首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A newly discovered Devonian ophiolite located in the Taoxinghu area of central Qiangtang on the Qinhai–Tibet Plateau is described. The ophiolite consists of gabbro and diabasic dikes, and invasive cumulate gabbros-leucogabbros. The ophiolite has undergone greenschist facies metamorphism and minor deformation. Dating of the metagabbro by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U–Pb techniques yielded a weighted mean age of 367.2 ± 3.3 Ma (Late Devonian). Whole-rock geochemical analyses show that the rocks belong to the tholeiite series, with weak depletion in light rare-earth elements (LREEs), almost no Eu anomalies, weak enrichment in large-ion lithophile elements (LILEs), depletion in Nb and Ta, and weak negative Hf and Ti anomalies. These characteristics are similar to those of back-arc basin basalts. Together, these characteristics suggest that the rocks of the Devonian ophiolite formed by ~30% partial melting of spinel lherzolite, which was enriched by interaction with aqueous fluids during the late-generation phases; there is no evidence of subduction-related melting. The Devonian ophiolite rocks in the Taoxinghu area were first discovered in the LongmuCo–Shuanghu–Lancang suture zone. Detailed geochemical analyses show that the rocks formed in a back-arc ocean basin environment, indicating that the LongmuCo–Shuanghu–Lancang suture zone in central Qiangtang represents a Late Devonian intra-oceanic subduction zone in the Palaeo–Tethys Ocean. The discovery of the central Qiangtang Devonian ophiolite provides essential data for understanding the evolutionary history of the Palaeo–Tethys Ocean, and for identifying and understanding the roles of the different tectonic units on the Qinghai–Tibet Plateau.  相似文献   

2.
Three Late Triassic plate sutures, namely, the Longmu Co-Shuanghu suture, Kunlun-Qinling suture and Xijinwulan-Jinshajiang suture, have been recognized on the Qinghai-Tibet plateau. Data show that the last two sutures have no essential elements of the northern boundary of Gondwana. This paper briefly introduces the facts of the existence of the paleo-Tethys Ocean in the Longmu Co-Shuanghu suture, i.e., the ages and natures of Early Paleozoic ophiolites, Permian ophiolites, Devonian-Permian radiolarian cherts, accretionary relics of different natures, two types of tectonic mélange zones and ophiolites. The starting time of paleo-Tethys Ocean in Qiangtang may be traced back to the Early Paleozoic and the records about the oceanic basin evolution lasted from the Late Devonian to Late Triassic. It is thought that the Longmu Co-Shuanghu suture was the site for the extinction of the paleo-Tethys Ocean on Qinghai-Tibet plateau and an important window for the reconstruction and inversion of the early-stage formation and evolution of the Qinghai-Tibet plateau, as well as the northern boundary of Gondwana wich the geoscience community has paid attention to in the past few decades. Translated from Geological Bulletin of China, 2007, 26(1): 13–21 [译自: 地质通报]  相似文献   

3.
青藏高原龙木错-双湖板块缝合带与羌塘古特提斯洋演化记录   总被引:27,自引:17,他引:27  
龙木错-双湖缝合带、西金乌兰-金沙江缝合带和昆仑-秦岭缝合带是青藏高原上3条主要的晚三叠世板块缝合带,目前的研究资料表明后2条缝合带不具备冈瓦纳北界的基本要素。简要介绍了龙木错-双湖缝合带中有关古特提斯洋存在的基本事实,即早古生代洋壳残片、二叠纪蛇绿岩、泥盆纪—二叠纪放射虫硅质岩、各类不同性质的增生岩片、2种类型的构造混杂岩带和蛇绿混杂岩盖层体系的时代与性质等,已有的资料初步确定羌塘古特提斯洋盆演化的时限为晚泥盆世到晚三叠世。认为龙木错-双湖缝合带是青藏高原上古特提斯洋消亡的主要场所,是恢复和反演青藏高原早期形成演化的最重要的窗口,也是地学界几十年关注的冈瓦纳大陆的北界。  相似文献   

4.
The Duguer area represents one of the few occurrences of high-grade metamorphic rocks in the ‘Central Uplift’ zone of the Qiangtang terrane, central Tibet. The metamorphic rocks consist mainly of orthogneiss, paragneiss, and schist. To better understand the formation of these rocks, seven samples of gneiss and schist from the Duguer area were selected for in situ zircon U–Pb analysis and Ar–Ar dating of metamorphic minerals. The results suggest two distinct metamorphic stages, during the Late Triassic (229–227 Ma) and Late Jurassic (150–149 Ma). These stages correspond to the closure of the Palaeo-Tethys Ocean and northward subduction of the Bangong–Nujiang Neo-Tethys oceanic crust, respectively. We suggest that the Late Triassic metamorphic rocks of the Duguer area in the central South Qiangtang subterrane provide evidence of continental collision between the North and South Qiangtang subterranes, following the subduction of oceanic crust. It is likely that deep subduction of oceanic crust occurred along the Longmu Co–Shuanghu–Lancangjiang suture zone (LSLSZ), which would have hindered exhumation owing to the high density of oceanic crust. Subsequent break-off and delamination of the subducted oceanic slab at ~220 Ma may have resulted in exhumation of high-pressure and high-grade metamorphic rocks in the South Qiangtang subterrane. The Late Jurassic ages of metamorphism and deformation obtained in this study indicate the occurrence of an Andean-type orogenic event within the South Qiangtang subterrane. This hypothesis is further supported by an apparent age gap in magmatic activity (150–130 Ma) along the magmatic arc, and the absence of Late Jurassic sediments.  相似文献   

5.
张修政  董永胜  王强  但卫 《地质通报》2018,37(8):1406-1416
羌塘中部高压变质带是目前青藏高原内部延伸规模最大的高压变质带,是理解特提斯演化的关键地质记录。高压变质带主要沿龙木措-双湖-澜沧江缝合带一线出露,主要由榴辉岩、蓝片岩、石榴子石多硅白云母片岩及少量高压麻粒岩组成。其中,榴辉岩主要出露于戈木、果干加年山、冈玛错、巴青及滇西的勐库地区,主要呈透镜状产于石榴子石多硅白云母片岩中。除巴青地区的榴辉岩外,其余地区榴辉岩的峰期变质温度较低且含有硬柱石及其假象,峰期变质条件位于硬柱石榴辉岩相稳定区域,是洋壳冷俯冲的产物。虽然对于戈木地区榴辉岩锆石成因仍有争议,但已有资料显示,羌塘中部高压变质带主体变质时代集中在晚三叠世,其相关高压变质岩石的折返可能与洋盆的闭合及随后的陆-陆碰撞相关。近期研究表明,羌塘中部可能存在二叠纪低温高压变质岩,折返于大洋俯冲阶段,可能与洋岛或海山的俯冲及引发的俯冲侵蚀作用相关。此外,羌塘香桃湖地区出露早古生代的基性高压麻粒岩,是冈瓦纳大陆北缘陆块拼贴的记录。因此,对羌塘中部高压变质带进行进一步系统的研究工作,对于深入理解冈瓦纳北缘构造演化及古特提斯的俯冲与闭合过程具有重要的意义。  相似文献   

6.
We present our new investigation into the depositional environment and provenance of the Yingshuiquan Formation in the central Qiangtang region of northern Tibet, in order to further our understanding of the environment of the Longmu Co–Shuanghu Palaeo–Tethys during the Early Triassic. The Yingshuiquan Formation is composed of oolitic limestone, calcareous sandstone, calcarenite, thin-bedded ribbon limestone, bioclastic limestone, and coarse oolite limestone that were deposited in a shallow-marine basin and contain abundant Lower Triassic conodont fossils (e.g. Hadrodontina anceps, Pachycladina sp., gen. et sp, Pachyclaina oblique, Hibbardelloides sp). We selected detrital zircons from four calcareous sandstone samples for U–Pb dating, yielding minimum age peaks of 263, 269, 275, and 280 Ma, respectively, and a minimum age of 249 Ma, based on several zircons around the same age. Analysis of the conodont biofacies and zircon LA-ICP-MS dating of calcareous sandstone indicates that the data is consistent with deposition in the Early Triassic. The Yingshuiquan Formation records Early Triassic shallow-water sediment in the Longmu Co–Shuanghu Palaeo–Tethys, and has a Southern Qiangtang and Northern Qiangtang terranes provenance. During the Early Triassic, the carbonate sediments of the Yingshuiquan Formation were deposited in an active environment around the Longmu Co–Shuanghu Palaeo–Tethys, which has became a residual sea basin.  相似文献   

7.
笔者根据国内外研究进展和区域地质对比,将特提斯中西段的古生代构造域划分为Iapetus-Tornquist洋加里东造山带、Rheic洋华力西期造山带、乌拉尔-天山中亚造山带和古特提斯Pontides-高加索-Mashhad造山带,并提出4个初步认识:(1) Rodinia超大陆在新元古代裂解形成的原特提斯大洋在欧洲以Iapetus和Tornquist缝合带为代表,它们在约420 Ma闭合形成加里东造山带,与我国秦祁昆造山系相似;(2) Rheic洋类似于特提斯东段的龙木错-双湖-昌宁-孟连洋,为古生代的特提斯主大洋,而泥盆纪形成的古特提斯洋实际上为主洋盆衍生的分支洋盆之一,Rheic洋的各分支洋盆在320~310 Ma闭合,形成华力西造山带和Pangea超大陆;(3)南阿尔卑斯Plankogel带、土耳其北部Pontides带和伊朗北部Rasht-Mashhad为古特提斯缝合带,代表泥盆纪—二叠纪的洋盆,晚石炭世—早三叠世丝绸之路岩浆弧与我国羌塘中部的望果山火山弧相对应;(4)特提斯中西段的基梅里造山带和羌塘中部的印支期造山带为古特提斯增生型造山带的典型代表。  相似文献   

8.
The Jiangaidarina granitic mass(JM) is an important part of the magmatic belt in Longmu CoShuanghu Suture Zone(LSSZ) in the central Tibetan Plateau. An integrated research involving wholerock geochemistry, zircon LA-ICP-MS U-Pb ages and Hf isotopic compositions was carried out to define the timing, genesis and tectonic setting of the JM. Zircon LA-ICP-MS U-Pb ages have been obtained ranging from 210 to 215 Ma, rather than the Early Jurassic as previously thought. Fifteen granite samples contain hornblendes and show a negative correlation between P_2 O_5 and SiO_2, indicating that the JM is an I-type granite. All the granites are enriched in LREE relative to HREE, with negative Eu anomalies(Eu/Eu*=0.56-0.81), and have similar trace elements patterns, with depletion of Ba, Nb, Sr and P. These suggest that the JM was fractionated, and this is also proved by the characteristic of negative correlations between oxide elements(TiO_2, MgO, FeOt, MnO, CaO) and SiO_2. Almost all ε_(Hf)(t) values of the granites are between-10.3 and-5.8, implying that the JM has a crustal source intimately related with the South Qiangtang Block(SQB), except for one(+10.2), showing a minor contribution from mantle source.Moreover, relatively low Na_2 O/K_2 O ratios(0.42-0.93) and high A/CNK values(0.91-1.50) reflect that the JM was predominately derived from the medium-high potassium basaltic crust, interacted with greywacke. Our new geochemical data and geochronological results imply that the Late Triassic magmas were generated in a post-collisional tectonic setting, probably caused by slab break-off of the Longmu Co-Shuanghu Tethyan Ocean(LSTO). This mechanism caused the asthenosphere upwelling, formed extension setting, offered an enormous amount of heat, and provided favorable conditions for emplacement of voluminous felsic magmas. Furthermore, the LSTO could be completely closed during the Middle Triassic, succeed by continental collision and later the slab broke off in the Late Triassic.  相似文献   

9.
论羌塘盆地沉积演化   总被引:4,自引:2,他引:2       下载免费PDF全文
王剑  付修根 《中国地质》2018,45(2):237-259
羌塘盆地位于可可西里—金沙江缝合带与班公湖—怒江缝合带之间,其沉积演化对于正确认识古、中特提斯洋盆构造演化具有重要意义。本文通过沉积序列、岩相古地理、沉积盆地分析,结合年代地层学等最新研究成果,建立了羌塘中生代盆地(T3—K1)的沉积演化模式,讨论了羌塘盆地演化与古特提斯洋盆关闭、中特提斯洋盆形成的关系。羌塘中生代盆地(T3—K1)是由冲洪积相沉积超覆开始的,总体上为一个向上变深的海侵序列,表现为冲洪积相、河湖相逐渐演化为滨海相及浅海相,可划分出3种典型的沉积超覆类型及5个主要阶段的沉积演化序列。羌塘中生代盆地整体上为一个由前陆盆地演化为裂谷盆地、被动大陆边缘盆地、最终转化为活动大陆边缘盆地并萎缩消亡的叠合盆地。羌塘早—中三叠世前陆盆地的关闭,与古特提斯洋盆的关闭有关,羌塘中生代盆地(T3—K1)的演化受中特提斯洋的快速开启及关闭的制约。  相似文献   

10.
The Yarlung Zangbo Suture Zone (YZSZ) is believed to be composed of material largely derived from the destruction of the Neo-Tethys that occurred from early Mesozoic to early Cenozoic. We report here geochronological and petrological data obtained for newly discovered alkaline gabbro blocks embedded in a mélange zone of the western YZSZ. Single zircon U–Pb analyses from one representative gabbro sample by SIMS (Secondary Ion Mass Spectrometry) yielded a combined crystallization age of about 363.7 ± 1.7 Ma (1σ). In situ Hf isotopic analyses yielded εHf(t) values of + 2.6 to + 5.5, suggesting an enriched mantle source. All of the gabbro samples show typical Ocean Island Basalt (OIB) affinity with little or no continental crust contamination. They also display strong geochemical similarities with the Hawaii basalts and the Xigaze seamount basalts suggestive of their intra-oceanic setting. These observations, in combination with the Early Carboniferous layered gabbros reported at Luobusa, indicate that these rocks could represent remnants of the Paleo-Tethys. We propose that a branch ocean separating the Western Qiangtang terrane and the Lhasa terrane from the Gondwana continent might have been present during the Late Devonian and the Early Carboniferous, providing new constrains on the configuration of Paleo-Tethys in Tibetan Plateau during early Late Paleozoic.  相似文献   

11.
新疆卡拉麦里蛇绿岩带中硅质岩的放射虫化石   总被引:41,自引:0,他引:41  
舒良树  王玉净 《地质论评》2003,49(4):408-412
新疆卡拉麦里构造带在奇台县南明水地区可划分为三个岩石一构造单元:①北带,由中泥盆世复理石组成;②南带,由中泥盆世—早石炭世沉积岩—火山质碎屑岩组成;③蛇绿岩带。三者之间均为断裂接触。蛇绿岩套上部单元的红色硅质岩中发现丰富的放射虫化石,经鉴定,其时代确定为晚泥盆世法门期一早石炭世杜内期,代表卡拉麦里蛇绿岩形成的晚期年龄。  相似文献   

12.
青藏高原龙木错地区发现了完整的志留纪地层,新建了早中志留世龙木错组、中晚志留世单面山组和晚顶志留世心形湖组。志留纪经历了开阔海台地—闭塞海湾—三角洲—潮坪的环境演变过程。其中单面山组下段发育大型古三角洲沉积,由前三角洲、三角洲前缘和三角洲平原构成。其中三角洲平原的分流河道、天然堤、决口扇、分流河道间湾、湖泊、沼泽等微相发育,沉积厚度巨大。晚志留世大型三角洲沉积的发现,海陆变化频繁的沉积环境,龙木错以东的五指山等地中上泥盆统不整合于奥陶系—志留系之上,证明龙木错-双湖缝合带北侧受到晚加里东运动的影响,与羌塘南部地区的沉积建造存在截然的差异。因此,这一现象的发现有助于了解羌南、羌北的构造演化,为探讨南、北古大陆的板块边界提供基础资料。  相似文献   

13.
报道了采自恩格尔乌苏缝合带的蛇绿混杂岩硅质外来岩块中的二叠纪阿尔拜虫目放射虫化石,包括3属7种,可以划分为2个放射虫化石组合,能够与日本、美国的放射虫化石带进行对比,其地质时代分别为早二叠世和中二叠世晚期-晚二叠世早期。恩格尔乌苏缝合带位于华北板块和塔里木板块之间,这些放射虫化石的发现为研究恩格尔乌苏缝合带的构造演化提供了新的证据。鉴于其中最新的放射虫组合的地质时代为中二叠世晚期-晚二叠世早期,认为华北板块与塔里木板块之间自中二叠世晚期-晚二叠世早期曾经存在古海洋,即华北板块和塔里木板块的拼合时间是晚二叠世晚期。  相似文献   

14.
报道了采自恩格尔乌苏缝合带的蛇绿混杂岩硅质外来岩块中的二叠纪阿尔拜虫目放射虫化石,包括3属7种,可以划分为2个放射虫化石组合,能够与日本、美国的放射虫化石带进行对比,其地质时代分别为早二叠世和中二叠世晚期—晚二叠世早期。恩格尔乌苏缝合带位于华北板块和塔里木板块之间,这些放射虫化石的发现为研究恩格尔乌苏缝合带的构造演化提供了新的证据。鉴于其中最新的放射虫组合的地质时代为中二叠世晚期—晚二叠世早期,认为华北板块与塔里木板块之间自中二叠世晚期—晚二叠世早期曾经存在古海洋,即华北板块和塔里木板块的拼合时间是晚二叠世晚期。  相似文献   

15.
普遍认为冈瓦纳大陆北缘裂解发生在泥盆纪,形成了古特提斯洋并持续演化到晚三叠世.最近在羌塘中部的桃形湖一果干加年山-带发现了完整的蛇绿岩组合,蛇绿岩中的堆晶辉长岩具有洋中脊玄武岩的地球化学特征,在堆晶辉长岩中获得467-431Ma的锆石SHRIMP U-pb年龄,这是龙木错-双湖缝合带首次发现早古生代蛇绿岩,应记录了冈瓦纳北缘早期的洋壳演化信息,冈瓦纳大陆北缘的裂解可能发生于早古生代.  相似文献   

16.
冈瓦纳大陆北缘裂解普遍认为发生在泥盆纪,形成了古特提斯洋并持续演化到晚三叠世。最近在羌塘中部的桃形湖—果干加年山一带发现了完整的蛇绿岩组合,蛇绿岩中的堆晶辉长岩具有洋中脊玄武岩的地球化学特征,在堆晶辉长岩中获得467 Ma~431Ma的锆石SHRIMP U-Pb年龄,这是龙木错-双湖缝合带首次发现早古生代蛇绿岩,应记录了冈瓦纳北缘早期的洋壳演化信息,冈瓦纳大陆北缘的裂解可能发生于早古生代。  相似文献   

17.
Zircon U–Pb dating of two samples of metagabbro from the Riwanchaka ophiolite yielded early Carboniferous ages of 354.4 ± 2.3 Ma and 356.7 ± 1.9 Ma. Their positive zircon εHf(t) values (+7.9 to +9.9) indicate that these rocks were derived from a relatively depleted mantle. The metagabbros can be considered as two types: R1 and R2. Both types are tholeiitic, with depletion of high-field-strength elements (HFSE) and enrichment of large-ion lithophile elements (LILE) similar to those of typical back-arc basin basalts (BABB), such as Mariana BABB and East Scotia Ridge BABB. Geochemical and isotopic characteristics indicate that the R1 metagabbro originated from a back-arc basin spreading ridge with addition of slab-derived fluids, whereas the R2 metagabbro was derived from a back-arc basin mantle source, with involvement of melts and fluids from subducted ocean crust. The Riwanchaka ophiolite exhibits both mid-ocean ridge basalts- and arc-like geochemical affinities, consistent with coeval ophiolites from central Qiangtang. Observations indicate that the Qiangtang ophiolites developed during the Late Devonian–early Carboniferous (D3–C1) in a back-arc spreading ridge above an intra-oceanic subduction zone. Based on our data and previous studies, we propose that an oceanic back-arc basin system existed in the Longmuco–Shuanghu–Lancang Palaeo-Tethys Ocean during the D3–C1 period.  相似文献   

18.
Abstract

This article reports the depositional environment and provenance for the Tianquanshan Formation in the Longmuco–Shuanghu–Lancangjiang suture zone, and uses these to better understand the tectonic evolution of this region. Zircons in the andesite of the Tianquanshan Formation yielded concordia ages of 246, 247, and 254 Ma, indicating that the Tianquanshan Formation formed during the late Permian–Early Triassic. The Tianquanshan Formation consists of flysch and ocean island rock assemblages, indicating that the Longmuco–Shuanghu–Lancangjiang Palaeo-Tethys Ocean continued to exist as a mature ocean in the late Permian–Early Triassic. The detrital zircons in the greywackes of the Tianquanshan Formation yielded peak ages of 470–620, 710–830, 910–1080, 1450–1660, and 2400–2650 Ma, indicating the provenance of the Tianquanshan Formation was either Indian Gondwana or terranes that have an affinity with Indian Gondwana in the Tibetan Plateau (i.e. the Southern Qiangtang, Lhasa, and Himalayan terranes). The Ordovician quartzites, Carboniferous sandstones, Carboniferous–Permian diamictites, and the Upper Permian–Lower Triassic greywackes in the Southern Qiangtang, Lhasa, and Himalayan terranes all contain detrital zircons with youngest ages of ca. 470 Ma, indicating their source areas have been in a stable tectonic environment since the Ordovician, and this inference is supported by the continuous deposition in a littoral–neritic passive margin in these regions from the Ordovician to the lower Permian. Combining the present results with regional geological data, we infer that the Southern Qiangtang, Lhasa, and Himalayan terranes were all in a stable passive continental margin along the northern part of Indian Gondwana during the long period from the Ordovician to the early Permian. At early Permian, because of the opening of the Neo-Tethys Ocean, the tectonic framework of this region underwent a marked change to a rifting and active environment.  相似文献   

19.
《Gondwana Research》2014,25(1):170-189
The Lhasa terrane in southern Tibet is composed of Precambrian crystalline basement, Paleozoic to Mesozoic sedimentary strata and Paleozoic to Cenozoic magmatic rocks. This terrane has long been accepted as the last crustal block to be accreted with Eurasia prior to its collision with the northward drifting Indian continent in the Cenozoic. Thus, the Lhasa terrane is the key for revealing the origin and evolutionary history of the Himalayan–Tibetan orogen. Although previous models on the tectonic development of the orogen have much evidence from the Lhasa terrane, the metamorphic history of this terrane was rarely considered. This paper provides an overview of the temporal and spatial characteristics of metamorphism in the Lhasa terrane based mostly on the recent results from our group, and evaluates the geodynamic settings and tectonic significance. The Lhasa terrane experienced multistage metamorphism, including the Neoproterozoic and Late Paleozoic HP metamorphism in the oceanic subduction realm, the Early Paleozoic and Early Mesozoic MP metamorphism in the continent–continent collisional zone, the Late Cretaceous HT/MP metamorphism in the mid-oceanic ridge subduction zone, and two stages of Cenozoic MP metamorphism in the thickened crust above the continental subduction zone. These metamorphic and associated magmatic events reveal that the Lhasa terrane experienced a complex tectonic evolution from the Neoproterozoic to Cenozoic. The main conclusions arising from our synthesis are as follows: (1) The Lhasa block consists of the North and South Lhasa terranes, separated by the Paleo-Tethys Ocean and the subsequent Late Paleozoic suture zone. (2) The crystalline basement of the North Lhasa terrane includes Neoproterozoic oceanic crustal rocks, representing probably the remnants of the Mozambique Ocean derived from the break-up of the Rodinia supercontinent. (3) The oceanic crustal basement of North Lhasa witnessed a Late Cryogenian (~ 650 Ma) HP metamorphism and an Early Paleozoic (~ 485 Ma) MP metamorphism in the subduction realm associated with the closure of the Mozambique Ocean and the final amalgamation of Eastern and Western Gondwana, suggesting that the North Lhasa terrane might have been partly derived from the northern segment of the East African Orogen. (4) The northern margin of Indian continent, including the North and South Lhasa, and Qiangtang terranes, experienced Early Paleozoic magmatism, indicating an Andean-type orogeny that resulted from the subduction of the Proto-Tethys Ocean after the final amalgamation of Gondwana. (5) The Lhasa and Qiangtang terranes witnessed Middle Paleozoic (~ 360 Ma) magmatism, suggesting an Andean-type orogeny derived from the subduction of the Paleo-Tethys Ocean. (6) The closure of Paleo-Tethys Ocean between the North and South Lhasa terranes and subsequent terrane collision resulted in the formation of Late Permian (~ 260 Ma) HP metamorphic belt and Triassic (220 Ma) MP metamorphic belt. (7) The South Lhasa terrane experienced Late Cretaceous (~ 90 Ma) Andean-type orogeny, characterized by the regional HT/MP metamorphism and coeval intrusion of the voluminous Gangdese batholith during the northward subduction of the Neo-Tethyan Ocean. (8) During the Early Cenozoic (55–45 Ma), the continent–continent collisional orogeny has led to the thickened crust of the South Lhasa terrane experiencing MP amphibolite-facies metamorphism and syn-collisional magmatism. (9) Following the continuous continent convergence, the South Lhasa terrane also experienced MP metamorphism during Late Eocene (40–30 Ma). (10) During Mesozoic and Cenozoic, two different stages of paired metamorphic belts were formed in the oceanic or continental subduction zones and the middle and lower crust of the hanging wall of the subduction zone. The tectonic imprints from the Lhasa terrane provide excellent examples for understanding metamorphic processes and geodynamics at convergent plate boundaries.  相似文献   

20.
王冬兵  唐渊  罗亮  廖世勇 《地球科学》2020,45(8):2989-3002
造山带中远洋深水沉积物是恢复古大洋的重要依据之一,昌宁-孟连古特提斯结合带存在大量海相沉积物,但是否存在大洋盆地相的远洋沉积还不清楚.对弄巴地区被认为最可能是洋盆相沉积的石炭系岩片和海相泥盆系岩片进行了岩石学、放射虫时代、碎屑锆石U-Pb年龄和Hf同位素研究.石炭系岩片放射虫硅质岩中鉴定出放射虫6属8种,时代为早石炭世早-中期.LA-ICP-MS锆石U-Pb定年结果显示,泥盆系岩片岩屑石英杂砂岩碎屑锆石年龄范围为387~3 266 Ma,最年轻一组年龄为387~413 Ma;石炭系岩片中与放射虫硅质岩共生的基性凝灰岩碎屑锆石年龄为341~3 403 Ma,最年轻一组年龄为341~354 Ma.综合锆石年龄和化石资料,限定泥盆系岩片原始沉积时代为早-中泥盆世,石炭系岩片时代为早石炭世早-中期.碎屑锆石U-Pb年龄谱特征和Hf同位素组成指示泥盆系岩片和石炭系岩片具有相似的物质源区,主要来源于亲冈瓦纳的陆壳,少量来自于古生代特提斯域新生岛弧.早-中泥盆世地层岩片原始沉积于亲冈瓦纳的大陆斜坡环境;早石炭世地层岩片原始沉积于亲冈瓦纳的大陆斜坡至古特提斯洋盆边缘环境,不是远洋深水的大洋盆地环境.寻找以远洋深水沉积物为代表的大洋盆地相沉积并开展研究是当前昌宁-孟连古特提斯研究的重要方向之一.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号