首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 531 毫秒
1.
海洋桩平台采用大直径超长桩,由于桩、锤的重量很大,沉桩过程中经常发生溜桩现象。因此为了便于打桩控制,判断溜桩的范围是非常必要的。结合实际工程对溜桩的过程和发生机理进行了探讨;利用PCPT原位测量资料,基于能量法建立了判断溜桩范围的分析计算方法。针对南海油田典型的平台桩沉桩过程中的溜桩问题进行了分析计算,验证了所提出的方法的合理性,可供桩设计以及沉桩施工参考。  相似文献   

2.
为了研究海底防沉板—桩复合基础在地震荷载作用下的动力反应特性,以我国南海深水工程实例为研究对象,利用Flac3D有限差分仿真软件建立了计算模型,土体采用Mohr-Coulomb本构模型,模型底部输入EL Centro地震波,对不同桩长的复合基础进行分析计算.在该特定工程背景下,研究结果表明:随着桩长的增加,防沉板顶部加速度放大系数呈减小趋势;地震荷载下,复合基础发生震陷,沉降量在地震波加速度峰值过后趋于稳定;当桩长为6m时,复合基础的水平振动程度和震陷量最小;由于桩基础把震动能量传输到深部土层中,复合基础周围土体的加速度响应值小于远场土体.在动力时域内,防沉板与桩连接处弯矩最大,需要在此处增设加固装置.  相似文献   

3.
海上平台桶基负压沉贯阻力与土体稳定数值计算研究   总被引:3,自引:0,他引:3  
用有限元分析方法对桶形基础负压沉贯过程中流场进行动态模拟,提出桶形基础沉贯阻力计算方法和土体稳定有限计算方法,提出桶内土体稳定性判断准则,计算结果表明所提方法是合理的,并具有工程实用性。  相似文献   

4.
比较和分析了几种典型的P-Y曲线后发现,桩侧土体在横向荷载达到或接近极限土抗力后会发生塑性流动或软化。因此,极限土抗力的合理取值将影响桩侧土体的稳定性分析。将横向荷载下桩土相互作用的三维解问题简化为二维解处理,并运用土体塑性极限分析理论,采用摩尔-库仑屈服准则和相关联的流动法则,构造机动许可的应变率场和静力许可的应力场,推导出横向荷载作用下适用于粘性土的桩侧极限土抗力的上、下限解。利用南海某平台场址的工程地质钻探资料,计算了横向荷载作用下桩侧极限土抗力的真正极限荷载(Pu),并与由典型的P-Y曲线计算的Pu值作了比较。计算结果表明:在不排水抗剪强度较大的土层,由极限分析上、下限解计算的Pu值与由Reese硬粘土P-Y曲线、Matlock软粘土P-Y曲线和Sullivan统一法P-Y曲线计算的Pu值相差较大;在不排水抗剪强度较小土层,由极限分析的上、下限解计算的Pu值和由其它几种典型的P-Y曲线计算的Pu值吻合较好。极限分析上、下限解受深度影响,深度对桩侧极限土抗力的影响是随其增加而逐渐增大的。验证结果表明,计算的极限土抗力上、下限解的合理性较好,这对高层建筑、核电站、近海采油平台、海岸码头等建筑工程的桩基础设计具有重要的工程意义。  相似文献   

5.
海上大直径钢管桩打桩过程中,桩周土体受到强烈扰动而发生强度弱化,掌握桩周土体强度弱化规律对于准确预测打桩过程、保证工程安全具有重要意义。为研究土体强度弱化规律,开展了环剪试验模拟打桩对桩周土体的扰动,测试土体强度随剪切速率的变化规律,建立了描述土体强度弱化规律的拟合公式,引入到打桩分析软件中。研究结果表明:土体的强度折减程度不仅与土体本身的性质有关还受到土体的埋深和剪切速率的影响,埋深越深土体强度折减程度越低,剪切速率越高土体强度折减越高,在打桩分析中可采用这里推荐的线性折减方法来模拟不同深度处土体强度的折减规律。  相似文献   

6.
为补充DNVGL-RP-C212规范关于混合土层内吸力筒沉贯阻力计算参数的不确定描述,基于长乐外海风电场多个吸力筒基础的沉贯负压监测成果,对黏土—砂混合土层内吸力筒沉贯阻力算法进行研究。提出了基于黏粒含量确定侧阻力修正系数kf的算法,引入桩基工程中基于静力触探试验(CPT)的fs计算桩侧剪切强度的经验算法,并对其进行修正,用于计算吸力筒的沉贯侧阻力。对两种算法的准确性进行了验证,对其可靠性进行比较,提出了以前者计算结果为准,后者计算结果作为校核依据的建议。  相似文献   

7.
文章回顾了目前风电大直径单桩基础水平受荷静力响应分析的p-y 曲线规范方法,结合现有成果探讨了该方法会高估桩侧初始刚度并低估极限承载力的原因。为解决其不足,文章介绍了一种基于土体应力应变关系的p-y 曲线方法,它不但能较为正确地反映桩侧刚度,还能跟踪桩周土体的平均塑性应变的累积。在此基础上探讨了桩基在循环疲劳状态下的规范方法,由于其无法精确反映循环次数和幅值对于桩侧刚度弱化的影响,因此,进一步介绍了基于静力p-y 骨干曲线的滞回曲线构造方法,最后,基于上述分析方法,提出了一些大直径单桩优化设计的建议。  相似文献   

8.
吸力基础与海洋工程大直径钢桩相比,具有成本低、安装周期短、对环境影响小、不受海况影响及可回收再利用等优点,近年来在海上风电工程中得到推广应用。吸力基础沉贯至海床预定位置,是其发挥承载力和确保服役稳定性的前提。海床地基土体常以分层土形式分布,且各层土体强度、压缩性和渗透性等存在显著差别,导致吸力基础吸力沉贯机理非常复杂。明确吸力基础在分层土中沉贯特性,有助于指导吸力基础在海上风电工程中的推广应用。对目前吸力基础在分层土中沉贯特性研究进行综述和总结,归纳了其沉贯机理研究进展,并对影响吸力基础在分层土中沉贯因素进行了分析;提出了分层土中吸力基础沉贯的研究方向和改进的沉贯方法。  相似文献   

9.
刘剑涛  李飒 《海洋工程》2015,33(6):90-94
近年来海上工程的规模越来越大,为了满足工程需要,桩基设计常常采用大直径,大长度的钢管桩。打桩过程是个相当复杂的过程,不仅涉及到几何非线性、材料非线性、边界非线性,而且是个动力过程。有限元法在处理打桩分析方面具有很强的优势,采用PLAXIS对不同条件下的打桩问题进行了动力模拟分析。分析显示在打桩过程中,桩端土体会产生较大的水平位移和竖向位移,桩端土体和靠近桩端的部分土塞内会产生较大的超孔隙水压力。在砂土中,停锤较短时间也会使孔压迅速消散,这也是打桩中间的停锤会造成后续打桩困难的主要原因。  相似文献   

10.
针对格型钢板桩结构的三种建模方法(考虑板桩间铰接特性,用壳体单元模拟板桩的有限元模型;不考虑板桩间铰接特性,用壳体单元模拟板桩的有限元模型;将格体看做一个整体,用实体单元模拟板桩的有限元模型)进行分析,对各种建模方法得出的关于稳定性、破坏模式、格体环向应力、格体内外土体压力的相关结论进行比较,得到适合工程应用的建模方法。结果表明:三种有限元模型中,考虑板桩间铰接特性的壳体单元模型,因其考虑因素全面,是最准确的模型。对于重要工程,应采用考虑板桩间铰接特性的壳体单元模型进行计算。对于一般工程结构,在稳定性分析方面,三种有限元模型都很适用,由于壳体单元模型收敛性较差,建议采用比较成熟的实体单元模型进行简化;对于破坏模式和板桩间环向应力,建议采用不考虑板桩间铰接作用的壳体单元模型进行简化;对于结构背浪侧格型钢板桩结构格体外侧土体最大被动土压力和格内土体压力,采用不考虑板桩间铰接特性的壳体单元模型进行估算。结论对工程数值建模运算具有指导意义。  相似文献   

11.
The use of sand compaction pile or gravel compaction pile is nowadays a common approach for soft ground improvement. In this article, a recycled aggregate porous concrete pile has been developed by replacing natural aggregates with recycled aggregates to overcome issues related to bulging failure or reduced section geometries. Such issues may arise during installation and during the early stages of operation. In addition, the proposed approach utilizes recycled aggregates instead of natural materials. To investigate the applicability of the recycled aggregate porous concrete pile method as a ground improvement technique, a series of laboratory model consolidation tests was performed on soft clay soil reinforced with sand compaction pile, gravel compaction pile, and recycled aggregate porous concrete pile, respectively. The results indicated that the settlement reduction effect of recycled aggregate porous concrete pile was significantly higher than the sand compaction pile and gravel compaction pile methods. The stress sharing ratio from the experimental program showed good agreement with those calculated by elasticity theory. Comparative analyses of the recycled aggregate porous concrete pile versus sand compaction pile and gravel compaction pile approaches, under the same replacement area ratio and surcharge pressure, showed significantly improved consolidation time, settlement reduction, and stress sharing effect.  相似文献   

12.
变截面劲性水泥土桩承载特性室内模型试验研究   总被引:1,自引:0,他引:1  
研究变截面劲性水泥土桩的几何特征对承载特性的影响,结果表明:具有1个扩大盘或2个扩大盘间距较大的变截面桩,盘下部的土体发生压缩和局部剪切破坏现象,上部的土体则发生梨形滑落;盘间距较小时,上下两盘之间的土体与两盘成为一体;变截面桩的桩侧荷载分担值均远大于桩端荷载分担值,盘的数量及间距对桩侧及桩端荷载分担值影响不大;1个盘时,其位置对承载力有一定的影响;2个等间距盘的变截面桩,盘位置越高承载力越高;盘间距对承载力影响不显著;3个盘的承载力大于2个盘的承载力,但结果相差不大;变截面桩的承载力得到显著提高,其承载力不小于与扩大盘直径相等的等截面桩;随着桩顶荷载的增大,盘承担的荷载增加显著,盘以下桩身的轴力因盘承担大部分而骤减,其降低幅度与盘的数量、位置及间距有关.  相似文献   

13.
A static drill rooted nodular pile is a new type of composite pile foundation with high bearing capacity, and mud emissions can be largely reduced using the static drill rooted method. This report presents a model test on the behavior of this composite pile in a test box. The load-displacement response, axial force, skin friction, and mobilized base load are discussed in the report; in particular, the force in the cemented soil was investigated based on the measured data. Moreover, the finite element software ABAQUS was used to help investigate this behavior more thoroughly. It was determined that the function of the cemented soil around the pile shaft was different from that at the enlarged pile base; the stress in the cemented soil around the shaft increased suddenly when nearing the pile base; the ultimate skin friction obtained in the model test was larger than that estimated in the field test; and the relative displacement between the precast nodular pile and the cemented soil could be ignored during the loading process, which corresponded to the result of the field test and demonstrated that the nodular pile and cemented soil act as one entity during the loading process.  相似文献   

14.
The effectiveness of constructing a geogrid-reinforced and pile supported embankment on soft ground to reduce differential settlement has been studied by pilot scale field tests and numerical analysis. Three-by-three pile groups with varying pile spacing were driven into a layer of soft ground, and a layer of geogrid was used as reinforcement over each pile group. Further, a 2-D numerical analysis has been conducted using the computer program FLAC 2D. The mechanisms of load transfer can be considered as a combination of embankment soil arching, geogrid tension, and stress transfer due to the difference in stiffness between pile and soft ground. Based on the pilot scale field tests and results of numerical analysis, we find that the geosynthetic reinforcement slightly interferes with soil arching, and helps reduce differential settlement of the soft ground. Also, the most effective load transfer and vertical stress reduction at the midspan between piles occurs when the pile cap spacing index D/b (D: pile cap spacing, b: diameter of pile) is 3.0.  相似文献   

15.
The effectiveness of constructing a geogrid-reinforced and pile supported embankment on soft ground to reduce differential settlement has been studied by pilot scale field tests and numerical analysis. Three-by-three pile groups with varying pile spacing were driven into a layer of soft ground, and a layer of geogrid was used as reinforcement over each pile group. Further, a 2-D numerical analysis has been conducted using the computer program FLAC 2D. The mechanisms of load transfer can be considered as a combination of embankment soil arching, geogrid tension, and stress transfer due to the difference in stiffness between pile and soft ground. Based on the pilot scale field tests and results of numerical analysis, we find that the geosynthetic reinforcement slightly interferes with soil arching, and helps reduce differential settlement of the soft ground. Also, the most effective load transfer and vertical stress reduction at the midspan between piles occurs when the pile cap spacing index D/b (D: pile cap spacing, b: diameter of pile) is 3.0.  相似文献   

16.
A new analytical model is presented to analyze the dynamic stress diffusion effect of pile end soil on the vertical dynamic impedance of the pile. The surrounding soil of the pile is modeled by using the plane strain model and the pile is simulated by using one-dimensional elastic theory. Finite soil layers below the pile end are modeled as conical fictitious soil pile with stress diffusion angle which reflects the dynamic stress diffusion effect of pile end soil. By means of the Laplace transform and impedance function transfer method, the analytical solution of the vertical dynamic impedance at the pile head in frequency domain is yielded. Then, a comparison with other models is performed to verify the conical fictitious soil pile model. Finally, based on the proposed solution, the selected numerical results are compared to analyze the influence of dynamic stress diffusion effect for different design parameters of the soil-pile system on the vertical dynamic impedance at the pile head.  相似文献   

17.
Piling procedure may disturb the surrounding soil, due to the installation particularly for cast-in-place piles. It causes a reduction in the soil strength parameters and, consequently, pile capacity. To overcome shortcomings and also for improving piles’ capacity, postgrouting as a compensation method is recognized and more developed in recent years. Helical piles, those are used widely in marine and land projects, although, are driven by torque implementation, but soil disturbance is noticed, where number of the helices become up to 3 and more. In this paper, an experimental study program is performed by frustum-confined vessel (FCV) to investigate bearing capacity of model helical piles and also postgrouted cases’ performance. FCV has been used because of its linear distribution of vertical and horizontal stresses from zero at top to maximum at bottom which simulates real field stress conditions. Through experimental study, small-scale helical model piles were made of 4-mm-thick steel plate and have been used with a length of 750?mm. The shaft and helix diameters of model piles have been 32 and 89?mm, respectively. So, the helix-to-shaft ratio (wing ratio) was about 2.8. The helical model piles installed in fine-grained sand as a surrounding soil and then axial loading tests before and after grouting were performed to achieve ultimate pile capacity. Results indicated postgrouting can improve both ratios of toe and frictional soil–pile interactions including upgrading β and Nt factors. In addition, the post grouting phenomena can change the pile geometry due to treated soil bond, resulting better functioning. Therefore, it is a proper method to improve helical piles performance and compensate installation effects in capacity mobilization.  相似文献   

18.
由于桩-网复合地基的结构形式比较复杂,难以采用解析法求得其应力和位移。利用有限差分法对某桩-网法路堤进行了数值模拟,并取得了较好结果。计算结果显示,桩间土沉降线为悬链线,与现场位移监测结果吻合较好;桩身弯矩和桩土应力反映了桩-网复合地基的一些受力机理。分析认为,桩间土沉降较大的主要原因是由土体本身压缩及桩侧弯引起的。  相似文献   

19.
Abstract

Mono-pile foundations have been widely used for offshore wind turbines principally due to their convenient construction and cost-effective nature. So far, little attention has been paid to large diameter “semi-rigid” piles that have distinct behaviours from flexible or ideally rigid piles. This paper presents a series of centrifuge model tests to study the deforming and bearing characteristics of a 5.9 dia. semi-rigid pile under lateral loadings in kaolin clay. For monotonic loading, a modified p–y curve analysis model considering rotational soil flow near the rotation centre of pile was proposed, highlighting the limitation of classic plane-strain based plasticity models to evaluate the ultimate lateral pile-soil resistance. For cyclic loading, a strong correlation between the degree of soil degradation and cyclic load amplitude was identified. Besides, a degradation factor model, accounting for various cyclic stress levels and soil depths, was proposed, which can be used to assess the accumulative displacement of semi-rigid piles under cyclic loadings in soft clay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号