首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
采用LA-ICP-MS方法,对四川盆地南部会理地区古近纪雷打树组碎屑锆石进行了U-Th-Pb同位素测定,获得了72组单颗粒锆石的U-Pb年龄,建立了碎屑锆石的U-Pb年龄谱。结果表明,雷打树组碎屑锆石U-Pb年龄区间为2465~204Ma,地质时代为古元古代最早期成铁纪至晚三叠世最晚期瑞替阶,年龄分布具有清晰的幕式分布特征,集中分布于5个区间,出现了5个明显的峰值,物源区主要为扬子陆块西缘及其西侧的“三江”造山带。雷打树组碎屑锆石U-Pb年龄谱显示,扬子陆块西缘经历了古元古代陆壳增生、中元古代Rodinia超大陆汇聚、新元古代晚期Rodinia超大陆裂解、二叠纪玄武岩喷溢及中-晚三叠世印支运动5次重要的构造热事件,与扬子陆块西缘形成演化进程完全吻合。与四川盆地古近纪柳嘉组碎屑锆石的U-Pb年龄谱相比,雷打树组碎屑锆石U-Pb年龄谱缺失侏罗纪、白垩纪信号,增加了早奥陶世和早泥盆世信号,说明四川盆地北部与南部的物源存在一定的区别。碎屑锆石U-Pb年龄谱对比结果显示,雷打树组碎屑锆石U-Pb年龄谱具有较高的精确度,扬子陆块与华夏陆块自1000Ma汇聚以来具有很好的亲缘性,而与华北克拉通之间直至400Ma才开始建立亲缘关系。  相似文献   

2.
《地学前缘(英文版)》2019,10(2):683-704
In the eastern part of the Central Asian Orogenic Belt (CAOB) in northeastern (NE) China, scattered outcrops of molasse deposits mark the ending of an orogeny and are crucial for understanding the evolution of the Paleo-Asian Ocean (PAO). However, the timing of tectonic events and the relationships among these strata remain controversial. To better constrain these geologic events, a comprehensive study of the detrital zircon U-Pb geochronology and geochemistry of the sandstones of the Kaishantun (KST) Formation and Kedao (KD) Group in eastern Jilin Province, NE China, was conducted. The KST Formation is traditionally considered a molasse deposit. The sandstones display low CIA, PIA and high ICV values and low Th/U and Rb/Sr ratios, which suggest that the rocks were derived from an immature intermediate-felsic igneous source and experienced a simple sedimentary recycling history with relatively weak chemical weathering. LA-ICP-MS U-Pb dating of detrital zircons from two samples of the KST Formation yields ages of 748–252 Ma, suggesting that the KST Formation was deposited between 254.5 Ma and 252 Ma in Late Permian. The zircons were mainly derived from the continental northern part of the North China Craton (NCC). In contrast, the U-Pb dating of detrital zircons from five samples of the KD Group yields ages of 2611–230 Ma, suggesting that the KD samples were deposited in the Early to Middle Triassic (ca. 248–233 Ma). The detrital zircon ages for the KD samples can be divided into groups with peaks at 2.5 Ga, 1.8 Ga, 800–1000 Ma, 500 Ma and 440–360 Ma, which suggest that the samples were derived from bidirectional provenances in the Jiamusi-Khanka Block and the NCC. These new data, combined with previously published results, suggest that at least three orogenic events occurred in central-eastern Jilin Province during the Early Permian (270–262 Ma), Early Triassic (254–248 Ma) and Middle–Late Triassic (242–227 Ma). The final closure of the PAO occurred during 242–227 Ma in the Middle–Late Triassic along the Changchun-Yanji suture zone. The detrital zircon geochronological data clearly record plate convergence and the scissor-like closure of the PAO in the eastern CAOB.  相似文献   

3.
吴龙  柳长峰  刘文灿  张宏远 《现代地质》2021,35(5):1178-1193
三叠系沉积物广泛覆盖青藏高原东北缘,其中松潘—甘孜地区三叠系的沉积物得到了较系统的研究,但是青藏高原北缘的祁连山三叠系盆地的研究却较为缺乏。为了丰富相关研究和揭示区域构造演化的特点,通过古水流方向统计、砂岩中碎屑矿物统计和碎屑锆石U-Pb测年等方法对祁连山三叠纪盆地物源进行系统研究。结果表明,祁连山三叠系盆地的古流向主要有南东向、正南向、南西向,物源来自岩浆弧和大规模褶皱造山作用的混合区。祁连山三叠系砂岩中的碎屑锆石的年龄谱主要峰值集中在250~290 Ma、360~460 Ma、1 600~2 000 Ma和2 200~2 600 Ma这4个年龄段。通过对比分析华北板块、华南板块中和秦祁昆中央造山带中岩浆锆石年龄谱特征可知:1 600~2 000 Ma和2 200~2 600 Ma年龄段的锆石来自华北板块,360~460 Ma年龄段的锆石来自北祁连造山带,250~290 Ma年龄段的锆石来自东昆仑的火山岛弧。此外,600~1 000 Ma年龄段锆石很少,这些锆石来自扬子板块,表明在三叠纪扬子克拉通和华北克拉通发生碰撞形成了秦岭造山带,阻断了来自扬子克拉通的物源。  相似文献   

4.
The Late Paleozoic–Early Mesozoic Mongol-Okhotsk Ocean extended between the Siberian and Amur–North China continents.The timing and modalities of the oceanic closure are widely discussed.It is largely accepted that the ocean closed in a scissor-like manner from southwest to northeast(in modern coordinates),though the timing of this process remains uncertain.Recent studies have shown that both western(West Transbaikalia)and eastern(Dzhagda)parts of the ocean closed almost simultaneously at the Early–Middle Jurassic boundary.However,little information on the key central part of the oceanic suture zone is available.We performed U-Pb(LA-ICP-MS)dating of detrital zircon from wellcharacterized stratigraphic sections of the central part of the Mongol-Okhotsk suture zone.These include the initial marine and final continental sequences of the East Transbaikalia Basin,deposited on the northern Argun-Idemeg terrane basement.We provide new stratigraphic ages for the marine and continental deposits.This revised chronostratigraphy allows assigning an age of~165–155 Ma,to the collisionrelated flexure of the northern Argun-Idemeg terrane and the development of a peripheral foreland basin.This collisional process took place 5 to10 million years later than in the western and eastern parts of the ocean.We demonstrate that the northern Argun-Idemeg terrane was the last block to collide with the Siberian continent,challenging the widely supported scissor-like model of closure of the MongolOkhotsk Ocean.Different segments of the ocean closed independently,depending on the initial shape of the paleo continental margins.  相似文献   

5.
The Proto-Tethys was a significant post-Rodinia breakup ocean that eventually vanished during the Paleozoic. The closure timing and amalgamation history of numerous microblocks within this ocean remain uncertain, while the Early Paleozoic strata on the northern margin of the Yangtze Block archive valuable information about the evolution of the Shangdan Ocean, the branch of the Proto-Tethys. By comparing the detrital zircon U-Pb-Hf isotopic data from Cambrian, Ordovician, and Silurian sedimentary rocks in the northern Yangtze Block with adjacent blocks, it was found that detrital zircons in Cambrian strata exhibit a prominent age peak at ∼ 900–700 Ma, which indicates that the primary source of clastic material in the basin was the uplifted inner and margin regions of the Yangtze Block. In the Silurian, abundant detrital material from the North Qinling Block was transported to the basin due to the continuous subduction and eventual closure of the Shangdan Ocean. This process led to two distinct age peaks at ∼500–400 Ma and ∼900–700 Ma, indicating a bidirectional provenance contribution from both the North Qinling Block and the Yangtze Block. This shift demonstrates that the initial collision between these two blocks occurred no later than the Silurian. The northern Yangtze Basin transitioned from a passive continental margin basin in the Cambrian to a peripheral foreland basin in the Silurian. Major blocks in East Asia, including South Tarim, North Qilian, North Qinling, and North Yangtze, underwent peripheral subduction and magmatic activity to varying degrees during the late Early Paleozoic, signifying the convergence and rapid contraction of microplates within northern Gondwana and the Proto-Tethys Ocean. These findings provide new insights on the tectonic evolution of the Proto-Tethys Ocean.  相似文献   

6.
本文对延边开山屯地区二叠纪侵入岩和地层中的(碎屑)锆石进行了LA-ICP-MS和SIMS U-Pb年代学及Hf同位素的研究,同时对侵入岩进行了全岩地球化学特征的研究,以便制约开山屯地区的构造属性以及延边地区晚古生代-早中生代演化历史。延边开山屯地区大蒜沟组复成分砾岩和岩屑杂砂岩中锆石最年轻峰值年龄为298Ma和293Ma,此外还存在330Ma、366Ma、438Ma、454Ma、479Ma峰值年龄。这些古生代碎屑锆石的ε_(Hf)(t)值介于-1.14~+15.17之间;开山屯组长石杂砂岩和长石砂岩中的锆石最年轻年龄峰值分别为259Ma和253Ma,此外还存在279Ma、456Ma、476Ma、500Ma、529Ma以及新元古代-古元古代(891~1765Ma)的峰值年龄。其中古生代碎屑锆石的ε_(Hf)(t)值介于-5.22~+10.15之间。开山屯地区中二叠世闪长岩和晚二叠世辉长闪长岩的形成时代分别为261Ma和256Ma,属于低钾拉斑-中钾钙碱性系列,相对富集轻稀土和大离子亲石元素,亏损重稀土和高场强元素,主要来源于受俯冲流体/熔体交代的亏损地幔楔的部分熔融。综合研究认为,开山屯地区与兴凯地块具有亲缘性;大蒜沟组的沉积时限为早-中二叠世,形成于兴凯地块西部活动大陆边缘的弧前盆地或增生楔环境;开山屯组形成于早-中三叠世,具有双向物源的特点(华北板块和兴凯地块)。早-中二叠世延边地区处于活动大陆边缘的构造背景。延边地区的古亚洲洋于早-中三叠世最终闭合。  相似文献   

7.
U–Pb dating of detrital zircons was performed on mélange-hosted lithic and basaltic sandstones from the Inthanon Zone in northern Thailand to determine the timing of accretion and arc activity associated with Paleo-Tethys subduction. The detrital zircons have peak ages at 3400–3200, 2600–2400, 1000–700, 600–400, and 300–250 Ma, similar to the peaks ages of detrital zircons associated with other circum-Paleo-Tethys subduction zones. We identified two types of sandstone in the study area based on the youngest detrital zircon ages: Type 1 sandstones have Late Carboniferous youngest zircon U–Pb ages of 308 ± 14 and 300 ± 16 Ma, older than associated radiolarian chert blocks within the same outcrop. In contrast, Type 2 sandstones have youngest zircon U–Pb ages of 238 ± 10 and 236 ± 15 Ma, suggesting a Middle Triassic maximum depositional age. The youngest detrital zircons in Type 1 sandstones were derived from a Late Carboniferous–Early Permian ‘missing’ arc, suggesting that the Sukhothai Arc was active during sedimentation. The data presented within this study provide information on the development of the Sukhothai Arc, and further suggest that subduction of the Paleo-Tethyan oceanic plate beneath the Indochina Block had already commenced by the Late Carboniferous. Significant Middle Triassic arc magmatism, following the Late Carboniferous–Early Permian arc activity, is inferred from the presence of conspicuous detrital zircon U–Pb age peaks in Type 2 sandstones and the igneous rock record of the Sukhothai Arc. In contrast, only minimal arc activity occurred during the Middle Permian–earliest Triassic. Type 1 sandstones were deposited between the Late Permian and the earliest Triassic, after the deposition of associated Middle–Late Permian cherts that occur in the same mélanges and during a hiatus in Sukhothai Arc magmatism. In contrast, Type 2 sandstones were deposited during the Middle Triassic, coincident with the timing of maximum magmatism in the Sukhothai Arc, as evidenced by the presence of abundant Middle Triassic detrital zircons. These two types of sandstone were probably derived from discrete accretionary units in an original accretionary prism that was located along the western margin of the Sukhothai Arc.  相似文献   

8.
邹雷  刘平华  刘利双  王伟  田忠华 《地球科学》2020,45(9):3313-3329
叠布斯格杂岩作为阿拉善地块变质程度最高、形成时代最老的变质岩系,是进一步深入认识阿拉善地块形成、演化与构造亲缘性的最佳对象.本文对叠布斯格杂岩中黑云斜长片麻岩开展了系统的野外地质调查、岩相学观察和锆石U-Pb年代学研究.碎屑锆石U-Pb定年和野外地质调查表明,叠布斯格杂岩中黑云斜长片麻岩碎屑锆石年龄介于2 177~2 010 Ma,最小年龄峰值为2 050 Ma,结合变质锆石年龄数据,限定其沉积时代在2 050~1 969 Ma之间.区域对比研究表明,阿拉善地块叠布斯格杂岩中黑云斜长片麻岩与西阿拉善地块龙首山杂岩、华北克拉通孔兹岩带(尤其是孔兹岩带西部)中的变沉积岩系在沉积时代与源区特征上具有高度的一致性.此外,变质锆石U-Pb定年和微量元素分析表明,叠布斯格杂岩中黑云斜长片麻岩记录了古元古代晚期1 969~1 811 Ma连续的变质年龄.对比分析阿拉善地块与孔兹岩带变沉积岩系的碎屑锆石年龄谱系-变质时代表明,阿拉善地块与孔兹岩带在古元古代可能具有相同的沉积-变质演化历史,在古元古代期间阿拉善地块应是华北克拉通孔兹岩带的西延部分.   相似文献   

9.
富克山岩浆弧呈北东向分布于大兴安岭北段富克山—古莲河一带,其物质组成、形成时代及其空间展布规律对于研究蒙古—鄂霍茨克洋晚三叠世地质构造演化具有重要意义。本文对其内的辉长岩、闪长岩、花岗闪长岩进行了岩石学、地球化学及锆石U-Pb定年分析研究,探讨大兴安岭北段晚三叠世时期的构造背景。LA-ICP-MS锆石U-Pb定年获得辉长岩、花岗闪长岩的结晶年龄分别为(205.7±2.2) Ma、(203.2±2.5) Ma,反映了晚三叠世的构造岩浆事件。岩石学和地球化学研究表明,辉长岩、闪长岩具有富钠、高铝、高钙、高镁、高Mg#值、低钛等特征,属于拉斑系列与钙碱性过渡系列岩石,无明显的Eu负异常,相对富集LILE和LREE,亏损HFSE。花岗闪长岩具有高硅、富钠、高铝、低镁等特征,属于钙碱性系列岩石,高Sr,低Y、Yb,无明显的Eu负异常,显示了O型埃达克质岩石的地球化学特征。富克山岩浆弧的空间展布,具有由北向南的分布规律,指示了蒙古—鄂霍茨克洋具有往南的俯冲极性。  相似文献   

10.
大别山岳西县石关混合岩锆石SHRIMP定年及其地质意义   总被引:1,自引:1,他引:0  
安徽岳西县石关混合岩属于原北大别变质杂岩的一部分。锆石SHRIMPU-Pb定年结果:第一次变质时间为232Ma,相当于晚三叠世早期,第二次变质时间为207Ma,相当于晚三叠世晚期。复合锆石的核部(继承锆石)为发育韵律环带的岩浆碎屑锆石,其年龄值分别为560Ma、444Ma、394Ma、378Ma和331Ma,暗示其原岩非岩浆岩,而应为沉积岩;研究结果还表明,北大别石关混合岩经历了两次变质作用:①超高压变质作用,变质时间为232Ma(n=5加权平均年龄);②退变质作用,时间为207Ma。与苏鲁地区超高压变质和退变质时间一致。  相似文献   

11.
漠河盆地位于蒙古?鄂霍茨克缝合带(MOSB)东段南缘,是研究蒙古?鄂霍茨克洋东段演化的绝佳窗口.本文对漠河盆地东缘出露的绣峰组砂岩进行详细的岩相学、U-Pb锆石定年和主微量元素地球化学分析,综合前人研究成果,限定了蒙古?鄂霍茨克洋乃至中亚造山带东段演化历史.结果表明,绣峰组砂岩碎屑物磨圆度较低、分选差,表现出近源剥蚀的特点;U-Pb锆石定年共获得217个谐和年龄,可划分为3个年龄组,其峰值均与盆地南缘额尔古纳地块的岩浆事件相吻合,其中最年轻的碎屑锆石206Pb/238U年龄加权平均值为158±2 Ma(N=5);样品相对富集大离子亲石元素(LILEs)和轻稀土元素(LREEs),亏损高场强元素(HFSEs)和重稀土元素(HREEs),具有明显的Eu负异常.样品源岩为上地壳长英质岩石,形成于大陆岛弧的构造环境,源区可能为漠河盆地南侧的大陆岛弧、额尔古纳地块以及盆地的古老基底.综上所述,绣峰组的最大沉积年龄为晚侏罗世,物源区构造背景为活动大陆边缘的大陆岛弧环境,形成于晚侏罗世蒙古?鄂霍茨克洋向南俯冲、闭合造山的构造背景下,指示在绣峰组沉积时期(约158 Ma),蒙古?鄂霍茨克洋仍处于俯冲阶段,尚未完全闭合.综合前人研究成果,推断蒙古?鄂霍茨克洋最终闭合的时间可能在晚侏罗世至早白垩世之间.   相似文献   

12.
Early Paleozoic evolution of the northern Gondwana margin is interpreted from integrated in situ U-Pb and Hf-isotope analyses on detrital zircons that constrain depositional ages and provenance of the Lancang Group, previously assigned to the Simao Block, and the Mengtong and Mengdingjie groups of the Baoshan Block. A meta-felsic volcanic rock from the Mengtong Group yields a weighted mean 206Pb/238U age of 462 ± 2 Ma. The depositional age for the previously inferred Neoproterozoic Lancang and Mengtong groups is re-interpreted as Early Paleozoic based on youngest detrital zircons and meta-volcanic age. Detrital U-Pb zircon analyses from the Baoshan Block define three distinctive age peaks at older Grenvillian (1200–1060 Ma), younger Grenvillian (~ 960 Ma) and Pan-African (650–500 Ma), with εHf(t) values for each group similar to coeval detrital zircons from western Australia and northern India. This suggests that the Baoshan Block was situated in the transitional zone between northeast Greater India and northwest Australia on the Gondwana margin and received detritus from both these cratons. The Lancang Group yields a very similar detrital zircon age spectrum to that of the Baoshan Block but contrasts with that for the Simao Block. This suggests that the Lancang Group is underlain by a separate Lancang Block. Similar detrital zircon age spectra suggest that the Baoshan Block and the Lancang Block share common sources and that they were situated close to one another along the northern margin of East Gondwana during the Early Paleozoic. The new detrital zircon data in combination with previously published data for East Gondwana margin blocks suggests the Early Paleozoic Proto-Tethys represents a narrow ocean basin separating an “Asian Hun superterrane” (North China, South China, Tarim, Indochina and North Qiangtang blocks) from the northern margin of Gondwana during the Late Neoproterozoic-Early Paleozoic. The Proto-Tethys closed in the Silurian at ca. 440–420 Ma when this “Asian Hun superterrane” collided with the northern Gondwana margin. Subsequently, the Lancang Block is interpreted to have separated from the Baoshan Block during the Early Devonian when the Paleo-Tethys opened as a back-arc basin.  相似文献   

13.
由于哀牢山古特提斯洋盆精确闭合时间一直存在争议,从而制约了我们对该区古特提斯洋演化及印支造山运动过程的完整认识。碎屑岩作为造山作用在地壳浅表响应的产物,保存了其物源区深部岩浆作用的重要信息,可有效地约束洋盆演化和造山过程的精细时空格架。本文选择对哀牢山构造带及其东侧地区中-上三叠统碎屑锆石年代学和Hf同位素开展了系统的研究,结果显示:构造带内部三叠统样品除了缺少240~325 Ma年龄群外,与东侧地区同时代碎屑岩样品相似,均具有480~560 Ma和900~1200 Ma两个主要年龄群,对应的εHf(t)值分别为?16.75~+17.00和?15.39~+19.20;而两地区上三叠统样品具有基本相同的年龄频谱特征,均显示250~330 Ma、480~580 Ma和920~1240 Ma三个主要年龄群,对应的εHf(t)值分别为?10.67~+12.15、?10.06~+9.57和?12.25~+15.62。综合本次研究结果与前人数据,表明哀牢山构造带内中-上三叠统及其东侧地区三叠系碎屑物质主要来源于构造带内的岩浆岩,有少量老地层再循环的贡献。进一步的源区分析指出,哀牢山古特提斯洋在早三叠世已闭合。此外,基于哀牢山构造带及两侧地区普遍缺失下三叠统地层和大量发育早-中三叠世碰撞有关的岩浆岩的特征,显示我国哀牢山地区与越北地区印支造山运动在二叠纪末-早三叠世同时开启,中-晚三叠世,哀牢山构造带进入碰撞后伸展阶段。  相似文献   

14.
四川盆地西部(川西)前陆盆地晚三叠世物源区过去常认为主要为其西部的龙门山和松潘-甘孜褶皱带,仅少数学者认为主要物源区位于东部和北部.本文利用碎屑锆石LA-ICP-MS U-Pb法对川西上三叠统小塘子组(T3t)不同地区的4个样品进行了研究,发现川西上三叠统小塘子组碎屑锆石年龄主要集中在2550~2400Ma,1900~...  相似文献   

15.
LA-ICP-MS U-Pb dating and in situ Hf isotope analysis were carried out for the detrital zircons to constrain the depositional age and provenance of the Wawukuang Formation, which is believed as the earliest unit of the Laiyang Group in the Jiaolai Basin, and its implications. Most of these detrital zircons from the feldspar quartz sandstone in the Wawukuang Formation are magmatic in origin, which are euhedral-subhedral and display oscillatory zoning in CL images; whereas few Late Triassic detrital zircons are metamorphic in origin and structureless in CL images. U-Pb isotopic dating of 82 zircon grains yields age populations at ca. 129 Ma, 158 Ma, 224 Ma, 253 Ma, 461 Ma, 724 Ma, 1851 Ma and 2456 Ma. U-Pb dating and Hf isotopic results indicate that: 1) the Wawukuang Formation deposited during the Early Cretaceous (129-106 Ma); 2) the detrital zircons with the ages of 1851 Ma and 2456 Ma mainly sourced from the Precambrian basement rocks of the North China Craton; the Neoproterozoic (729-721 Ma) magmatic zircons and the Late Triassic (226-216 Ma) metamorphic zircons sourced from the Su-Lu terrane; The Late Paleozoic detrital zircons could source from the Late Paleozoic igneous rocks in the northern margin of the North China Craton; the Late Triassic (231-223 Ma) magmatic zircons and the 158-129 Ma zircons sourced from the coeval igneous rocks in the Jiaobei and Jiaodong; 3) the deposition age and provenance of the Jiaolai Basin are different from those of the Hefei Basin; 4) the recognition of clastic sediments from the Su-Lu terrane in the Wawukuang Formation suggests that the Su-Lu terrane was under denudation in the Early Cretaceous. ©, 2015, Science Press. All right reserved.  相似文献   

16.
刘祥  詹琼窑  朱弟成  王青  谢锦程  张亮亮 《岩石学报》2021,37(11):3513-3526
碎屑锆石年代学不但能够限定地层沉积开始的最大时限,还能为示踪沉积物源区提供关键信息。中国西南部的松潘-甘孜褶皱带广泛出露一套巨厚的三叠纪复理石沉积,其物源区和可能存在的同期抬升与剥蚀历史并未得到很好约束。本文获得的松潘-甘孜褶皱带南部雅江地区上三叠统四套地层(由老至新分别为侏倭组、新都桥组、两河口组和雅江组)5件砂岩样品的碎屑锆石U-Pb年龄和锆石Hf同位素数据表明,最年轻锆石年龄指示侏倭组从~229Ma后开始沉积,新都桥组则从~223Ma后开始沉积。碎屑锆石年龄频谱图显示四套地层都具有中奥陶世-早泥盆世(465~398Ma)和中二叠世-晚三叠世(271~225Ma)的年龄峰。除两河口组外的其他三套地层还具有较强的古元古代(1.90~1.86Ga)和新元古代(872~712Ma)的年龄峰。锆石Hf同位素显示松潘-甘孜褶皱带南部上三叠统小于300Ma的锆石颗粒主要来自峨眉山大火成岩省和义敦岩浆弧。本文物源区示踪结果表明,华南板块和义敦地体可能为松潘-甘孜褶皱带南部地层的主要物源区。晚三叠世由于周缘地体的强烈汇聚,松潘-甘孜褶皱带在小于~18Myr的时间内经历了快速的隆升和剥蚀作用,剥蚀产生的碎屑物质被搬运至四川盆地的西缘再沉积。  相似文献   

17.
Upper Triassic to Upper Jurassic strata in the western and northern Sichuan Basin were deposited in a synorogenic foreland basin. Ion–microprobe U–Pb analysis of 364 detrital zircon grains from five Late Triassic to Late Jurassic sandstone samples in the northern Sichuan Basin and several published Middle Triassic to Middle Jurassic samples in the eastern Songpan–Ganzi Complex and western and inner Sichuan Basin provide an initial framework for understanding the Late Triassic to Late Jurassic provenance of western and northern Sichuan Basin. For further understanding, the paleogeographic setting of these areas and neighboring hinterlands was constructed. Combined with analysis of depocenter migration, thermochronology and detrital zircon provenance, the western and northern Sichuan Basin is displayed as a transferred foreland basin from Late Triassic to Late Jurassic. The Upper Triassic Xujiahe depocenter was located at the front of the Longmen Shan belt, and sediments in the western Sichuan Basin shared the same provenances with the Middle–Upper Triassic in the Songpan–Ganzi Complex, whereas the South Qinling fed the northern Sichuan Basin. The synorogenic depocenter transferred to the front of Micang Shan during the early Middle Jurassic and at the front of the Daba Shan during the middle–late Middle Jurassic. Zircons of the Middle Jurassic were sourced from the North Qinling, South Qinling and northern Yangtze Craton. The depocenter returned to the front of the Micang Shan again during the Late Jurassic, and the South Qinling and northern Yangtze Craton was the main provenance. The detrital zircon U–Pb ages imply that the South and North China collision was probably not finished at the Late Jurassic.  相似文献   

18.
Multi-dating on the same detrital grains allows for determining multiple different geo-thermochronological ages simultaneously and thus could provide more details about regional tectonics. In this paper, we carried out detrital zircon fission-track and U-Pb double dating on the Permian-Middle Triassic sediments from the southern Ordos Basin to decipher the tectonic information archived in the sediments of intracratonic basins. The detrital zircon U-Pb ages and fission-track ages, together with lag time analyses, indicate that the Permian-Middle Triassic sediments in the southern Ordos Basin are characterized by multiple provenances. The crystalline basement of the North China Craton (NCC) and recycled materials from pre-Permian sediments that were ultimately sourced from the basement of the NCC are the primary provenance, while the Permian magmatites in the northern margin of NCC and Early Paleozoic crystalline rocks in Qinling Orogenic Collage act as minor provenance. In addition, the detrital zircon fission-track age peaks reveal four major tectonothermal events, including the Late Triassic-Early Jurassic post-depositional tectonothermal event and three other tectonothermal events associated with source terrains. The Late Triassic-Early Jurassic (225–179 Ma) tectonothermal event was closely related to the upwelling of deep material and energy beneath the southwestern Ordos Basin due to the coeval northward subduction of the Yangze Block and the following collision of the Yangze Block and the NCC. The Mid-Late Permian (275–263 Ma) tectonothermal event was associated with coeval denudation in the northern part of the NCC and North Qinling terrane, resulting from the subduction of the Paleo-Asian Ocean and Tethys Ocean toward the NCC. The Late Devonian-early Late Carboniferous (348±33 Ma) tectonothermal event corresponded the long-term denudation in the hinterland and periphery of the NCC because of the arc-continent collisions in the northern and southern margins of the NCC. The Late Neoproterozoic (813–565 Ma) tectonothermal event was associated with formation of the Great Unconformity within the NCC and may be causally related to the Rodinia supercontinent breakup driven by a large-scale mantle upwelling.  相似文献   

19.
宗务隆构造带位于柴北缘构造带与南祁连构造带之间,总体呈北西西向展布。构造带东段丰富的岩浆活动记录了该构造带晚古生代—中生代期间的裂解和闭合过程,而西段岩浆活动的记录较为稀少,对于其东、西段是否具有相同的构造演化尚不清晰。通过分析构造带西段三叠系隆务河组碎屑岩的地球化学特征、碎屑锆石U-Pb年龄及Hf同位素组成,认为隆务河组的碎屑沉积物的源区古风化程度轻微,不具备沉积再循环的特征,原岩主要为长英质岩石,南祁连新元古代花岗质片麻岩和早古生代大陆弧型花岗岩为隆务河组碎屑岩的主要物源;碎屑岩可能沉积于早中三叠世挠曲型盆地中;锆石U-Pb年龄分析表明宗务隆构造带东西段构造演化具有不同的历程,东段发育有限洋盆,而西段并未出现,转换地带可能位于生格至罗根郭勒之间。  相似文献   

20.
《International Geology Review》2012,54(18):2291-2312
ABSTRACT

As the north part of Simao Terrane, Lanping Basin is located between the Sanjiang Tethys Orogen (STO) and Yangtze Block, also the junction zone between the Gondwanaland and Cathaysian old land (Pan Huaxia mainland), which includes Yangtze and Cathaysian Blocks. The aim of this study is to decipher the provenance of the sedimentary units in the Lanping Basin and affiliation of Simao Terrane by the U-Pb ages, Hf isotope of detrital zircons and whole-rock geochemistry. The whole-rock geochemistry and the mineral composition indicate that most of the Triassic–Paleocene sedimentary rocks are derived from the upper crust and exhibit recycled orogen features. The detrital zircon U-Pb ages from the North Simao Terrane are consistent with the magmatic events during Early Neoproterozoic and Permian in the Western Yangtze Block. And the detrital zircons ages from North Simao Terrane show same distribution features as the Permian–Triassic magmatic rocks, which are distributed in the Simao Terrane and along major sutures. These comparisons suggest that the clastic sediments in Lanping Basin (North Simao Terrane) are derived from Early Neoproterozoic and Permian magmatic rocks from Western Yangtze Block, Permian–Triassic magmatic rocks from Simao Terrane, along Jinshajiang, Garz-Litang and Ailaoshan Sutures. The comparison of the detrital zircon age distributions shows that Simao Terrane and Yangtze Block exhibited similarity tectonic setting in the evolution history, especially during Paleoproterozoic–Late Paleozoic. This suggests that the Simao Terrane is part of Cathaysian old land, although Simao Terrane was separated from Yangtze Block for short period during Early Paleozoic. Besides, the Hf mapping, stratigraphic succession, paleogeography and paleomagnetism in SW China support that Simao Terrane has a Cathaysian old land-affinity, rather than one involving Gondwanaland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号