首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study tested the use of machine learning techniques for the estimation of above-ground biomass (AGB) of Sonneratia caseolaris in a coastal area of Hai Phong city, Vietnam. We employed a GIS database and multi-layer perceptron neural networks (MLPNN) to build and verify an AGB model, drawing upon data from a survey of 1508 mangrove trees in 18 sampling plots and ALOS-2 PALSAR imagery. We assessed the model’s performance using root-mean-square error, mean absolute error, coefficient of determination (R2), and leave-one-out cross-validation. We also compared the model’s usability with four machine learning techniques: support vector regression, radial basis function neural networks, Gaussian process, and random forest. The MLPNN model performed well and outperformed the machine learning techniques. The MLPNN model-estimated AGB ranged between 2.78 and 298.95 Mg ha?1 (average = 55.8 Mg ha?1); below-ground biomass ranged between 4.06 and 436.47 Mg ha?1 (average = 81.47 Mg ha?1), and total carbon stock ranged between 3.22 and 345.65 Mg C ha?1 (average = 64.52 Mg C ha?1). We conclude that ALOS-2 PALSAR data can be accurately used with MLPNN models for estimating mangrove forest biomass in tropical areas.  相似文献   

2.

Background

Worldwide, forests are an important carbon sink and thus are key to mitigate the effects of climate change. Mountain moist evergreen forests in Mozambique are threatened by agricultural expansion, uncontrolled logging, and firewood collection, thus compromising their role in carbon sequestration. There is lack of local tools for above-ground biomass (AGB) estimation of mountain moist evergreen forest, hence carbon emissions from deforestation and forest degradation are not adequately known. This study aimed to develop biomass allometric equations (BAE) and biomass expansion factor (BEF) for the estimation of total above-ground carbon stock in mountain moist evergreen forest.

Methods

The destructive method was used, whereby 39 trees were felled and measured for diameter at breast height (DBH), total height and the commercial height. We determined the wood basic density, the total dry weight and merchantable timber volume by Smalian’s formula. Six biomass allometric models were fitted using non-linear least square regression. The BEF was determined based on the relationship between bole stem dry weight and total dry weight of the tree. To estimate the mean AGB of the forest, a forest inventory was conducted using 27 temporary square plots. The applicability of Marzoli’s volume equation was compared with Smalian’s volume equation in order to check whether Marzoli’s volume from national forest inventory can be used to predict AGB using BEF.

Results

The best model was the power model with only DBH as predictor variable, which provided an estimated mean AGB of 291?±?141 Mg ha?1 (mean?±?95% confidence level). The mean wood basic density of sampled trees was 0.715?±?0.182 g cm?3. The average BEF was of 2.05?±?0.15 and the estimated mean AGB of 387?±?126 Mg ha?1. The BAE from miombo woodland within the vicinity of the study area underestimates the AGB for all sampled trees. Chave et al.’s pantropical equation of moist forest did not fit to the Moribane Forest Reserve, while Brown’s equation of moist forest had a good fit to the Moribane Forest Reserve, having generated 1.2% of bias, very close to that generated by the selected model of this study. BEF showed to be reliable when combined with stand mean volume from Marzoli’s National Forestry Inventory equation.

Conclusion

The BAE and the BEF function developed in this study can be used to estimate the AGB of the mountain moist evergreen forests at Moribane Forest Reserve in Mozambique. However, the use of the biomass allometric model should be preferable when DBH information is available.
  相似文献   

3.

Background

Malaysia typically suffers from frequent cloud cover, hindering spatially consistent reporting of deforestation and forest degradation, which limits the accurate reporting of carbon loss and CO2 emissions for reducing emission from deforestation and forest degradation (REDD+) intervention. This study proposed an approach for accurate and consistent measurements of biomass carbon and CO2 emissions using a single L-band synthetic aperture radar (SAR) sensor system. A time-series analysis of aboveground biomass (AGB) using the PALSAR and PALSAR-2 systems addressed a number of critical questions that have not been previously answered. A series of PALSAR and PALSAR-2 mosaics over the years 2007, 2008, 2009, 2010, 2015 and 2016 were used to (i) map the forest cover, (ii) quantify the rate of forest loss, (iii) establish prediction equations for AGB, (iv) quantify the changes of carbon stocks and (v) estimate CO2 emissions (and removal) in the dipterocarps forests of Peninsular Malaysia.

Results

This study found that the annual rate of deforestation within inland forests in Peninsular Malaysia was 0.38% year?1 and subsequently caused a carbon loss of approximately 9 million Mg C year?1, which is equal to emissions of 33 million Mg CO2 year?1, within the ten-year observation period. Spatially explicit maps of AGB over the dipterocarps forests in the entire Peninsular Malaysia were produced. The RMSE associated with the AGB estimation was approximately 117 Mg ha?1, which is equal to an error of 29.3% and thus an accuracy of approximately 70.7%.

Conclusion

The PALSAR and PALSAR-2 systems offer a great opportunity for providing consistent data acquisition, cloud-free images and wall-to-wall coverage for monitoring since at least the past decade. We recommend the proposed method and findings of this study be considered for MRV in REDD+?implementation in Malaysia.
  相似文献   

4.
Understanding forest biomass dynamics is crucial for carbon and environmental monitoring, especially in the context of climate change. In this study, we propose a robust approach for monitoring aboveground forest biomass (AGB) dynamics by combining Landsat time-series with single-date inventory data. We developed a Random Forest (RF) based kNN model to produce annual maps of AGB from 1988 to 2017 over 7.2 million ha of forests in Victoria, Australia. The model was internally evaluated using a bootstrapping technique. Predictions of AGB and its change were then independently evaluated using multi-temporal Lidar data (2008 and 2016). To understand how natural and anthropogenic processes impact forest AGB, we analysed trends in relation to the history of disturbance and recovery. Specifically, change metrics (e.g., AGB loss and gain, Years to Recovery - Y2R) were calculated at the pixel level to characterise the patterns of AGB change resulting from forest dynamics. The imputation model achieved a RMSE value of 132.9 Mg ha−1 (RMSE% = 46.3%) and R2 value of 0.56. Independent assessments of prediction maps in 2008 and 2016 using Lidar-based AGB data achieved relatively high accuracies, with a RMSE of 108.6 Mg ha−1 and 135.9 Mg ha−1 for 2008 and 2016, respectively. Annual validations of AGB maps using un-changed, homogenous Lidar plots suggest that our model is transferable through time (RMSE ranging from 109.65 Mg ha−1 to 112.27 Mg ha−1 and RMSE% ranging from 25.38% to 25.99%). In addition, changes in AGB values associated with forest disturbance and recovery (decrease and increase, respectively) were captured by predicted maps. AGB change metrics indicate that AGB loss and Y2R varied across bioregions and were highly dependent on levels of disturbance severity (i.e., a greater loss and longer recovery time were associated with a higher severity disturbance). On average, high severity fire burnt from 200 Mg ha−1 to 550 Mg ha−1 of AGB and required up to 15 years to recover while clear-fell logging caused a reduction in 250 Mg ha−1 to 600 Mg ha−1 of AGB and required nearly 20 years to recover. In addition, AGB within un-disturbed forests showed statistically significant but monotonic trends, suggesting a mild gradual drop over time across most bioregions. Our methods are designed to support forest managers and researchers in developing forest monitoring systems, especially in developing regions, where only a single date forestry inventory exists.  相似文献   

5.

Background

To address how natural disturbance, forest harvest, and deforestation from reservoir creation affect landscape-level carbon (C) budgets, a retrospective C budget for the 8500 ha Sooke Lake Watershed (SLW) from 1911 to 2012 was developed using historical spatial inventory and disturbance data. To simulate forest C dynamics, data was input into a spatially-explicit version of the Carbon Budget Model-Canadian Forest Sector (CBM-CFS3). Transfers of terrestrial C to inland aquatic environments need to be considered to better capture the watershed scale C balance. Using dissolved organic C (DOC) and stream flow measurements from three SLW catchments, DOC load into the reservoir was derived for a 17-year period. C stocks and stock changes between a baseline and two alternative management scenarios were compared to understand the relative impact of successive reservoir expansions and sustained harvest activity over the 100-year period.

Results

Dissolved organic C flux for the three catchments ranged from 0.017 to 0.057 Mg C ha?1 year?1. Constraining CBM-CFS3 to observed DOC loads required parameterization of humified soil C losses of 2.5, 5.5, and 6.5%. Scaled to the watershed and assuming none of the exported terrestrial DOC was respired to CO2, we hypothesize that over 100 years up to 30,657 Mg C may have been available for sequestration in sediment. By 2012, deforestation due to reservoir creation/expansion resulted in the watershed forest lands sequestering 14 Mg C ha?1 less than without reservoir expansion. Sustained harvest activity had a substantially greater impact, reducing forest C stores by 93 Mg C ha?1 by 2012. However approximately half of the C exported as merchantable wood during logging (~176,000 Mg C) may remain in harvested wood products, reducing the cumulative impact of forestry activity from 93 to 71 Mg C ha?1.

Conclusions

Dissolved organic C flux from temperate forest ecosystems is a small but persistent C flux which may have long term implications for C storage in inland aquatic systems. This is a first step integrating fluvial transport of C into a forest carbon model by parameterizing DOC flux from soil C pools. While deforestation related to successive reservoir expansions did impact the watershed-scale C budget, over multi-decadal time periods, sustained harvest activity was more influential.
  相似文献   

6.

Background

Quantifying terrestrial carbon (C) stocks in vineyards represents an important opportunity for estimating C sequestration in perennial cropping systems. Considering 7.2 M ha are dedicated to winegrape production globally, the potential for annual C capture and storage in this crop is of interest to mitigate greenhouse gas emissions. In this study, we used destructive sampling to measure C stocks in the woody biomass of 15-year-old Cabernet Sauvignon vines from a vineyard in California’s northern San Joaquin Valley. We characterize C stocks in terms of allometric variation between biomass fractions of roots, aboveground wood, canes, leaves and fruits, and then test correlations between easy-to-measure variables such as trunk diameter, pruning weights and harvest weight to vine biomass fractions. Carbon stocks at the vineyard block scale were validated from biomass mounds generated during vineyard removal.

Results

Total vine C was estimated at 12.3 Mg C ha?1, of which 8.9 Mg C ha?1 came from perennial vine biomass. Annual biomass was estimated at 1.7 Mg C ha?1 from leaves and canes and 1.7 Mg C ha?1 from fruit. Strong, positive correlations were found between the diameter of the trunk and overall woody C stocks (R2 = 0.85), pruning weights and leaf and fruit C stocks (R2 = 0.93), and between fruit weight and annual C stocks (R2 = 0.96).

Conclusions

Vineyard C partitioning obtained in this study provides detailed C storage estimations in order to understand the spatial and temporal distribution of winegrape C. Allometric equations based on simple and practical biomass and biometric measurements could enable winegrape growers to more easily estimate existing and future C stocks by scaling up from berries and vines to vineyard blocks.
  相似文献   

7.

Background

Urban trees have long been valued for providing ecosystem services (mitigation of the “heat island” effect, suppression of air pollution, etc.); more recently the potential of urban forests to store significant above ground biomass (AGB) has also be recognised. However, urban areas pose particular challenges when assessing AGB due to plasticity of tree form, high species diversity as well as heterogeneous and complex land cover. Remote sensing, in particular light detection and ranging (LiDAR), provide a unique opportunity to assess urban AGB by directly measuring tree structure. In this study, terrestrial LiDAR measurements were used to derive new allometry for the London Borough of Camden, that incorporates the wide range of tree structures typical of an urban setting. Using a wall-to-wall airborne LiDAR dataset, individual trees were then identified across the Borough with a new individual tree detection (ITD) method. The new allometry was subsequently applied to the identified trees, generating a Borough-wide estimate of AGB.

Results

Camden has an estimated median AGB density of 51.6 Mg ha–1 where maximum AGB density is found in pockets of woodland; terrestrial LiDAR-derived AGB estimates suggest these areas are comparable to temperate and tropical forest. Multiple linear regression of terrestrial LiDAR-derived maximum height and projected crown area explained 93% of variance in tree volume, highlighting the utility of these metrics to characterise diverse tree structure. Locally derived allometry provided accurate estimates of tree volume whereas a Borough-wide allometry tended to overestimate AGB in woodland areas. The new ITD method successfully identified individual trees; however, AGB was underestimated by ≤?25% when compared to terrestrial LiDAR, owing to the inability of ITD to resolve crown overlap. A Monte Carlo uncertainty analysis identified assigning wood density values as the largest source of uncertainty when estimating AGB.

Conclusion

Over the coming century global populations are predicted to become increasingly urbanised, leading to an unprecedented expansion of urban land cover. Urban areas will become more important as carbon sinks and effective tools to assess carbon densities in these areas are therefore required. Using multi-scale LiDAR presents an opportunity to achieve this, providing a spatially explicit map of urban forest structure and AGB.
  相似文献   

8.
机载LiDAR数据估算样地和单木尺度森林地上生物量   总被引:2,自引:0,他引:2  
李旺  牛铮  王成  高帅  冯琦  陈瀚阅 《遥感学报》2015,19(4):669-679
利用机载激光雷达点云数据,结合大量实测单木结构信息,分别从样地和单木尺度估算了森林地上生物量AGB。首先,利用局部最大值单木提取算法提取了每个样地内的单木结构参数,并针对样地和单木尺度分别计算了一组激光雷达变量。然后,利用激光雷达变量和地上生物量及其两者的对数形式,从样地和单木尺度分别构建了估算模型。最后,针对两种尺度估算过程中存在的不确定性进行了详细讨论。结果表明:(1)样地和单木尺度模型估算的森林地上生物量与地面实测值都具有明显的相关性,且对数模型估算效果要优于非对数模型;(2)样地尺度模型估算效果(R2=0.84,rRMSE=0.23)明显优于单木尺度模型(R2=0.61,rRMSE=0.46);(3)按树木类型分别进行估算可以提高单木地上生物量的估算精度;(4)不论是样地还是单木尺度地上生物量估算都存在一定的不确定性,与样地尺度相比,单木尺度估算过程的不确定性更大,这种不确定性主要来自单木识别过程。  相似文献   

9.

Background

Forest landscape restoration (FLR) has been adopted by governments and practitioners across the globe to mitigate and adapt to climate change and restore ecological functions across degraded landscapes. However, the extent to which these activities capture CO2 with associated climate mitigation impacts are poorly known, especially in geographies where data on biomass growth of restored forests are limited or do not exist. To fill this gap, we developed biomass accumulation rates for a set of FLR activities (natural regeneration, planted forests and woodlots, agroforestry, and mangrove restoration) across the globe and global CO2 removal rates with corresponding confidence intervals, grouped by FLR activity and region/climate.

Results

Planted forests and woodlots were found to have the highest CO2 removal rates, ranging from 4.5 to 40.7 t CO2 ha?1 year?1 during the first 20 years of growth. Mangrove tree restoration was the second most efficient FLR at removing CO2, with growth rates up to 23.1 t CO2 ha?1 year?1 the first 20 years post restoration. Natural regeneration removal rates were 9.1–18.8 t CO2 ha?1 year?1 during the first 20 years of forest regeneration, followed by agroforestry, the FLR category with the lowest and regionally broad removal rates (10.8–15.6 t CO2 ha?1 year?1). Biomass growth data was most abundant and widely distributed across the world for planted forests and natural regeneration, representing 45% and 32% of all the data points assessed, respectively. Agroforestry studies, were only found in Africa, Asia, and the Latin America and Caribbean regions.

Conclusion

This study represents the most comprehensive review of published literature on tree growth and CO2 removals to date, which we operationalized by constructing removal rates for specific FLR activities across the globe. These rates can easily be applied by practitioners and decision-makers seeking to better understand the positive climate mitigation impacts of existing or planned FLR actions, or by countries making restoration pledges under the Bonn Challenge Commitments or fulfilling Nationally Determined Contributions to the UNFCCC, thereby helping boost FLR efforts world-wide.
  相似文献   

10.

Background

LiDAR remote sensing is a rapidly evolving technology for quantifying a variety of forest attributes, including aboveground carbon (AGC). Pulse density influences the acquisition cost of LiDAR, and grid cell size influences AGC prediction using plot-based methods; however, little work has evaluated the effects of LiDAR pulse density and cell size for predicting and mapping AGC in fast-growing Eucalyptus forest plantations. The aim of this study was to evaluate the effect of LiDAR pulse density and grid cell size on AGC prediction accuracy at plot and stand-levels using airborne LiDAR and field data. We used the Random Forest (RF) machine learning algorithm to model AGC using LiDAR-derived metrics from LiDAR collections of 5 and 10 pulses m?2 (RF5 and RF10) and grid cell sizes of 5, 10, 15 and 20 m.

Results

The results show that LiDAR pulse density of 5 pulses m?2 provides metrics with similar prediction accuracy for AGC as when using a dataset with 10 pulses m?2 in these fast-growing plantations. Relative root mean square errors (RMSEs) for the RF5 and RF10 were 6.14 and 6.01%, respectively. Equivalence tests showed that the predicted AGC from the training and validation models were equivalent to the observed AGC measurements. The grid cell sizes for mapping ranging from 5 to 20 also did not significantly affect the prediction accuracy of AGC at stand level in this system.

Conclusion

LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses m?2 and a grid cell size of 5 m. The promising results for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR sampling densities for Eucalyptus plantations and assist in decision making towards more cost effective and efficient forest inventory.
  相似文献   

11.
The conservation of biological diversity is recognized as a fundamental component of sustainable development, and forests contribute greatly to its preservation. Structural complexity increases the potential biological diversity of a forest by creating multiple niches that can host a wide variety of species. To facilitate greater understanding of the contributions of forest structure to forest biological diversity, we modeled relationships between 14 forest structure variables and airborne laser scanning (ALS) data for two Italian study areas representing two common Mediterranean forests, conifer plantations and coppice oaks subjected to irregular intervals of unplanned and non-standard silvicultural interventions. The objectives were twofold: (i) to compare model prediction accuracies when using two types of ALS metrics, echo-based metrics and canopy height model (CHM)-based metrics, and (ii) to construct inferences in the form of confidence intervals for large area structural complexity parameters.Our results showed that the effects of the two study areas on accuracies were greater than the effects of the two types of ALS metrics. In particular, accuracies were less for the more complex study area in terms of species composition and forest structure. However, accuracies achieved using the echo-based metrics were only slightly greater than when using the CHM-based metrics, thus demonstrating that both options yield reliable and comparable results. Accuracies were greatest for dominant height (Hd) (R2 = 0.91; RMSE% = 8.2%) and mean height weighted by basal area (R2 = 0.83; RMSE% = 10.5%) when using the echo-based metrics, 99th percentile of the echo height distribution and interquantile distance. For the forested area, the generalized regression (GREG) estimate of mean Hd was similar to the simple random sampling (SRS) estimate, 15.5 m for GREG and 16.2 m SRS. Further, the GREG estimator with standard error of 0.10 m was considerable more precise than the SRS estimator with standard error of 0.69 m.  相似文献   

12.

Background

Pasture enclosures play an important role in rehabilitating the degraded soils and vegetation, and may also influence the emission of key greenhouse gasses (GHGs) from the soil. However, no study in East Africa and in Kenya has conducted direct measurements of GHG fluxes following the restoration of degraded communal grazing lands through the establishment of pasture enclosures. A field experiment was conducted in northwestern Kenya to measure the emission of CO2, CH4 and N2O from soil under two pasture restoration systems; grazing dominated enclosure (GDE) and contractual grazing enclosure (CGE), and in the adjacent open grazing rangeland (OGR) as control. Herbaceous vegetation cover, biomass production, and surface (0–10 cm) soil organic carbon (SOC) were also assessed to determine their relationship with the GHG flux rate.

Results

Vegetation cover was higher enclosure systems and ranged from 20.7% in OGR to 40.2% in GDE while aboveground biomass increased from 72.0 kg DM ha?1 in OGR to 483.1 and 560.4 kg DM ha?1 in CGE and GDE respectively. The SOC concentration in GDE and CGE increased by an average of 27% relative to OGR and ranged between 4.4 g kg?1 and 6.6 g kg?1. The mean emission rates across the grazing systems were 18.6 μg N m?2 h?1, 50.1 μg C m?2 h?1 and 199.7 mg C m?2 h?1 for N2O, CH4, and CO2, respectively. Soil CO2 emission was considerably higher in GDE and CGE systems than in OGR (P?<?0.001). However, non-significantly higher CH4 and N2O emissions were observed in GDE and CGE compared to OGR (P?=?0.33 and 0.53 for CH4 and N2O, respectively). Soil moisture exhibited a significant positive relationship with CO2, CH4, and N2O, implying that it is the key factor influencing the flux rate of GHGs in the area.

Conclusions

The results demonstrated that the establishment of enclosures in tropical rangelands is a valuable intervention for improving pasture production and restoration of surface soil properties. However, a long-term study is required to evaluate the patterns in annual CO2, N2O, CH4 fluxes from soils and determine the ecosystem carbon balance across the pastoral landscape.
  相似文献   

13.
Accurate estimation of forest aboveground biomass (AGB) using remote sensing is a requisite for monitoring, reporting and verification (MRV) system of the United Nations Programme on Reducing Emissions from Deforestation and Forest Degradation. However, attaining high accuracy remains a great challenge in the diverse tropical forests. Among available technologies, l-band Synthetic Aperture Radar (SAR) estimates AGB with reasonably high accuracy in the terrestrial tropical forests. Nevertheless, the accuracy is relatively low in the mangrove forests. In this context, the study was carried out to model and map AGB using backscatter coefficients of Advanced Land Observing Satellite-2 (ALOS-2) Phased Array l-band SAR-2 (PALSAR-2) in part of the restored mangrove forest at Mahakam Delta, Indonesia. PALSAR-2 data was acquired with image scene observation during the peak low tide on 30 July 2018 from Japan Aerospace Exploration Agency. The forest parameters namely tree height and diameter at breast height were measured from 71 field plots in September-October 2018. The parameters were used in mangrove allometry to calculate the field AGB. Finally, HV polarized backscatter coefficients of PALSAR-2 were used to model AGB using linear regression. The model demonstrated a comparatively high performance using three distinct methods viz. independent validation (R2 of 0.89 and RMSE of 23.16 tons ha−1), random k-fold cross validation (R2 of 0.89 and RMSE of 24.59 tons ha−1) and leave location out cross validation (LLO CV) (R2 of 0.88 and RMSE of 24.05 tons ha−1). The high accuracy of the LLO CV indicates no spatial overfitting in the model. Thus, the model based on LLO CV was used to map AGB in the study area. This is the first study that successfully obtains high accuracy in modeling AGB in the mangrove forest. Therefore, it offers a significant contribution to the MRV mechanism for monitoring mangrove forests in the tropics and sub-tropics.  相似文献   

14.
The mangrove forests of northeast Hainan Island are the most species diverse forests in China and consist of the Dongzhai National Nature Reserve and the Qinglan Provincial Nature Reserve. The former reserve is the first Chinese national nature reserve for mangroves and the latter has the most abundant mangrove species in China. However, to date the aboveground ground biomass (AGB) of this mangrove region has not been quantified due to the high species diversity and the difficulty of extensive field sampling in mangrove habitat. Although three-dimensional point clouds can capture the forest vertical structure, their application to large areas is hindered by the logistics, costs and data volumes involved. To fill the gap and address this issue, this study proposed a novel upscaling method for mangrove AGB estimation using field plots, UAV-LiDAR strip data and Sentinel-2 imagery (named G∼LiDAR∼S2 model) based on a point-line-polygon framework. In this model, the partial-coverage UAV-LiDAR data were used as a linear bridge to link ground measurements to the wall-to-wall coverage Sentinel-2 data. The results showed that northeast Hainan Island has a total mangrove AGB of 312,806.29 Mg with a mean AGB of 119.26 Mg ha−1. The results also indicated that at the regional scale, the proposed UAV-LiDAR linear bridge method (i.e., G∼LiDAR∼S2 model) performed better than the traditional approach, which directly relates field plots to Sentinel-2 data (named the G∼S2 model) (R2 = 0.62 > 0.52, RMSE = 50.36 Mg ha−1<56.63 Mg ha−1). Through a trend extrapolation method, this study inferred that the G∼LiDAR∼S2 model could decrease the number of field samples required by approximately 37% in comparison with those required by the G∼S2 model in the study area. Regarding the UAV-LiDAR sampling intensity, compared with the original number of LiDAR plots, 20% of original linear bridges could produce an acceptable accuracy (R2 = 0.62, RMSE = 51.03 Mg ha−1). Consequently, this study presents the first investigation of AGB for the mangrove forests on northeast Hainan Island in China and verifies the feasibility of using this mangrove AGB upscaling method for diverse mangrove forests.  相似文献   

15.
The impact of forest management activities on the ability of forest ecosystems to sequester and store atmospheric carbon is of increasing scientific and social concern. This is because a quantitative understanding of how forest management enhances carbon storage is lacking in most forest management regimes. In this paper two forest regimes, government and community-managed, in Kayar Khola watershed, Chitwan, Nepal were evaluated based on field data, very high resolution (VHR) GeoEye-1 satellite image and airborne LiDAR data. Individual tree crowns were generated using multi-resolution segmentation, which was followed by two tree species classification (Shorea robusta and Other species). Species allometric equations were used in both forest regimes for above ground biomass (AGB) estimation, mapping and comparison. The image objects generated were classified per species and resulted in 70 and 82 % accuracy for community and government forests, respectively. Development of the relationship between crown projection area (CPA), height, and AGB resulted in accuracies of R2 range from 0.62 to 0.81, and RMSE range from 10 to 25 % for Shorea robusta and other species respectively. The average carbon stock was found to be 244 and 140 tC/ha for community and government forests respectively. The synergistic use of optical and LiDAR data has been successful in this study in understanding the forest management systems.  相似文献   

16.

Background

The environmental costs of fossil fuel consumption are globally recognized, opening many pathways for the development of regional portfolio solutions for sustainable replacement fuel and energy options. The purpose of this study was to create a baseline carbon (C) budget of a conventionally managed sugarcane (Saccharum officinarum) production system on Maui, Hawaii, and compare it to three different future energy cropping scenarios: (1) conventional sugarcane with a 50% deficit irrigation (sugarcane 50%), (2) ratoon harvested napiergrass (Pennisetum purpureum Schumach.) with 100% irrigation (napier 100%), and (3) ratoon harvested napiergrass with a 50% deficit irrigation (napier 50%).

Results

The differences among cropping scenarios for the fossil fuel-based emissions associated with agricultural inputs and field operations were small compared to the differences associated with pre-harvest burn emissions and soil C stock under ratoon harvest and zero-tillage management. Burn emissions were nearly 2000 kg Ceq ha?1 year?1 in the conventional sugarcane; whereas soil C gains were approximately 4500 kg Ceq ha?1 year?1 in the surface layer of the soil profile for napiergrass. Further, gains in deep soil profile C were nearly three times greater than in the surface layer. Therefore, net global warming potential was greatest for conventional sugarcane and least for napier 50% when deep profile soil C was included. Per unit of biomass yield, the most greenhouse gas (GHG) intensive scenario was sugarcane 50% with a GHG Index (GHGI, positive values imply a climate impact, so a more negative value is preferable for climate change mitigation) of 0.11 and the least intensive was napiergrass 50% when a deep soil profile was included (GHGI?=???0.77).

Conclusion

Future scenarios for energy or fuel production on former sugarcane land across the Pacific Basin or other volcanic islands should concentrate on ratoon-harvested crops that maintain yields under zero-tillage management for long intervals between kill harvest and reduce costs of field operations and agricultural input requirements. For napiergrass on Maui and elsewhere, deficit irrigation maximized climate change mitigation of the system and reduced water use should be part of planning a sustainable, diversified agricultural landscape.
  相似文献   

17.
Spatial Variability and Precision Nutrient Management in Sugarcane   总被引:1,自引:0,他引:1  
Investigations were carried out to develop precision nutrient management techniques for sugarcane. The study area (800 ha) comprised of Bijapur, Bilgi and Jamakhandi talukas that lie between 16° 34′–28° 10′ N latitudes and 75° 33′–75° 37′ E longitudes and located around Nandi Sahakari Sakkare Karkhane (NSSK) Niyamit, Galagali. The soils are medium to deep black with pH and EC ranging from 7.32 to 8.36 and 0.17 to 1.13 dS/m, respectively. The soils are low to medium in available nitrogen, medium in available phosphorus and high in available potassium content. Crop condition assessment was made through analysis of LISS-III satellite images using Erdas Imagine software. Fertigation with 300 kg N and 195 kg K per ha at fortnightly interval and soil application of 32 kg P per ha as basal, recorded higher sugarcane yield (167 Mg ha?1) as compared to 124 Mg ha?1 obtained with soil application of 250 kg N, 32 kg P and 156 kg K per ha and flood irrigation as per the package recommended by the University(POP). Fertigation of N and K at weekly interval recorded highest NDVI value (0.354) and soil application of nutrients as per POP resulted in the lowest NDVI of 0.219.  相似文献   

18.

Background

Forests play an important role in mitigating global climate change by capturing and sequestering atmospheric carbon. Quantitative estimation of the temporal and spatial pattern of carbon storage in forest ecosystems is critical for formulating forest management policies to combat climate change. This study explored the effects of land cover change on carbon stock dynamics in the Wujig Mahgo Waren forest, a dry Afromontane forest that covers an area of 17,000 ha in northern Ethiopia.

Results

The total carbon stocks of the Wujig Mahgo Waren forest ecosystems estimated using a multi-disciplinary approach that combined remote sensing with a ground survey were 1951, 1999, and 1955 GgC in 1985, 2000 and 2016 years respectively. The mean carbon stocks in the dense forests, open forests, grasslands, cultivated lands and bare lands were estimated at 181.78?±?27.06, 104.83?±?12.35, 108.77?±?6.77, 76.54?±?7.84 and 83.11?±?8.53 MgC ha?1 respectively. The aboveground vegetation parameters (tree density, DBH and height) explain 59% of the variance in soil organic carbon.

Conclusions

The obtained estimates of mean carbon stocks in ecosystems representing the major land cover types are of importance in the development of forest management plan aimed at enhancing mitigation potential of dry Afromontane forests in northern Ethiopia.
  相似文献   

19.
Reliable and accurate estimates of tropical forest above ground biomass (AGB) are important to reduce uncertainties in carbon budgeting. In the present study we estimated AGB of central Indian deciduous forests of Madhya Pradesh (M.P.) state, India, using Advanced Land Observing Satellite – Phased Array type L-band Synthetic Aperture Radar (ALOS-PALSAR) L-band data of year 2010 in conjunction with field based AGB estimates using empirical models. Digital numbers of gridded 1?×?1° dual polarization (HH & HV) PALSAR mosaics for the study area were converted to normalized radar cross section (sigma naught - σ0). A total of 415 sampling plots (0.1 ha) data collected over the study area during 2009–10 was used in the present study. Plot-level AGB estimates using volume equations representative to the study area were computed using field inventory data. The plot-level AGB estimates were empirically modeled with the PALSAR backscatter information in HH, HV and their ratios from different forest types of the study area. The HV backscatter information showed better relation with field based AGB estimates with a coefficient of determination (R2) of 0.509 which was used to estimate spatial AGB of the study area. Results suggested a total AGB of 367.4 Mt for forests of M.P. state. Further, validation of the model was carried out using observed vs. predicted AGB estimates, which suggested a root mean square error (RMSE) of ±19.32 t/ha. The model reported robust and defensible relation for observed vs. predicted AGB values of the study area.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号