首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Liard Lobe formed a part of the north‐eastern sector of the Cordilleran Ice Sheet and drained ice from accumulation areas in the Selwyn, Pelly, Cassiar and Skeena mountains. This study reconstructs the ice retreat pattern of the Liard Lobe during the last deglaciation from the glacial landform record that comprises glacial lineations and landforms of the meltwater system such as eskers, meltwater channels, perched deltas and outwash fans. The spatial distribution of these landforms defines the successive configurations of the ice sheet during the deglaciation. The Liard Lobe retreated to the west and south‐west across the Hyland Highland from its local Last Glacial Maximum position in the south‐eastern Mackenzie Mountains where it coalesced with the Laurentide Ice Sheet. Retreat across the Liard Lowland is evidenced by large esker complexes that stretch across the Liard Lowland cutting across the contemporary drainage network. Ice margin positions from the late stage of deglaciation are reconstructed locally at the foot of the Cassiar Mountains and further up‐valley in an eastern‐facing valley of the Cassiar Mountains. The presented landform record indicates that the deglaciation of the Liard Lobe was accomplished mainly by active ice retreat and that ice stagnation played a minor role in the deglaciation of this region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Decay of the last Cordilleran Ice Sheet (CIS) near its geographical centre has been conceptualized as being dominated by passive downwasting (stagnation), in part because of the lack of large recessional moraines. Yet, multiple lines of evidence, including reconstructions of glacio‐isostatic rebound from palaeoglacial lake shoreline deformation suggest a sloping ice surface and a more systematic pattern of ice‐margin retreat. Here we reconstructed ice‐marginal lake evolution across the subdued topography of the southern Fraser Plateau in order to elucidate the pattern and style of lateglacial CIS decay. Lake stage extent was reconstructed using primary and secondary palaeo‐water‐plane indicators: deltas, spillways, ice‐marginal channels, subaqueous fans and lake‐bottom sediments identified from aerial photograph and digital elevation model interpretation combined with field observations of geomorphology and sedimentology, and ground‐penetrating radar surveys. Ice‐contact indicators, such as ice‐marginal channels, and grounding‐line moraines were used to refine and constrain ice‐margin positions. The results show that ice‐dammed lakes were extensive (average 27 km2; max. 116 km2) and relatively shallow (average 18 m). Within basins successive lake stages appear to have evolved by expansion, decanting or drainage (glacial lake outburst flood, outburst flood or lake maintenance) from southeast to northwest, implicating a systematic northwestward retreating ice margin (rather than chaotic stagnation) back toward the Coast Mountains, similar in style and pattern to that proposed for the Fennoscandian Ice Sheet. This pattern is confirmed by cross‐cutting drainage networks between lake basins and is in agreement with numerical models of North American ice‐sheet retreat and recent hypotheses on lateglacial CIS reorganization during decay. Reconstructed lake systems are dynamic and transitory and probably had significant effects on the dynamics of ice‐marginal retreat, the importance of which is currently being recognized in the modern context of the Greenland Ice Sheet, where >35% of meltwater streams from land‐terminating portions of the ice sheet end in ice‐contact lakes.  相似文献   

3.
4.
Studies in southern British Columbia have shown that Cordilleran Ice Sheet flow was controlled by topograph, even in full glacial time. New ice‐flow evidence from the Nass River region, northern British Columbia, however, indicates that ice was thicker there and that the continental ice‐sheet phase of glaciation was reached. Inspection of high elevation sites has revealed a suite of ice‐flow indicators (mainly striae) undetected by earlier work. These suggest that at the Last Glacial Maximum (Fraser Glaciation), ice flowed southwestward across the Nass River region from an ice divide that probably was located in the Skeena Mountain area. Comparisons with adjacent work allow this divide to be mapped over a wide area. The results suggest that maximum ice thicknesses in the northern part of the Cordilleran Ice Sheet were larger than reported previously. The location of storm tracks in full glacial time may have played an important role in the production of an ice sheet that was thicker in northern British Columbia than it was in the southern half of the province. During deglaciation, ice thinned and gradually became confined to fiords and valleys, resulting in numerous and variable ice‐flow directions at that time. Topographic control was thus exerted on ice flow only after the glacial maximum was reached, despite the significant amount of relief in this region. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
The glacial geomorphology of the Waterville Plateau (ca. 55 km2) provides information on the dynamics of the Okanogan Lobe, southern sector of the Cordilleran Ice Sheet in north‐central Washington. The Okanogan Lobe had a profound influence on the landscape. It diverted meltwater and floodwater along the ice front contributing to the Channeled Scabland features during the late Wisconsin (Fraser Glaciation). The glacial imprint may record surge behaviour of the former Okanogan Lobe based on a comparison with other glacial landsystems. Conditions that may have promoted instability include regional topographic constraints, ice marginal lakes and dynamics of the subglacial hydrological system, which probably included a subglacial reservoir. The ice‐surface morphology and estimated driving stresses (17–26 kPa) implied from ice thickness and surface slope reconstructed in the terminal area also suggest fast basal flow characteristics. This work identifies the location of a fast flowing ice corridor and this probably affected the stability and mass balance of the south‐central portion of the Cordilleran Ice Sheet. Evidence for fast ice flow is lacking in the main Okanogan River Valley, probably because it was destroyed during deglaciation by various glacial and fluvial processes. The only signature of fast ice flow left is the imprint on the Waterville Plateau. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Lian, O. B. & Hicock, S. R. 2009: Insight into the character of palaeo‐ice‐flow in upland regions of mountain valleys during the last major advance (Vashon Stade) of the Cordilleran Ice Sheet, southwest British Columbia, Canada. Boreas, 10.1111/j.1502‐3885.2009.00123.x. ISSN 0300‐9483. A detailed glacial geological study was done on Vashon till, formed during the last (Fraser) glaciation, in upland areas of two relatively short and narrow mountain valleys which open onto the Fraser Lowland in southwest British Columbia. The orientation and association of glaciotectonic structures in till and bedrock, a‐axis fabrics of stones in till and abrasion features, indicate that Vashon till formed initially by lodgement and that brittle deformation processes dominated at least during the latter stages of glaciation. The presence of local glacigenic bedrock quarrying suggests that ice flow experienced localized enhanced compressive flow along valley sides. These observations indicate that ice flow was relatively slow and they contrast with a previous study of bedrock geomorphology undertaken in some larger south Coast Mountains valleys and a model of ice‐flow velocity in the Puget Lowland that suggest rapid ice flow. This indicates that either ice‐flow conditions in the larger valleys were different from those in the valleys studied here, or that the observations from our study reflect subglacial conditions following the Last Glacial Maximum (LGM), but immediately prior to deglaciation when ice had thinned and slowed. If the latter scenario is correct, and if processes inferred from this study were also common along the upland parts of other southwest Coast Mountains valleys after the LGM, then the rate at which ice was supplied to lowland piedmont glaciers would have been reduced, and this may have accelerated decay of the southwest margin of the last Cordilleran Ice Sheet.  相似文献   

7.
Recognition of positions of glacial lakes along the margin of continental ice sheets is critical in reconstructing ice configuration during deglaciation. Advances in remote sensing technology (e.g. LiDAR) have enabled the generation of accurate digital‐elevation models (DEMs) that reveal unprecedented geomorphic detail. Combined with geographical information systems, these tools have considerably advanced the mapping and correlation of geomorphic features such as relict shorelines. Shorelines of glacial Lake Peace (GLP) developed between the Laurentide and Cordilleran ice sheets in northeastern British Columbia and northwestern Alberta. Shoreline mapping from high resolution DEMs produced more than 55 500 elevation data points from 3231 shorelines, enabling the identification of four major phases of GLP: Phase I (altitude 960–990 m a.s.l.); Phase II (890–915 m a.s.l.); Phase III (810–865 m a.s.l.); and Phase IV (724–733 m a.s.l.). The timing of Phase II of GLP is estimated by two optical ages of <16.0±2.5 and 14.2±0.5 ka BP. Extensive mapping of the shorelines allows for measuring of glacial isostatic adjustment as ice retreated. Shorelines currently dip to the northeast at around 0.4–0.5 m km?1. This slope reflects the asynchronous retreat of the Cordilleran (CIS) and Laurentide (LIS) ice sheets. The relative uplift in the southwest of the study area within the Rocky Mountains and foothills suggests that the Late Wisconsinan (MIS 2) CIS persisted in the foothill after the LIS lost mass and retreated, or that the Late Wisconsinan CIS was very thick and caused deep crustal loading, which resulted in more uplift in the southwest before reaching equilibrium during, or shortly after deglaciation.  相似文献   

8.
Three‐dimensional (3D) seismic datasets, 2D seismic reflection profiles and shallow cores provide insights into the geometry and composition of glacial features on the continental shelf, offshore eastern Scotland (58° N, 1–2° W). The relic features are related to the activity of the last British Ice Sheet (BIS) in the Outer Moray Firth. A landsystem assemblage consisting of four types of subglacial and ice marginal morphology is mapped at the seafloor. The assemblage comprises: (i) large seabed banks (interpreted as end moraines), coeval with the Bosies Bank moraine; (ii) morainic ridges (hummocky, push and end moraine) formed beneath, and at the margins of the ice sheet; (iii) an incised valley (a subglacial meltwater channel), recording meltwater drainage beneath former ice sheets; and (iv) elongate ridges and grooves (subglacial bedforms) overprinted by transverse ridges (grounding line moraines). The bedforms suggest that fast‐flowing grounded ice advanced eastward of the previously proposed terminus of the offshore Late Weichselian BIS, increasing the size and extent of the ice sheet beyond traditional limits. Complex moraine formation at the margins of less active ice characterised subsequent retreat, with periodic stillstands and readvances. Observations are consistent with interpretations of a dynamic and oscillating ice margin during BIS deglaciation, and with an extensive ice sheet in the North Sea basin at the Last Glacial Maximum. Final ice margin retreat was rapid, manifested in stagnant ice topography, which aided preservation of the landsystem record. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Based on a large number of new boreholes in northern Denmark, and on the existing data, a revised event‐stratigraphy is presented for southwestern Scandinavia. Five significant Late Saalian to Late Weichselian glacial events, each separated by periods of interglacial or interstadial marine or glaciolacustrine conditions, are identified in northern Denmark. The first glacial event is attributed to the Late Saalian c. 160–140 kyr BP, when the Warthe Ice Sheet advanced from easterly and southeasterly directions through the Baltic depression into Germany and Denmark. This Baltic ice extended as far as northern Denmark, where it probably merged with the Norwegian Channel Ice Stream (NCIS) and contributed to a large discharge of icebergs into the Norwegian Sea. Following the break up, marine conditions were established that persisted from the Late Saalian until the end of the Early Weichselian. The next glaciation occurred c. 65–60 kyr BP, when the Sundsøre ice advanced from the north into Denmark and the North Sea, where the Scandinavian and British Ice Sheets merged. During the subsequent deglaciation, large ice‐dammed lakes formed before the ice disintegrated in the Norwegian Channel, and marine conditions were re‐established. The following Ristinge advance from the Baltic, initiated c. 55 kyr BP, also reached northern Denmark, where it probably merged with the NCIS. The deglaciation, c. 50 kyr BP, was followed by a long period of marine arctic conditions. Around 30 kyr BP, the Scandinavian Ice Sheet expanded from the north into the Norwegian Channel, where it dammed the Kattegat ice lake. Shortly after, c. 29 kyr BP, the Kattegat advance began, and once again the Scandinavian and British Ice Sheets merged in the North Sea. The subsequent retreat to the Norwegian Channel led to the formation of Ribjerg ice lake, which persisted from 27 to 23 kyr BP. The expansion of the last ice sheet started c. 23 kyr BP, when the main advance occurred from north–northeasterly directions into Denmark. An ice‐dammed lake was formed during deglaciation, while the NCIS was still active. During a re‐advance and subsequent retreat c. 19 kyr BP, a number of tunnel‐valley systems were formed in association with ice‐marginal positions. The NCIS finally began to break up in the Norwegian Sea 18.8 kyr BP, and the Younger Yoldia Sea inundated northern Denmark around 18 kyr BP. The extensive amount of new and existing data applied to this synthesis has provided a better understanding of the timing and dynamics of the Scandinavian Ice Sheet (SIS) during the last c. 160 kyr. Furthermore, our model contributes to the understanding of the timing of the occasional release of large quantities of meltwater from the southwestern part of the SIS that are likely to enter the North Atlantic and possibly affect the thermohaline circulation.  相似文献   

10.
During decline of the last British–Irish Ice Sheet (BIIS) down‐wasting of ice meant that local sources played a larger role in regulating ice flow dynamics and driving the sediment and landform record. At the Last Glacial Maximum, glaciers in north‐western England interacted with an Irish Sea Ice Stream (ISIS) occupying the eastern Irish Sea basin (ISB) and advanced as a unified ice‐mass. During a retreat constrained to 21–17.3 ka, the sediment landform assemblages lain down reflect the progressive unzipping of the ice masses, oscillations of the ice margin during retreat, and then rapid wastage and disintegration. Evacuation of ice from the Ribble valley and Lancashire occurred first while the ISIS occupied the ISB to the west, creating ice‐dammed lakes. Deglaciation, complete after 18.6–17.3 ka, was rapid (50–25 m a?1), but slower than rates identified for the western ISIS (550–100 m a?1). The slower pace is interpreted as reflecting the lack of a calving margin and the decline of a terrestrial, grounded glacier. Ice marginal oscillations during retreat were probably forced by ice‐sheet dynamics rather than climatic variation. These data demonstrate that large grounded glaciers can display complex uncoupling and realignment during deglaciation, with asynchronous behaviour between adjacent ice lobes generating complex landform records.
  相似文献   

11.
Ice sheets that advance upvalley, against the regional gradient, commonly block drainage and result in ice‐dammed proglacial lakes along their margins during advance and retreat phases. Ice‐dammed glacial lakes described in regional depositional models, in which ice blocks a major lake outlet, are often confined to basins in which the glacial lake palaeogeographical position generally remains semi‐stable (e.g. Great Lakes basins). However, in places where ice retreats downvalley, blocking regional drainage, the palaeogeographical position and lake level of glacial lakes evolve temporally in response to the position of the ice margin (referred to here as ‘multi‐stage’ lakes). In order to understand the sedimentary record of multi‐stage lakes, sediments were examined in 14 cored boreholes in the Peace and Wabasca valleys in north‐central Alberta, Canada. Three facies associations (FAI–III) were identified from core, and record Middle Wisconsinan ice‐distal to ice‐proximal glaciolacustrine (FAI) sediments deposited during ice advance, Late Wisconsinan subglacial and ice‐marginal sediments (FAII) deposited during ice‐occupation, and glaciolacustrine sediments (FAIII) that record ice retreat from the study area. Modelling of the lateral extent of FAs using water wells and gamma‐ray logs, combined with interpreted outlets and mapped moraines based on LiDAR imagery, facilitated palaeogeographical reconstruction of lakes and the identification of four major retreat‐phase lake stages. These lake reconstructions, together with the vertical succession of FAs, are used to develop a depositional model for ice‐dammed lakes during a cycle of glacial advance and retreat. This depositional model may be applied in other areas where meltwater was impounded by glacial ice advancing up the regional gradient, in order to understand the complex interaction between depositional processes, ice‐marginal position, and supply of meltwater and sediment in the lake basin. In particular, this model could be applied to decipher the genetic origin of diamicts previously interpreted to record strictly subglacial deposition or multiple re‐advances.  相似文献   

12.
Reconstructing ice‐lake histories is of considerable importance for understanding deglacial meltwater budgets and the role of meltwater reservoirs for sea‐level rise in response to climate warming. We used the latest data on chronology and ice‐sheet extents combined with an isostatically adjusted digital elevation model to reconstruct the development of proglacial lakes in the area of the Karelian ice stream complex of the Late Weichselian Scandinavian Ice Sheet on the East European Plain. We derived the deglacial ice lake development in seven time‐slices from 19 to 13.8 ka, assuming the individual ice‐marginal positions to be isochronous throughout the studied domain. Modelling is based on mapping of critical drainage thresholds and filling the depressions that are potentially able to hold meltwater. Such an approach underestimates the real dimensions of the ice lakes, because the role of erosion at the thresholds is not considered. Our modelling approach is sensitive to the (local) ice‐margin location. Our results prove the southward drainage of meltwater during the glacier extent maxima and at the beginning of deglaciation whereas rerouting to the west had taken place already around 17.5 ka, which is some 1.5 ka earlier than hitherto supposed. The total ice‐lake volume in the study area was lowest (~300 km3) during the maximum glacier extent and highest (~2000 km3) during the highstand of the Privalday Lake at c. 14.6 ka. At 14.6–14.4 ka, the Privalday Lake drained to the early Baltic Ice Lake. The released ~1500 km3 of water approximately corresponds to 20% of the early Baltic Ice Lake water volume and therefore it is unlikely that it was accommodated there. Thus, we argue that the additional meltwater drained through the Öresund threshold area between the early Baltic Ice Lake and the sea, becoming a part of the Scandinavian Ice Sheet's contribution to the Meltwater Pulse 1A event.  相似文献   

13.
The Gulf of Bothnia hosted a variety of palaeo‐glaciodynamic environments throughout the growth and decay of the last Fennoscandian Ice Sheet, from the main ice‐sheet divide to a major corridor of marine‐ and lacustrine‐based deglaciation. Ice streaming through the Bothnian and Baltic basins has been widely assumed, and the damming and drainage of the huge proglacial Baltic Ice Lake has been implicated in major regional and hemispheric climate changes. However, the dynamics of palaeo‐ice flow and retreat in this large marine sector have until now been inferred only indirectly, from terrestrial, peripheral evidence. Recent acquisition of high‐resolution multibeam bathymetry opens these basins up, for the first time, to direct investigation of their glacial footprint and palaeo‐ice sheet behaviour. Here we report on a rich glacial landform record: in particular, a palaeo‐ice stream pathway, abundant traces of high subglacial meltwater volumes, and widespread basal crevasse squeeze ridges. The Bothnian Sea ice stream is a narrow flow corridor that was directed southward through the basin to a terminal zone in the south‐central Bothnian Sea. It was activated after initial margin retreat across the Åland sill and into the Bothnian basin, and the exclusive association of the ice‐stream pathway with crevasse squeeze ridges leads us to interpret a short‐lived stream event, under high extension, followed by rapid crevasse‐triggered break‐up. We link this event with a c. 150‐year ice‐rafted debris signal in peripheral varved records, at c. 10.67 cal. ka BP. Furthermore, the extensive glacifluvial system throughout the Bothnian Sea calls for considerable input of surface meltwater. We interpret strongly atmospherically driven retreat of this marine‐based ice‐sheet sector.  相似文献   

14.
Radiocarbon dates from critical stratigraphic localities in southern British Columbia indicate that the growth history of the late Wisconsin Cordilleran Ice Sheet was different from that of most of the Laurentide Ice Sheet to the east. Much of southern British Columbia remained free of ice until after about 19,000 to 20,000 yr ago; only adjacent to the Coast Mountains is there a record of lowland glacier tongues in the interval 22,000 to 20,000 yr B.P. A major advance to the climax of late Wisconsin Cordilleran glacier ice in the northern States was not begun until after about 18,000 yr B.P. in the southwest of British Columbia and after about 17,500 yr B.P. in the southeast. The rate of glacier growth must have been very rapid in the two to three millennia prior to the climax, which has been dated in western Washington at shortly after 15,000 yr B.P.  相似文献   

15.
During the Vashon Stade of the Fraser Glaciation, about 15,000–13,000 yr B.P., a lobe of the Cordilleran Ice Sheet occupied the Puget lowland of western Washington. At its maximum extent about 14,000 yr ago, the ice sheet extended across the Puget lowland between the Cascade Range and Olympic Mountains and terminated about 80 km south of Seattle. Meltwater streams drained southwest to the Pacific Ocean and built broad outwash trains south of the ice margin. Reconstructed longitudinal profiles for the Puget lobe at its maximum extent are similar to the modern profile of Malaspina Glacier, Alaska, suggesting that the ice sheet may have been in a near-equilibrium state at the glacial maximum. Progressive northward retreat from the terminal zone was accompanied by the development of ice-marginal streams and proglacial lakes that drained southward during initial retreat, but northward during late Vashon time. Relatively rapid retreat of the Juan de Fuca lobe may have contributed to partial stagnation of the northwestern part of the Puget lobe. Final destruction of the Puget lobe occurred when the ice retreated north of Admiralty Inlet. The sea entered the Puget lowland at this time, allowing the deposition of glacial-marine sediments which now occur as high as 50 m altitude. These deposits, together with ice-marginal meltwater channels presumed to have formed above sea level during deglaciation, suggest that a significant amount of postglacial isostatic and(or) tectonic deformation has occurred in the Puget lowland since deglaciation.  相似文献   

16.
Processes occurring at the grounding zone of marine terminating ice streams are crucial to marginal stability, influencing ice discharge over the grounding-line, and thereby regulating ice-sheet mass balance. We present new marine geophysical data sets over a ~30×40 km area from a former ice-stream grounding zone in Storfjordrenna, a large cross-shelf trough in the western Barents Sea, south of Svalbard. Mapped ice-marginal landforms on the outer shelf include a large accumulation of grounding-zone deposits and a diverse population of iceberg ploughmarks. Published minimum ages of deglaciation in this region indicate that the deposits relate to the deglaciation of the Late Weichselian Storfjordrenna Ice Stream, a major outlet of the Barents Sea–Svalbard Ice Sheet. Sea-floor geomorphology records initial ice-stream retreat from the continental shelf break, and subsequent stabilization of the ice margin in outer-Storfjordrenna. Clustering of distinct iceberg ploughmark sets suggests locally diverse controls on iceberg calving, producing multi-keeled, tabular icebergs at the southern sector of the former ice margin, and deep-drafted, single-keeled icebergs in the northern sector. Retreat of the palaeo-ice stream from the continental shelf break was characterized by ice-margin break-up via large calving events, evidenced by intensive iceberg scouring on the outer shelf. The retreating ice margin stabilized in outer-Storfjordrenna, where the southern tip of Spitsbergen and underlying bedrock ridges provide lateral and basal pinning points. Ice-proximal fans on the western flank of the grounding-zone deposits document subglacial meltwater conduit and meltwater plume activity at the ice margin during deglaciation. Along the length of the former ice margin, key environmental parameters probably impacted ice-margin stability and grounding-zone deposition, and should be taken into consideration when reconstructing recent changes or predicting future changes to the margins of modern ice streams.  相似文献   

17.
Eskers were investigated in an area with overall terrestrial deglaciation - the eastern part of the province of Skåne and adjacent areas in southern Sweden. On the basis of the proposed model of esker formation, the dynamics of the receding Weichselian Ice Sheet are discussed. The deglaciation was characterized by the gradual retreat of an active ice sheet, bordered by a zone of thin, stagnant ice. For the most part, the ice sheet was probably at the pressure melting point in a marginal zone, where it was penetrated by surface meltwater which constituted most of the subglacially flowing meltwater. The esker sediments, consisting of glaciofluvially reworked basal debris and basal till, accumulated progressively in an up-glacier direction. Deposition took place close to the live ice boundary in the zone with stagnant ice that fringed the receding ice sheet. The time-transgressive formation of the eskers is reflected by repeated sediment sequences (morphosequences), i.e. sedimentary units composed of ridges that merge into extended hummocky deposits in a down-glacier direction. They represent the momentary deposition of stratified drift in the proximal portion of the zone with stagnant ice.  相似文献   

18.
A marine geophysical study reveals a complex deglaciation pattern in the Kveithola trough, W Barents Sea. The data set includes multibeam swath bathymetry and sub‐bottom sediment profiler (chirp) data acquired for the whole extent of a palaeo, marine‐terminating ice stream, along with high‐resolution single‐channel seismic data from chosen profiles. The multibeam data show a geomorphic landform assemblage characteristic of ice streams. The results of a combination of seismic and chirp unit stratigraphy reveal that the seabed geomorphology is governed by a deeper‐lying reflector. The reflector dominates surface expressions of several subglacial and ice‐marginal units, each connected to a separate episode of ice‐margin stillstand/advance. Analysis of the combined data set has resulted in a conceptual model of the ice‐stream retreat. The model depicts complex deglaciation of a small, confined ice‐stream system through episodic retreat. It describes the formation of several generations of grounding‐zone systems, characterized by high meltwater discharges and the deposition of fine‐grained grounding‐line fans. The inferred style of grounding‐zone deposition in Kveithola deviates from that of other accounts, and is suggested to be intermediate in the previously described continuum between morainal banks and grounding‐line wedges. The results of this paper have implications for grounding‐zone theory and should be of interest to modellers of grounding‐line dynamics and ice‐stream retreat.  相似文献   

19.
We present an 8000‐year history spanning 650 km of ice margin retreat for the largest marine‐terminating ice stream draining the former British–Irish Ice Sheet. Bayesian modelling of the geochronological data shows the ISIS expanded 34.0–25.3 ka, accelerating into the Celtic Sea to reach maximum limits 25.3–24.5 ka before a collapse with rapid marginal retreat to the northern Irish Sea Basin (ISB). This retreat was rapid and driven by climatic warming, sea‐level rise, mega‐tidal amplitudes and reactivation of meridional circulation in the North Atlantic. The retreat, though rapid, is uneven, with the stepped retreat pattern possibly a function of the passage of the ice stream between normal and adverse ice bed gradients and changing ice stream geometry. Initially, wide calving margins and adverse slopes encouraged rapid retreat (~550 m a?1) that slowed (~100 m a?1) at the topographic constriction and bathymetric high between southern Ireland and Wales before rates increased (~200 m a?1) across adverse bed slopes and wider and deeper basin configuration in the northern ISB. These data point to the importance of the ice bed slope and lateral extent in predicting the longer‐term (>1000 a) patterns and rates of ice‐marginal retreat during phases of rapid collapse, which has implications for the modelling of projected rapid retreat of present‐day ice streams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Graham, A.G.C., Lonergan, L. & Stoker, M.S. 2010: Depositional environments and chronology of Late Weichselian glaciation and deglaciation in the central North Sea. Boreas, Vol. 39, pp. 471–491. 10.1111/j.1502‐3885.2010.00144.x. ISSN 0300‐9483. Geological constraints on ice‐sheet deglaciation are essential for improving the modelling of ice masses and understanding their potential for future change. Here, we present a detailed interpretation of depositional environments from a new 30‐m‐long borehole in the central North Sea, with the aim of improving constraints on the history of the marine Late Pleistocene British–Fennoscandian Ice Sheet. Seven units characterize a sequence of compacted and distorted glaciomarine diamictons, which are overlain by interbedded glaciomarine diamictons and soft, bedded to homogeneous marine muds. Through correlation of borehole and 2D/3D seismic observations, we identify three palaeoregimes. These are: a period of advance and ice‐sheet overriding; a phase of deglaciation; and a phase of postglacial glaciomarine‐to‐marine sedimentation. Deformed subglacial sediments correlate with a buried suite of streamlined subglacial bedforms, and indicate overriding by the SE–NW‐flowing Witch Ground ice stream. AMS 14C dating confirms ice‐stream activity and extensive glaciation of the North Sea during the Last Glacial Maximum, between c. 30 and 16.2 14C ka BP. Sediments overlying the ice‐compacted deposits have been reworked, but can be used to constrain initial deglaciation to no later than 16.2 14C ka BP. A re‐advance of British ice during the last deglaciation, dated at 13.9 14C ka BP, delivered ice‐proximal deposits to the core site and deposited glaciomarine sediments rapidly during the subsequent retreat. A transition to more temperate marine conditions is clear in lithostratigraphic and seismic records, marked by a regionally pervasive iceberg‐ploughmarked erosion surface. The iceberg discharges that formed this horizon are dated to between 13.9 and 12 14C ka BP, and may correspond to oscillating ice‐sheet margins during final, dynamic ice‐sheet decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号