首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The composition, volume and stratigraphic organisation of submarine fan systems deposited along continental margins are expected to reflect the landscape from which the sediment was derived. During the Late Cretaceous, the Møre‐Trøndelag margin, Norwegian North Sea was dominated by the deposition of deep‐marine fines; the emplacement of 11 sand‐rich submarine fan systems occurred only during a c. 3 Myr period in the Turonian‐Coniacian. The systems were fed by sediment that was routed through submarine canyons incised into the basin margin; the canyons are underlain by angular unconformities and are interpreted to have resulted from tectonically induced changes in slope physiography and erosion by gravity flows. The areal extent of the onshore drainage catchments that supplied sediment to the fans has been estimated based on scaling relationships derived from modern source‐to‐sink systems. The results of our study suggest that the Turonian fans were sourced by drainage catchments that were up to ca.3600 km2, extending more than ca.100 km inland from the palaeo‐shoreline. The estimated inboard catchment extent correlates with the innermost structures of a large, long‐lived, basement‐involved, normal fault complex. On the basis of our analysis, we conclude that increased sediment supply to the Turonian fan systems reflects tectonic rejuvenation of the landscape, rather than eustatic sea‐level or climate fluctuations. The duration of fan deposition is thus interpreted to reflect the ‘relaxation time’ of the landscape following tectonic perturbation, and fan system retrogradation and abandonment is interpreted to reflect the eventual depletion of the onshore sediment source. We demonstrate that a better understanding of the stratigraphic variability in deepwater depositional systems can be gained by taking a complete source‐to‐sink view of ancient sediment dispersal systems.  相似文献   

2.
The Upper Ordovician in the Tarim Basin contains 5000–7000 m of siliciclastic and calciclastic deep‐water, gravity‐flow deposits. Their depositional architecture and palaeogeographical setting are documented in this investigation based on an integrated analysis of seismic, borehole and outcrop data. Six gravity‐flow depositional–palaeogeomorphological elements have been identified as follows: submarine canyon or deeply incised channels, broad and shallow erosional channels, erosional–depositional channel and levee–overbank complexes, frontal splays‐lobes and nonchannelized sheets, calciclastic lower slope fans and channel lobes or sheets, and debris‐flow complexes. Gravity‐flow deposits of the Sangtamu and Tierekeawati formations comprise a regional transgressive‐regressive megacycle, which can be further classified into six sequences bounded by unconformities and their correlative conformities. A series of incised valleys or canyons and erosional–depositional channels are identifiable along the major sequence boundaries which might have been formed as the result of global sea‐level falls. The depositional architecture of sequences varies from the upper slope to abyssal basin plain. Palaeogeographical patterns and distribution of the gravity‐flow deposits in the basin can be related to the change in tectonic setting from a passive continental margin in the Cambrian and Early to Middle Ordovician to a retroarc foreland setting in the Late Ordovician. More than 3000 m of siliciclastic submarine‐fan deposits accumulated in south‐eastern Tangguzibasi and north‐eastern Manjiaer depressions. Sedimentary units thin onto intrabasinal palaeotopographical highs of forebulge origin and thicken into backbulge depocentres. Sediments were sourced predominantly from arc terranes in the south‐east and the north‐east. Slide and mass‐transport complexes and a series of debris‐flow and turbidite deposits developed along the toes of unstable slopes on the margins of the deep‐water basins. Turbidite sandstones of channel‐fill and frontal‐splay origin and turbidite lobes comprise potential stratigraphic hydrocarbon reservoirs in the basin.  相似文献   

3.
Mixed siliciclastic‐carbonate deep‐marine systems (mixed systems) are less documented in the geological record than pure siliciclastic systems. The similarities and differences between these systems are, therefore, poorly understood. A well‐exposed Late Cretaceous mixed system on the northern side of the Eastern Greater Caucasus, Azerbaijan, provides an opportunity to study the interaction between contemporaneous siliciclastic and carbonate deep‐marine deposition. Facies analysis reveals a Cenomanian–early Turonian siliciclastic submarine channel complex that abruptly transitions into a Mid Turonian–Maastrichtian mixed lobe‐dominated succession. The channels are entrenched in lows on the palaeo‐seafloor but are absent 10 km towards the west where an Early Cretaceous submarine landslide complex acted as a topographic barrier to deposition. By the Campanian, this topography was largely healed allowing extensive deposition of the mixed lobe‐dominated succession. Evidence for irregular bathymetry is recorded by opposing palaeoflow indicators and frequent submarine landslides. The overall sequence is interpreted to represent the abrupt transition from Cenomanian–early Turonian siliciclastic progradation to c. Mid Turonian retrogradation, followed by a gradual return to progradation in the Santonian–Maastrichtian. The siliciclastic systems periodically punctuate a more widely extensive calcareous system from the Mid Turonian onwards, resulting in a mixed deep‐marine system. Mixed lobes differ from their siliciclastic counterparts in that they contain both siliciclastic and calcareous depositional elements making determining distal and proximal environments challenging using conventional terminology and complicate palaeogeographic interpretations. Modulation and remobilisation also occur between the two contemporaneous systems making stacking patterns difficult to decipher. The results provide insight into the behaviour of multiple contemporaneous deep‐marine fans, an aspect that is challenging to decipher in non‐mixed systems. The study area is comparable in terms of facies, architectures and the presence of widespread instability to offshore The Gambia, NW Africa, and could form a suitable analogue for mixed deep‐marine systems observed elsewhere.  相似文献   

4.
Morphological scaling relationships between source‐to‐sink segments have been widely explored in modern settings, however, deep‐time systems remain difficult to assess due to limited preservation of drainage basins and difficulty in quantifying complex processes that impact sediment dispersals. Integration of core, well‐logs and 3‐D seismic data across the Dampier Sub‐basin, Northwest Shelf of Australia, enables a complete deep‐time source‐to‐sink study from the footwall (Rankin Platform) catchment to the hanging wall (Kendrew Trough) depositional systems in a Jurassic late syn‐rift succession. Hydrological analysis identifies 24 drainage basins on the J50.0 (Tithonian) erosional surface, which are delimited into six drainage domains confined by NNE‐SSW trending grabens and their horsts, with drainage domain areas ranging between 29 and 156 km2. Drainage outlets of these drainage domains are well preserved along the Rankin Fault System scarp, with cross‐sectional areas ranging from 0.08 to 0.31 km2. Corresponding to the six drainage domains, sedimentological and geomorphological analysis identifies six transverse submarine fan complexes developing in the Kendrew Trough, ranging in areas from 43 to 193 km2. Seismic geomorphological analysis reveals over 90‐km‐long, slightly sinuous axial turbidity channels, developing in the lower topography of the Kendrew Trough which erodes toe parts of transverse submarine fan complexes. Positive scaling relationships exist between drainage outlet spacing and drainage basin length, and drainage outlet cross‐sectional area and drainage basin area, which indicates the geometry of drainage outlets can provide important constraints on source area dimensions in deep‐time source‐to‐sink studies. The broadly negative bias of fan area to drainage basin area ratios indicates net sediment losses in submarine fan complexes caused by axial turbidity current erosion. Source‐to‐sink sediment balance studies must be done with full evaluating of adjacent source‐to‐sink systems to delineate fans and their associated up‐dip drainages, to achieve an accurate tectonic and sedimentologic picture of deep‐time basins.  相似文献   

5.
The thickness and distribution of early syn‐rift deposits record the evolution of structures accommodating the earliest phases of continental extension. However, our understanding of the detailed tectono‐sedimentary evolution of these deposits is poor, because in the subsurface, they are often deeply buried and below seismic resolution and sparsely sampled by borehole data. Furthermore, early syn‐rift deposits are typically poorly exposed in the field, being buried beneath thick, late syn‐rift and post‐rift deposits. To improve our understanding of the tectono‐sedimentary development of early syn‐rift strata during the initial stages of rifting, we examined quasi‐3D exposures in the Abura Graben, Suez Rift, Egypt. During the earliest stage of extension, forced folding above blind normal fault segments, rather than half‐graben formation adjacent to surface‐breaking faults, controlled rift physiography, accommodation development and the stratigraphic architecture of non‐marine, early syn‐rift deposits. Fluvial systems incised into underlying pre‐rift deposits and were structurally focused in the axis of the embryonic depocentre, which, at this time, was characterized by a fold‐bound syncline rather than a fault‐bound half graben. During this earliest phase of extension, sediment was sourced from the rift shoulder some 3 km to the NE of the depocentre, rather than from the crests of the flanking, intra‐basin extensional forced folds. Fault‐driven subsidence, perhaps augmented by a eustatic sea‐level rise, resulted in basin deepening and the deposition of a series of fluvial‐dominated mouth bars, which, like the preceding fluvial systems, were structurally pinned within the axis of the growing depocentre, which was still bound by extensional forced folds rather than faults. The extensional forced folds were eventually locally breached by surface‐breaking faults, resulting in the establishment of a half graben, basin deepening and the deposition of shallow marine sandstone and fan‐delta conglomerates. Because growth folding and faulting were coeval along‐strike, syn‐rift stratal units deposited at this time show a highly variable along‐strike stratigraphic architecture, locally thinning towards the growth fold but, only a few kilometres along‐strike, thickening towards the surface‐breaking fault. Despite displaying the classic early syn‐rift stratigraphic motif recording net upward‐deepening, extensional forced folding rather than surface faulting played a key role in controlling basin physiography, accommodation development, and syn‐rift stratal architecture and facies development during the early stages of extension. This structural and stratigraphic observations required to make this interpretation are relatively subtle and may go unrecognized in low‐resolution subsurface data sets.  相似文献   

6.
Rift basin tectono‐stratigraphic models indicate that normal fault growth controls the sedimentology and stratigraphic architecture of syn‐rift deposits. However, such models have rarely been tested by observations from natural examples and thus remain largely conceptual. In this study we integrate 3D seismic reflection, and biostratigraphically constrained core and wireline log data from the Vingleia Fault Complex, Halten Terrace, offshore Mid‐Norway to test rift basin tectono‐stratigraphic models. The geometry of the basin‐bounding fault and its hangingwall, and the syn‐rift stratal architecture, vary along strike. The fault is planar along a much of its length, bounding a half‐graben containing a faultward‐thickening syn‐rift wedge. Locally, however, the fault has a ramp‐flat‐ramp geometry, with the hangingwall defined by a fault‐parallel anticline‐syncline pair. Here, an unusual bipartite syn‐rift architecture is observed, comprising a lower faultward‐expanding and an upper faultward‐thinning wedge. Fine‐grained basinfloor deposits dominate the syn‐rift succession, although isolated coarse clastics occur. The spatial and temporal distribution of these coarse clastics is complex due to syn‐depositional movement on the Vingleia Fault Complex. High rates of accommodation generation in the fault hangingwall led to aggradational stacking of fan deltas that rapidly (<5 km) pinch out basinward into offshore mudstone. In the south of the basin, rapid strain localization meant that relay ramps were short‐lived and did not represent major, long‐lived sediment entry points. In contrast, in the north, strain localization occurred later in the rift event, thus progradational shorefaces developed and persisted for a relatively long time in relay ramps developed between unlinked fault segments. The footwall of the Vingleia Fault Complex was characterized by relatively low rates of accommodation generation, with relatively thin, progradational hangingwall shorelines developed downdip of the fault block apex, sometime after the onset of sediment supply to the hangingwall. We show that rift basin tectono‐stratigraphic models need modifying to take into account along‐strike variability in fault structure and basin physiography, and the timing and style of syn‐rift sediment dispersal and facies, in both hangingwall and footwall locations.  相似文献   

7.
Changes in sandstone and conglomerate maturity in tectonically active basins can be considered either as the product of climatic change or of tectonic restructuring of the feeder drainage system. Besides these regional controls, changes in the configuration of local sources can expressively affect basin fill composition. The Early Cretaceous fluvial successions of the Tucano Basin, a rift basin in northeastern Brazil related to the South Atlantic opening, contain one such case of abrupt change in maturity, marked by the passage from pebbly sandstone and conglomerate rich in quartz and quartzite fragments (Neocomian to Barremian São Sebastião Formation) to more feldspathic pebbly sandstone and conglomerate bearing pebbles of varied composition (Aptian Marizal Formation). Systematic analysis of stratigraphic and spatial variation in palaeocurrents and composition of pebbles and cobbles from both units, integrated with the recognition of fluvial and alluvial fan deposits distribution, revealed an abrupt decrease in maturity during the passage from the São Sebastião Formation to the Marizal Formation. This change is explained by exhumation of basement rocks and erosional removal of originally widespread Silurian to Jurassic sandstone and conglomerate units which were a major source of reworked vein quartz and quartzite pebbles to the São Sebastião Formation. Basin border faults activation during the deposition of the Marizal Formation caused adjacent basement uplift above the local erosional base level at the basin borders, whereas during the São Sebastião Formation deposition, the basin border fault scarps probably exposed mineralogically mature sedimentary units. The proposed model has important implications for interpreting changes in sediment maturity in rift basin successions, as similar results are expected where activation of basin border faults occurs after the erosional removal of older sedimentary or volcanic units that controlled syn‐rift successions composition.  相似文献   

8.
Deep‐marine deposits provide a valuable archive of process interactions between sediment gravity flows, pelagic sedimentation and thermohaline bottom‐currents. Stratigraphic successions can also record plate‐scale tectonic processes (e.g. continental breakup and shortening) that impact long‐term ocean circulation patterns, including changes in climate and biodiversity. One such setting is the Exmouth Plateau, offshore NW Australia, which has been a relatively stable, fine‐grained carbonate‐dominated continental margin from the Late Cretaceous to Present. We combine extensive 2D (~40,000 km) and 3D (3,627 km2) seismic reflection data with lithologic and biostratigraphic information from wells to reconstruct the tectonic and oceanographic evolution of this margin. We identified three large‐scale seismic units (SUs): (a) SU‐1 (Late Cretaceous)—500 m‐thick, and characterised by NE‐SW‐trending, slope‐normal elongate depocentres (c. 200 km long and 70 km wide), with erosional surfaces at their bases and tops, which are interpreted as the result of contour‐parallel bottom‐currents, coeval with the onset of opening of the Southern Ocean; (b) SU‐2 (Palaeocene—Late Miocene)—800 m‐thick and characterised by: (a) very large (amplitude, c. 40 m and wavelength, c. 3 km), SW‐migrating, NW‐SE‐trending sediment waves, (b) large (4 km‐wide, 100 m‐deep), NE‐trending scours that flank the sediment waves and (c) NW‐trending, 4 km‐wide and 80 m‐deep turbidite channel, infilled by NE‐dipping reflectors, which together may reflect an intensification of NE‐flowing bottom currents during a relative sea‐level fall following the establishment of circumpolar‐ocean current around Antarctica; and (c) SU‐3 (Late Miocene—Present)—1,000 m‐thick and is dominated by large (up to 100 km3) mass‐transport complexes (MTCs) derived from the continental margin (to the east) and the Exmouth Plateau Arch (to the west), and accumulated mainly in the adjacent Kangaroo Syncline. This change in depositional style may be linked to tectonically‐induced seabed tilting and folding caused by collision and subduction along the northern margin of the Australian plate. Hence, the stratigraphic record of the Exmouth Plateau provides a rich archive of plate‐scale regional geological events occurring along the distant southern (2,000 km away) and northern (1,500 km away) margins of the Australian plate.  相似文献   

9.
《Basin Research》2018,30(4):783-798
When we model fluvial sedimentation and the resultant alluvial stratigraphy, we typically focus on the effects of local parameters (e.g., sediment flux, water discharge, grain size) and the effects of regional changes in boundary conditions applied in the source region (i.e., climate, tectonics) and at the shoreline (i.e., sea level). In recent years this viewpoint has been codified into the “source‐to‐sink” paradigm, wherein major shifts in sediment flux, grain‐size fining trends, channel‐stacking patterns, floodplain deposition and larger stratigraphic systems tracts are interpreted in terms of (1) tectonic and climatic signals originating in the hinterland that propagate downstream; and (2) eustatic fluctuation, which affects the position of the shoreline and dictates the generation of accommodation. Within this paradigm, eustasy represents the sole means by which downstream processes may affect terrestrial depositional systems. Here, we detail three experimental cases in which coastal rivers are strongly influenced by offshore and slope transport systems via the clinoform geometries typical of prograding sedimentary bodies. These examples illustrate an underdeveloped, but potentially important “sink‐to‐source” influence on the evolution of fluvial‐deltaic systems. The experiments illustrate the effects of (1) submarine hyperpycnal flows, (2) submarine delta front failure events, and (3) deformable substrates within prodelta and offshore settings. These submarine processes generate (1) erosional knickpoints in coastal rivers, (2) increased river channel occupancy times, (3) rapid rates of shoreline movement, and (4) localized zones of significant offshore sediment accumulation. Ramifications for coastal plain and deltaic stratigraphic patterns include changes in the hierarchy of scour surfaces, fluvial sand‐body geometries, reconstruction of sea‐level variability and large‐scale stratal geometries, all of which are linked to the identification and interpretation of sequences and systems tracts.  相似文献   

10.
This article deals with the stratigraphic record of a climatic or tectonic perturbation of an experimental coupled catchment‐fan system. Following Bonnet & Crave's results (2003), which suggest that it is possible to differentiate between climatic or tectonic causes of surface uplift of an erosional topography from the record of sediment flux output, we design a new experimental device to test this proposition in the sedimentary signal. This device allows the study of a coupled erosion–sedimentation system at the laboratory scale for given and changing uplift and rainfall rates. On the basis of experimental results, we propose a methodology to study alluvial fan architecture from large‐scale geometries to stacking pattern and sequence analysis. In these experiments, the erosional perturbation resulting from climate or tectonic forcing induces a typical dynamic in terms of both sediment supply and the ratio between the sediment and water supply, which controls the transport capacity. The four possible forcings (rainfall rate and uplift rate increase or decrease, respectively) then result in unique dynamics of the combined parameters such as the fan slope, apex aggradation, mean sedimentation rate, grain size distribution, bed thickness and frequency and facies stacking. We first analyse large‐scale geometries (onlap, toplap, downlap or truncation) and then fine‐scale sedimentological features (fining, thinning, coarsening, thickening) in order to discriminate the nature of the forcing. This conceptual model could be adapted to real world alluvial fans in order to recognize and separate the driving mechanisms from each other.  相似文献   

11.
We present field and seismic evidence for the existence of Coniacian–Campanian syntectonic angular unconformities within basal foreland basin sequences of the Austral or Magallanes Basin, with implications for the understanding of deformation and sedimentation in the southern Patagonian Andes. The studied sequences belong to the mainly turbiditic Upper Cretaceous Cerro Toro Formation that includes a world‐class example of conglomerate‐filled deep‐water channel bodies deposited in an axial foredeep depocentre. We present multiple evidence of syntectonic deposition showing that the present internal domain of the fold‐thrust belt was an active Coniacian–Campanian wedge‐top depozone where deposition of turbidites and conglomerate channels of Cerro Toro took place. Cretaceous synsedimentary deformation was dominated by positive inversion of Jurassic extensional structures that produced elongated axial submarine trenches separated by structural highs controlling the development and distribution of axial channels. The position of Coniacian‐Campanian unconformities indicates a ca. 50–80 km advance of the orogenic front throughout the internal domain, implying that Late Cretaceous deformation was more significant in terms of widening the orogenic wedge than all subsequent Andean deformation stages. This south Patagonian orogenic event can be related to compressional stresses generated by the combination of both the collision of the western margin of Rocas Verdes Basin during its closure, and Atlantic ridge push forces due to its accelerated opening, during a global‐scale plate reorganization event.  相似文献   

12.
The landscape of the Canadian Rockies in southern Alberta is not a direct result of constructional processes; that is, the ridges and peaks have not been pushed into the positions in which we see them today. Tectonic activity provided original elevation but not mountains: at the end of Laramide time, what are now the front ranges and foothills of the Rockies comprised a high-elevation upland of relatively low relief. The present mountain physiography is the result of 55–60 million years of post-orogenic differential erosion, in which more resistant rocks have been left at higher elevations than less-resistant rocks.The Canadian Rockies and the foothills are developed in a thin-skinned, thrust-and-fold belt created during the Laramide Orogeny; the adjacent Interior Plains cut across foreland basin sediments derived from the mountains. The mountains currently consist of large parts of ridges of well-indurated Paleozoic and, locally, Proterozoic rock alternating with valleys developed in soft Mesozoic clastic rock. In the foothills, where the soft Mesozoic rock is at the surface, relief is subdued, but ridges of more-resistant sandstone rise above shaley lowlands. The plains are relatively flat but also contain erosional outliers of higher paleo-plains-surfaces.Numerous lines of evidence suggest that the mountains and foothills have lost several kilometers of overburden since the end of the Laramide Orogeny, while the western plains have lost at least 2 km, requiring that the local relief of the mountains and foothills that we see is erosional in origin. Local physiography is adjusted to lithology: the mountains have high relief because the exposed sub-Mesozoic rocks can hold up high, steep slopes, whereas the foothills have low relief because the underlying Cretaceous rocks cannot hold up high, steep slopes. The east-facing escarpment at the mountain front is a fault-line scarp along a low-angle thrust.Mesozoic rocks involved in the deformation originally extended all the way across the thrust and fold belt, and physiography of the belt at the end of Laramide time (60–55 Ma) depended mainly on whether Mesozoic or Paleozoic/Proterozoic rocks were exposed at the surface at that time. A reconstruction using critical-taper theory generally agrees with reconstructions from earlier stratigraphic and paleothermometry studies: what are now the front ranges at the eastern edge of the Rocky Mountains were mostly or perhaps entirely covered with Mesozoic rocks and despite that high elevation had a hilly, not mountainous, character. The main ranges, in the central Rocky Mountains, were in part stripped of Mesozoic cover by then and more mountainous. Treeline was higher then, and the thrust belt may have been largely or entirely vegetated. Generation of modern relief in the front ranges, including the escarpment at the mountain front, had to await stripping of Mesozoic rocks and incision of rivers into harder substrates in post-Laramide time.The Interior Plains are an erosional surface that was cut 1 to 3 km below the aggradational top of the foreland basin sediments. Although some of the present low local relief of the plains results from weakness of underlying Cretaceous/Tertiary rocks, the low relief is probably largely related to the process of denudation.  相似文献   

13.
ABSTRACT The Alkyonides half‐graben is separated from the Gerania Range to the south by active faults whose offshore traces are mapped in detail. The East Alkyonides and Psatha Faults have well‐defined, Holocene‐active tip zones and cannot be extrapolated from the onshore Skinos Fault into a single continuous surface trace. During the late Quaternary, catchments draining the step‐faulted range front have supplied sediment to alluvial fans along a subsiding marine ramp margin in the hangingwall of the Skinos Fault, to shelf ledge fans on the uplifting footwall to the East Alkyonides Fault and to the Alepochori submarine fan in the hangingwall of the latter. During late Pleistocene lowstand times (c. 70–12 ka), sediment was deposited in Lake Corinth as fan deltas on the subsiding Skinos shelf ramp which acted as a sediment trap for the adjacent 360 m deep submarine basin plain. At the same time, the uplifting eastern shelf ledge was exposed, eroded and bypassed in favour of deposition on the Alepochori submarine fan. During Holocene times, the Skinos bajada was first the site of stability and soil formation, and then of substantial deposition before modern marine erosion cut a prominent cliffline. The uplifting eastern shelf ledge has developed substantial Holocene fan lobe depositional sequences as sediment‐laden underflows have traversed it via outlet channels. We estimate mean Holocene displacement rates towards the tip of the Psatha Fault in the range 0.7–0.8 mm year?1. Raised Holocene coastal notches indicate that this may be further partitioned into about 0.2 mm year?1 of footwall uplift and hence 0.5–0.6 mm year?1 of hangingwall subsidence. Holocene displacement rates towards the tip of the active East Alkyonides Fault are in the range 0.2–0.3 mm year?1. Any uplift of the West Alkyonides Fault footwall is not keeping pace with subsidence of the Skinos Fault hangingwall, as revealed by lowstand shelf fan deltas which show internal clinoforms indicative of aggradational deposition in response to relative base‐level rise due to active hangingwall subsidence along the Skinos Fault. Total subsidence here during the last 58 kyr lowstand interval of Lake Corinth was some 20 m, indicating a reduced net displacement rate compared to estimates of late Holocene (< 2000 bp ) activity from onshore palaeoseismology. This discrepancy may be due to the competition between uplift on the West Alkyonides Fault and subsidence on the onshore Skinos Fault, or may reflect unsteady rates of Skinos Fault displacement over tens of thousands of years.  相似文献   

14.
We present new sedimentological, petrographical, palaeontological and detrital zircon U–Pb data on late Oligocene–early Miocene sedimentary rocks of the thin-skinned thrust belt of East Carpathians. These data were acquired to reconstruct the sedimentary routing system for two compositionally different turbidite fans made of the regionally extensive Kliwa and Fusaru formations. On the eastern margin of the Moldavides foreland basin, large low-gradient river systems draining the East European Platform provided well-sorted quartz-rich sand forming deltas on wide shallow shelves and thick Kliwa submarine fans. Due to the westward subduction of a thinned continental plate, the western basin margin was characterized by short, steep-gradient routing systems where sediment transport to deep water was mainly through hyperpycnal flows. The Getic and Bucovinian nappes of the East Carpathians and the exhumed Cretaceous–Early Palaeogene orogenic wedge fed Fusaru fans with poorly sorted lithic sand. The Fusaru fans trend northwards in the foredeep basin having an elongate depocentre, interfingering and then overlapping on the distal part of the Kliwa depositional system due to the eastward advance of the Carpathian fold-and-thrust belt. A smaller sediment input is supplied by southern continental areas (i.e. Moesian Platform, North Dobrogea and potentially the Balkans). In general, the sandstone interfingering between distinct basin floor fan systems is less well documented because the facies would be similar and there are not many systems that have a distinct sediment provenance like Kliwa and Fusaru systems. This case study improves the understanding of regional palaeogeography and sedimentary routing systems and provides observations relevant here or elsewhere on the interfingering turbidite fan systems.  相似文献   

15.
The application of high‐resolution seismic geomorphology, integrated with lithological data from the continental margin offshore The Gambia, northwest Africa, documents a complex tectono‐stratigraphic history through the Cretaceous. This reveals the spatial‐temporal evolution of submarine canyons by quantifying the related basin depositional elements and providing an estimate of intra‐ versus extra‐basinal sediment budget. The margin developed from the Jurassic to Aptian as a carbonate escarpment. Followed by, an Albian‐aged wave‐dominated delta system that prograded to the palaeo‐shelf edge. This is the first major delivery of siliciclastic sediment into the basin during the evolution of the continental margin, with increased sediment input linked to exhumation events of the hinterland. Subaqueous channel systems (up to 320 m wide) meandered through the pro‐delta region reaching the palaeo‐shelf edge, where it is postulated they initiated early submarine canyonisation of the margin. The canyonisation was long‐lived (ca. 28 Myr) dissecting the inherited seascape topography. Thirteen submarine canyons can be mapped, associated with a Late Cretaceous‐aged regional composite unconformity (RCU), classified as shelf incised or slope confined. Major knickpoints within the canyons and the sharp inflection point along the margin are controlled by the lithological contrast between carbonate and siliciclastic subcrop lithologies. Analysis of the base‐of‐slope deposits at the terminus of the canyons identifies two end‐member lobe styles, debris‐rich and debris‐poor, reflecting the amount of carbonate detritus eroded and redeposited from the escarpment margin (blocks up to ca. 1 km3). The vast majority of canyon‐derived sediment (97%) in the base‐of‐slope is interpreted as locally derived intra‐basinal material. The average volume of sediment bypassed through shelf‐incised canyons is an order of magnitude higher than the slope‐confined systems. These results document a complex mixed‐margin evolution, with seascape evolution, sedimentation style and volume controlled by shelf‐margin collapse, far‐field tectonic activity and the effects of hinterland rejuvenation of the siliciclastic source.  相似文献   

16.
The adequate documentation and interpretation of regional‐scale stratigraphic surfaces is paramount to establish correlations between continental and shallow marine strata. However, this is often challenged by the amalgamated nature of low‐accommodation settings and control of backwater hydraulics on fluvio‐deltaic stratigraphy. Exhumed examples of full‐transect depositional profiles across river‐to‐delta systems are key to improve our understanding about interacting controlling factors and resultant stratigraphy. This study utilizes the ~400 km transect of the Cenomanian Mesa Rica Sandstone (Dakota Group, USA), which allows mapping of down‐dip changes in facies, thickness distribution, fluvial architecture and spatial extent of stratigraphic surfaces. The two sandstone units of the Mesa Rica Sandstone represent contemporaneous fluvio‐deltaic deposition in the Tucumcari sub‐basin (Western Interior Basin) during two regressive phases. Multivalley deposits pass down‐dip into single‐story channel sandstones and eventually into contemporaneous distributary channels and delta‐front strata. Down‐dip changes reflect accommodation decrease towards the paleoshoreline at the Tucumcari basin rim, and subsequent expansion into the basin. Additionally, multi‐storey channel deposits bound by erosional composite scours incise into underlying deltaic deposits. These represent incised‐valley fill deposits, based on their regional occurrence, estimated channel tops below the surrounding topographic surface and coeval downstepping delta‐front geometries. This opposes criteria offered to differentiate incised valleys from flood‐induced backwater scours. As the incised valleys evidence relative sea‐level fall and flood‐induced backwater scours do not, the interpretation of incised valleys impacts sequence stratigraphic interpretations. The erosional composite surface below fluvial strata in the continental realm represents a sequence boundary/regional composite scour (RCS). The RCS’ diachronous nature demonstrates that its down‐dip equivalent disperses into several surfaces in the marine part of the depositional system, which challenges the idea of a single, correlatable surface. Formation of a regional composite scour in the fluvial realm throughout a relative sea‐level cycle highlights that erosion and deposition occur virtually contemporaneously at any point along the depositional profile. This contradicts stratigraphic models that interpret low‐accommodation settings to dominantly promote bypass, especially during forced regressions. Source‐to‐sink analyses should account for this in order to adequately resolve timing and volume of sediment storage in the system throughout a complete relative sea‐level cycle.  相似文献   

17.
This paper documents the importance of three‐dimensional (3D) seismic data for integrated stratigraphic–morphological analysis of slope systems. Furthermore, it contributes to the general understanding of the evolutionary mechanisms of slope‐confined submarine canyons on continental margins and their significance in a sequence stratigraphic framework. Recently acquired 3D seismic data from the Ebro Continental Margin (Western Mediterranean) have been used to study a series of remarkably well‐imaged submarine canyons in the Plio‐Pleistocene succession. Detailed mapping shows that these canyons are restricted to the slope, and thus can be compared with slope‐confined canyons observed on the present day seabed of many continental margins. The slope‐confined canyons are typically 0.5–2 km wide, 10–15 km long, and incise more than 50 m into the slope units. Their most striking characteristic is an upslope branching geometry in the head region involving up to three orders of bifurcation, with downslope development of a single incisional axis. The submarine canyons are characterized by a nested stacking pattern, undergoing alternating phases of cutting and filling. Limited parts of the upper and middle slope remain outside the canyon system, confined in sharp depositional ridges. The canyons are observed on closely spaced surfaces and exhibit a geometry that allowed the construction and discussion of a local sequence stratigraphic model for their evolution. In general, active incision of the canyons is observed at times throughout almost the entire cycle of base‐level change. However, erosional activity is more significant during the later stages of the relative sea level rise and the entire falling stage, with the timing of maximum erosion observed at the end of the cycle. The minimum erosional activity of the canyons is linked instead to the earliest part of the relative sea level rise.  相似文献   

18.
The Triassic Moenkopi Formation in the Salt Anticline Region, SE Utah, represents the preserved record of a low‐relief ephemeral fluvial system that accumulated in a series of actively subsiding salt‐walled mini‐basins. Development and evolution of the fluvial system and its resultant preserved architecture was controlled by the following: (1) the inherited state of the basin geometry at the time of commencement of sedimentation; (2) the rate of sediment delivery to the developing basins; (3) the orientation of fluvial pathways relative to the salt walls that bounded the basins; (4) spatially and temporally variable rates and styles of mini‐basin subsidence and associated salt‐wall uplift; and (5) temporal changes in regional climate. Detailed outcrop‐based tectono‐stratigraphic analyses demonstrate how three coevally developing mini‐basins and their intervening salt walls evolved in response to progressive sediment loading of a succession of Pennsylvanian salt (the Paradox Formation) by the younger Moenkopi Formation, deposits of which record a dryland fluvial system in which flow was primarily directed parallel to a series of elongate salt walls. In some mini‐basins, fluvial channel elements are stacked vertically within and along the central basin axes, in response to preferential salt withdrawal and resulting subsidence. In other basins, rim synclines have developed adjacent to bounding salt walls and these served as loci for accumulation of stacked fluvial channel complexes. Neighbouring mini‐basins exhibit different styles of infill at equivalent stratigraphic levels: sand‐poor basins dominated by fine‐grained, sheet‐like sandstone fluvial elements, which are representative of nonchannelised flow processes, apparently developed synchronously with neighbouring sand‐prone basins dominated by major fluvial channel‐belts, demonstrating effective partitioning of sediment route‐ways by surface topography generated by uplifting salt walls. Reworked gypsum clasts present in parts of the stratigraphy demonstrate the subaerial exposure of some salt walls, and their partial erosion and reworking into the fill of adjoining mini‐basins during accumulation of the Moenkopi Formation. Complex spatial changes in preserved stratigraphic thickness of four members in the Moenkopi Formation, both within and between mini‐basins, demonstrates a complex relationship between the location and timing of subsidence and the infill of the generated accommodation by fluvial processes.  相似文献   

19.
This study explores the surface variability of alluvial fans from digital elevations model (DEM) derivatives generated from 1-m planimetric resolution airborne laser swath mapping data. Channel and interfluve dimensions of debris flow (DF) fans and fans generated from predominantly fluvial flows and some older debris flows (mixed flow [MF]) are extracted with the aid of a planimetric curvature classification. Significant differences are identified between the fan surface topography of DF and MF fans. MF fans tend to have smaller channel and interfluve widths, have smaller elevation differences between the crest of the interfluve and channel, and are more dissected than DF fans. The morphometric differences between the two fan classes can be explained by differences in the primary processes that develop the surficial features, but also the preponderance for secondary erosional processes acting on the MF fans.  相似文献   

20.
Injectites sourced from base‐of‐slope and basin‐floor parent sandbodies are rarely reported in comparison to submarine slope channel systems. This study utilizes the well‐constrained palaeogeographic and stratigraphic context of three outcrop examples exposed in the Karoo Basin, South Africa, to examine the relationship between abrupt stratigraphic pinchouts in basin‐floor lobe complexes, and the presence, controls, and character of injectite architecture. Injectites in this palaeogeographic setting occur where there is: (i) sealing mudstone both above and below the parent sand to create initial overpressure; (ii) an abrupt pinchout of a basin‐floor lobe complex through steep confinement to promote compaction drive; (iii) clean, proximal sand beds aiding fluidization; and (iv) a sharp contact between parent sand and host lithology generating a source point for hydraulic fracture and resultant injection of sand. In all outcrop cases, dykes are orientated perpendicular to palaeoslope, and the injected sand propagated laterally beneath the parent sand, paralleling the base to extend beyond its pinchout. Understanding the mechanisms that determine and drive injection is important in improving the prediction of the location and character of clastic injectites in the subsurface. Here, we highlight the close association of basin‐floor stratigraphic traps and sub‐seismic clastic injectites, and present a model to explain the presence and morphology of injectites in these locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号