassing and eruption related decompression have also played a major role in the fnal stage of crystallization dynamics.  相似文献   

11.
The morphology, REE geochemistry and U-Pb geochronology of zircons from quartz monzodiorite in the Sunzhuang area, Fanshi County, Shanxi Province are presented in this study. The zircon crystals can be classified into four main types as: AB, L, S and P, and 24 subtypes such as AB4, AB5, L5, and S3. The maximum crystallization temperature of zircon was estimated as 850°C, with the minimum of 550°C. The peak temperatures of the zircon crystallization range from 650°C to 700°C. The abundances of Th and U in the zircon grains show large variation with the Th/U values 0.4. The Th and U values also show a positive correlation in most zircons. The REE abundance of zircon in the quartz monzodiorite ranges from 280.4 ppm to 2143 ppm with an average of 856.4 ppm. The chondrite normalized zircon REE patterns show two types, one is characterized by HREE enrichment and LREE depletion with positive Ce-anomaly and negative Eu-anomaly whereas the other is HREE enriched and LREE depleted with negative Eu-anomaly but without positive Ce-anomaly, and relatively flat patterns. The LA-ICP-MS U-Pb geochronology on the zircons yields a mean age of 133±0.87 Ma. Our data on zircon morphology, composition and U-Pb geochronology reveal that the parent magma of the quartz monzodiorite which was emplaced during late Yanshanian had a mixed crust-mantle source, with crustal components dominating. The magma is inferred to have been water rich and alkaline with initial high oxygen fugacity. Post-magmatic hydrothermal activity occurred under relatively reducing conditions which was conductive for gold precipitation in the Yixingzhai gold deposit.  相似文献   

12.
The Neotethys plays an important role in shaping the Gangdese magmatic belt,southern Tibet.However,the initial time of spreading and subduction of the Neotethys remains contentious.In this study,a suite of late Triassic cumulate hornblende gabbro was identified in the southern margin of the Gangdese magmatic belt.The gabbro exhibits cumulate structure,with hornblende and plagioclase as the primary mineral phases.Isotopic data indicate a hydrous magma source derived from a depleted mantle wedge that has been modified by slab dehydration.Geochemical discriminations suggest that the gabbro was formed in an intraoceanic arc setting,with crystallization ages of ca.220-213 Ma.Hornblende,hornblendelagioclase and ilmenite thermometers reveal that the crystallization temperature of 900-750°C for the gabbro.Hornblende and hornblende-plagioclase geobarometers yield an emplacement depth at ca.14.5-19.5 km.This gabbro constitutes a line of evidence for an intraoceanic arc magmatism that is coeval with the counterparts in the southern Turkey,revealing an intraoceanic subduction system within the Neotethys from west to east in the Late Triassic and that the oceanization of the Neotethys was much earlier than previous expectation.  相似文献   

13.
At a glance of its stratighraphy, the Taftan Volcano can be classified as three groups: pre-, syn- and post-volcanic deposits. The pre-volcanic deposits consist mostly of flysch facies and colored mélange complex. The syn-volcanic deposits are mainly the product of the Taftan Volcano which is mostly composed of pyroclastic and lava flows from the main body of this volcano. The post-volcanic deposits are mostly epiclastic and reworked materials from the Taftan Volcano due to its erosion and weathering. Major and trace elements, and Sr/Rb isotopic compositions determined on whole-rock samples from the Taftan Volcano showed that the volcano was formed at the continental margin. The whole-rock isotopic composition of the Taftan Volcano showed a feature of strong enrichment with ^87Sr/^86Sr=0.705326-0.705921. Geochronological samples of the Tartan Volcano determined by the ^40K/^40Ar method gave an age range of 6.95±0.72 to 0.71±0.03 Ma. The rare-earth element patterns are characterized by high LREE and nearly strongly linear patterns for MREE to HREE, suggesting that distinctive minerals such as olivine and pyroxene crystallized in the early magmatic stage and then were involved in reaction between the lower crust and residual magma. The integrated isotope and trace element systematics and tectonic structure beneath the Taftan Volcano suggested the lower-crust assimilation by the primary magma. The primary magma had generated from a heterogeneous mantle source and a secondary petrogenetical process. This magma could have been affected by the subduction of the Oman Sea undemeath the continental Eurasia plate.  相似文献   

14.
The Jiajiwaxi pluton in the southern portion of the West Kunlun Range can be divided into two collision–related intrusive rock series, i.e., a gabbro–quartz diorite–granodiorite series that formed at 224±2.0 Ma and a monzonitic granite–syenogranite series that formed at 222±2.0 Ma. The systematic analysis of zircon U-Pb geochronology and bulk geochemistry is used to discuss the magmatic origin(material source and thermal source), tectonic setting, genesis and geotectonic implications of these rocks. The results of this analysis indicate that the parent magma of the first series, representing a transition from I-type to S-type granites, formed from thermally triggered partial melting of deep crustal components in an early island–arc–type igneous complex, similar to an I-type granite, during the continental collision orogenic stage. The parent magma of the second series, corresponding to an S-type granite, formed from the partial melting of forearc accretionary wedge sediments in a subduction zone in the late Palaeozoic–Triassic. During continued collision, the second series magma was emplaced into the first series pluton along a central fault zone in the original island arc region, forming an immiscible puncture-type complex. The deep tectonothermal events associated with the continent–continent collision during the orogenic cycle are constrained by the compositions and origins of the two series. The new information provided by this paper will aid in future research into the dynamic mechanisms affecting magmatic evolution in the West Kunlun orogenic belt.  相似文献   

15.
A Paleoproterozoic A—type Rhyolite   总被引:3,自引:0,他引:3  
The rhyolites in the upper Lueliang Group of Shanxi,China,are Paleoproterozoic weakly alkaline volcanic rocks.They are characterized by high,SiO2,NaO K2O,Zr,Nd,Ga,Y and REE contents and large FeO^*/MgO,Rb/Sr and Ga/Al ratios,and low CaO,Sr and Eu contents,and share much in common with the A-type granitic rocks.They erupted in the rift setting at the continental margin.Chemical features and isotope data,as well as high Nd and low initial Sr ratios,suggest that the original granitic magma was derived from partial melting of Late Archean metamorphic rocks in the lower crust due to the influence of basaltic magma and hot fluid in response to rifting.The A-type rhyolites were finally formed after the fractional crystallization of the dominant mineral feldspar.  相似文献   

16.
The Higher Himalayan Crystallines(HHC), in western Garhwal, Uttarakhand are located in a regionalscale intracontinental ductile shear zone(15-20 km wide) bounded by the Main Central Thrust at the base, and the South Tibetan Detachment System at the top. The migmatite zone in the centre has the highest grade of metamorphism in the NW Himalayas and show evidence of flowage. Zircons extracted from samples of metasediment, migmatite, biotite granite and in situ partial melt(tourmaline-bearing leucogranite) along the Bhagirathi Valley, preserve U-Pb isotopic evidence of magmatic history, magma source and effects of the Himalayan orogeny in the region. Three distinct periods of zircon growth in the leucogranite record the episodic influx of magma between 46 Ma and 20 Ma indicating a time span of more than 25 Ma between the onset of fluid-fluxed partial melting in the mid-crustal intracontinental shear zone and the emplacement of the magma into the upper crust in a post-collisional extensional setting. Metamorphic zircon growth was initiated about 46 Ma, when the partial melts were generated as the migmatite zone was exhumed.  相似文献   

17.
As an important part of the early Mesozoic granites in the South Qinling tectonic belt (SQTB), the Guangtoushan pluton provides a material basis for research on the composition of magma sources and the effects of peritectic assemblage entrainment (PAE) on the changes in the granite composition. As shown by the results of LA-ICP-MS zircon U-Pb dating, the Guangtoushan pluton was emplaced during the Late Triassic (214–212 Ma) and was formed in the post-collision stage between the SQTB and the Yangtze plate. The collected samples had high SiO2 content and low Cr and Ni contents, indicating that the magmas did not undergo significant crust-mantle mixing during their evolution. The Guangtoushan granitoids were distributed along the trend line of magmatic fractional crystallization in the F–An–Or diagram. This result, combined with the relatively homogeneous Sr-Nd isotopic composition, implies that the Guangtoushan pluton underwent slight assimilation and contamination. As can be inferred from the comparison between the compositions of the Guangtoushan granitoids and various fluid-absent experimental melts, the magma sources of the Guangtoushan granitoids contain a variety of materials, such as graywackes, pyroclastic graywackes, and pelites and are not derived from lower crustal mafic rocks. The correlation between the maficity and the major and trace elements further indicates that the strongly peraluminous granitoids from the Guangtoushan pluton was formed by the partial melting of biotite-bearing crustal rocks and its magmatic evolution was accompanied by the entrainment of clinopyroxenes and accessory minerals.  相似文献   

18.
The Panzhihua layered intrusions is generated closely related to the Emeishan LIPs. This paper analyzes the spatial distribution of plagioclase and pyroxene. The quantitative texture analysis of 2209 plagioclase shows that the characteristic length of plagioclase is 0.54 to 0.96 mm, the intercept variation range is large, from ?0.67 to 0.96, and the slope is ?1.85 to ?1.04, the Aspect Ratio shows from 1.84 to 2.59 and fractal dimension D is 1.908–1.933. The quantitative texture analysis of 2342 pyroxene shows that the characteristic length of pyroxene is 0.38–0.64 mm, the intercept shows from 0.46 to 2.26, The slope ranges from ?2.6 to ?1.47, the Aspect Ratio value varies from 1.53 to 1.71, the fractal dimension D is 0.93 to 1.13. All the CSDs results of the Panzhihua intrusions indicate that plagioclase and pyroxene form in an open magma system and undergo four replenishment of magma injection. The plagioclase crystals do not grow as the lathlike shape, and the fractal growth leads to complex crystal surface. The plagioclase undergoes deformation compaction during the crystal process, and then is oriented. The pyroxene crystals grow along an approximately triaxial ratio and undergo texture adjustment and small crystal dissolution reabsorption. When all crystals in magma system grows up to 2 mm, the pyroxene undergoes cumulation in the Panzhihua layered intrusions. The plagioclase crystallization time scale is 171.23–304.41 years, representing that the crystallization is the more uniform in central part of the melt. The nucleation density continuously increases during the crystallization process of the magma system. The time scale to reach the final maximum crystal nucleation density is 15.28–58.98 years.  相似文献   

19.
Beishan Terrane, located in the northeast of the Tarim Block, in northwest China, has developed a 500-km long and 100-km wide belt of Permian mafic–ultramafic intrusions One of these mafic–ultramafic intrusions, the Xuanwoling Intrusion, is composed of dunite, troctolite, olivine gabbros and gabbros, with cumulate texture and rhythmic layering The crystallization sequence is olivine ? spinel ? plagio clase ? pyroxene, indicating that the crystallization pressure is lower than 0.5–0.8 GPa and that the intrusion has undergone variable degrees of crustal contamination, increasing from dunite to gabbros. The olivines found in the Xuanwoling Intrusion have high Fo values(up to 90), suggesting a primary magma with a high composition of mg. It is likely that this high-mg magma was produced at extremely high temperatures(1,330–1,350 °C), and as a result, Nd–Sr isotopic compositions similar to oceanic island basalts are found in the Xuanwoling Intrusion, which we propose arose from the mantle plume.  相似文献   

20.
The Carboniferous volcanic rocks in western Hainan Island consist of a series of oceanic tholeite and rhyoporphyrite,showing bimodal nature.Similar geochemical characters,in terms of abun-daces and relative rations of incompatible elements and REE and the REE patterns,between the basalt and continental rift-associated tholeiite indicate the occurrence of Late Paleozoic rifting in the area.The basaltic magma,with a low degree of evolution,was originated from deep mantle,show-ing contamination by low crustal material.The rhyolite is thought to be formed from partial melting of the continental crust by higher thermal flow in a rift environment rather than from fractional crystallization of a basaltic magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号