首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
黄河源区冻土特征及退化趋势   总被引:17,自引:8,他引:9  
黄河源区位于青藏高原多年冻土区东北部边缘地带,是季节冻土、岛状多年冻土和在大片连续多年冻土并存地带.多年冻土层在垂向分布上有衔接状和不衔接状两大类.不衔接状又可分为浅埋藏(8m)、深埋藏(8m)和双层多年冻土等形式.从20世纪80年代以来,源区气温以0.02℃.a-1增温率持续上升,人类经济活动日益增强,导致冻土呈区域性退化.多年冻土下界普遍升高50~80m,最大季节冻深平均减少了0.12m,浅层地下水温度上升0.5~0.7℃.冻土退化总体趋势是由大片状分布逐渐变为岛状、斑状分布,多年冻土层变薄,冻土面积缩小,融区范围扩大.部分多年冻土岛完全消失变为季节冻土.  相似文献   

2.
吉林省季节冻土冻结深度变化及对气候的响应   总被引:2,自引:2,他引:0  
为了掌握季节冻土冻结深度的变化对气候的响应,利用1961-2015年吉林省46个气象站的逐日平均气温、地表温度、积雪深度、冻土冻结深度等数据,采用线性倾向估计、突变分析等方法,研究了吉林省季节冻土冻结深度的时空演变规律及其与气温、积雪的关系。结果表明:吉林省季节冻土最大冻结深度呈由西向东逐渐减小的空间分布特征,绝大多数站最大冻结深度呈减小趋势。基本上在10月开始冻结,次年3月达到最深,6月完全融化。西部冻土冻结深度变幅较大,其次是中部,东部最小。1961-2015年季节冻土最大冻结深度以-5.8 cm·(10a)-1的速率显著减小(P<0.01)。最大冻结深度基本上呈逐年代减小的趋势,从20世纪90年代开始,最大冻结深度明显减小。最大冻结深度在1987年发生了突变,突变后平均最大冻结深度比突变前平均最大冻结深度减小了22.2 cm。通过分析气温和积雪深度对冻结深度的影响,认为冻土冻结深度对气温变化较为敏感,绝大多数站最大冻结深度与平均气温呈负相关关系。在年际变化上,气温的上升是最大冻结深度减小的主要原因。在季节冻土稳定冻结期,积雪深度超过10 cm,保温作用逐渐变强;当积雪深度达到20 cm时,保温作用显著,冻土冻结深度变浅。  相似文献   

3.
多年冻土区土壤碳、氮的可变性及对深层土壤特性了解的缺乏限制了人们对气候变化响应的理解。为明确东北大兴安岭多年冻土区森林土壤有机碳、有效氮(铵态氮、硝态氮)含量分布特征,于2020年秋季(9月末)采集呼玛河流域三种类型多年冻土区(不连续多年冻土区、零星多年冻土区和岛状多年冻土区)16个1 m深的土壤剖面,基于结构方程模型探讨海拔、气候、冻土区类型和植被类型等环境变量对森林土壤有机碳和有效氮含量的影响。结果表明:土壤有机碳和硝态氮含量在不连续多年冻土区高于零星多年冻土区和岛状多年冻土区,土壤铵态氮含量在零星多年冻土区高于岛状多年冻土区和不连续多年冻土区;在垂直剖面上,随着土壤深度的增加,土壤有机碳和有效氮含量呈降低趋势,且土壤有机碳与有效氮之间呈显著的负相关关系(P<0.05)。结构方程模型表明,植被类型和年平均温度是土壤有机碳含量变化的主要控制因素,年均降水量对土壤有机碳含量变化的影响最弱;冻土区类型和植被类型是土壤铵态氮和硝态氮含量变化的主要控制因素。研究结果能够为未来准确模拟和估算呼玛河流域多年冻土区森林土壤碳氮储量提供一定的数据支撑。  相似文献   

4.
黄河源区高寒植被主要特征初探   总被引:3,自引:2,他引:1  
位于青藏高原东北部多年冻土与季节冻土交错带的黄河源区高寒生态环境及其变化一直备受关注. 气候变暖、冻土退化条件下,为了解黄河源区不同冻土区植被状况,在源区布设了4个场地:查拉坪(CLP,源区南部连续低温多年冻土区);扎陵湖南岸(ZLH,源区中南部岛状多年冻土区);麻多乡(MDX,源区西部的不连续多年冻土区);鄂陵湖北岸(ELH,源区中北部季节冻土区). 结合植被调查和场地监测,分析了源区各冻土区植被的差异. 结果显示:总体上低温多年冻土区植被盖度、多样性指数高,表现为连续多年冻土区(查拉坪)>不连续多年冻土区(麻多乡)>季节冻土区(鄂陵湖北岸),其中岛状多年冻土区(扎陵湖南岸)例外,该场地平均盖度最低,多样性指数介于查拉坪和麻多乡之间,局部植被退化较严重. 均匀度指数均表现为扎陵湖南岸最高,查拉坪次之. 地上生物量调查结果显示:查拉坪>麻多乡>扎陵湖南岸>鄂陵湖北岸,且鄂陵湖北岸出现指示植被退化的植物. 尽管黄河源区高寒植被研究为理解冻土退化条件下的生态环境变化提供了一些基础数据,评估气候变化和冻土退化的生态和水文效应需要更系统的调查和监测研究.  相似文献   

5.
东北多年冻土最大季节融化深度的确定   总被引:4,自引:1,他引:4  
多年冻土地区的最大季节融化深度,亦即天然上限深度,是多年冻土地区铁路工程设计的主要数据之一。因此确定上限深度及其变化,是多年冻土地区工程地质勘测工作中的一个重要内容。 确定上限深度的基本方法,是在最大融化深度达到时间(9、10月份),通过现场勘探或测温直接确定。但由于东北多年冻土地区多为衔接的多年冻土,不衔接的仅存在于大中河流的河床底部,大河岸边,岛状多年冻土区邻近季节冻土区的边缘地带,以及经过人类活动  相似文献   

6.
祁连山中东部的冻土特征(Ⅰ):多年冻土分布   总被引:8,自引:7,他引:1  
吴吉春  盛煜  于晖  李金平 《冰川冻土》2007,29(3):418-425
祁连山地区地势高耸,气候严寒,冰缘现象广布,各类冰缘现象受地形与水分条件的控制,分布具有明显的规律性.祁连山多年冻土属青藏冻土区,阿尔金山-祁连山亚区,分布在海拔3400 m以上的高山、谷地、盆地中.多年冻土分布具有明显的高度地带性,随高度增加,冻土分布呈现出季节冻土-岛状冻土-连续冻土更替,同时,多年冻土下界高程与经度明显相关,自西向东表现出下降趋势,下降率约为每经度150 m,这一变化与降水在东西方向的变化有关.山区微气候因素复杂多变,也造成了冻土分布的复杂性,局地因素对冻土分布影响显著,对比分析了坡向,植被与水分、岩性,季节性积雪等诸因素对多年冻土分布的影响.  相似文献   

7.
张威  纪然 《冰川冻土》2018,40(1):18-25
利用辽宁省朝阳市气象站1960-2015年的最大季节冻土深度、最长连续冻结时间的起始日和终止日数据,采用小波分析方法对朝阳地区季节性冻土的年际变化特征进行分析,并探讨影响季节性冻土发育的影响因素。结果表明:朝阳地区最大冻土冻结深度存在4种尺度上的周期震荡,其周期分别为23~32 a、16~22 a、10~15 a和4~9 a。冻土年际变化的转折期发生在20世纪90年代初,表明朝阳市冬季气候转暖的时间段也发生在90年代初。通过对气温与季节性冻土冻结深度以及冻结时间的相关性分析,得出气候变暖对朝阳市季节冻土影响显著,冬季平均气温和冬季最低气温是影响朝阳市季节冻土发育的重要因素,其中冬季气温日较差对其影响尤为明显。冬季最低气温与冻土主冻期时间关系最为密切,而影响主冻期结束时间的热力因子为冬季平均最高气温。  相似文献   

8.
东北北部多年冻土的退化现状及原因分析   总被引:9,自引:4,他引:5  
在全球范围内,我国东北冻土区是受气候变暖和人为活动影响最显著的地区之一.近几十年来,区内冻土退化显著,大兴安岭多年冻土退化主要表现为多年冻土上限下降,温度升高,厚度减薄,融区扩大;多年冻土岛消失及多年冻土南界北移等几个方面.多年冻土退化的主要自然原因归结于气候变暖,特别是冬季变暖,降水和积雪时段和厚度等气候变化因素.以城镇化、重大工程建设为代表的人类活动,已对该区冻土和环境产生深刻影响,导致了多年冻土的快速、显著和大规模退化,但其影响机制的合理解释还需深入研究.  相似文献   

9.
基于年平均地温的青藏高原冻土分布制图及应用   总被引:42,自引:22,他引:20  
年平均地温是指多年冻土年较差为零的深度处的地温,是冻土分带划分的主要指标之一.利用青藏公路沿线钻孔实测年平均地温数据,进行回归统计分析,获取年平均地温与纬度、高程的关系,并基于该结果,结合TOPO30高程数据模拟得到整个青藏高原范围上的年平均地温分布.以年平均地温0.5℃作为多年冻土与季节冻土的界限,对比分析模拟图与青藏高原冻土图,除个别区域有较明显的差异,模拟结果图较好地体现了青藏高原冻土的分布情况.利用模拟结果,根据青藏高原多年冻土分带指标及寒区工程多年冻土区划指标,对青藏高原多年冻土分布进行了分带划分,并统计各分带面积;根据简化的冻土厚度计算公式,计算了青藏高原多年冻土的厚度分布.最后,利用数值预测方法的结果,在气候年增温0.04℃的背景下,对高原未来冻土分布进行了预测.  相似文献   

10.
在2005-2007年期间,先后3次对中国-俄罗斯原油管道漠河-大庆段沿线的冻土工程地质条件等进行科学考察,开展了冻土工程地质条件及其在气候变化和人类活动作用下的评价和预测研究.考察研究结果表明:管道沿线多年冻土在各类融区、季节冻土和水系等分隔作用下呈片状或岛状分布,沿线岛状、稀疏岛状及零星岛状占多年冻土区段的40%左右;管道沿线多年冻土随着气候的转暖和人类活动的影响不断退化.地形地貌单元、植被分布、地表水分条件的变化等局部因素对多年冻土的分布和地下冰的赋存产生重要的影响,管道沿线大约分布有50 km左右的沼泽湿地,其表层为腐殖质土及泥炭层,泥炭层下面分布着含土冰层或地下冰,是管道沿线最差的冻土工程地质地段;由于中俄原油管道沿线水系发育多,冻胀丘、冰椎和冰幔等不良冻土现象广泛分布.科学考察的成果为管道沿线冻土工程地质条件评价和预测、管道的稳定性影响分析以及后期的长期检测系统设置等研究奠定坚实的基础,进一步为即将开工的中俄原油管道漠河-大庆段工程的设计、施工提供科学依据.  相似文献   

11.
The snow cover days were extracted out of the snow data on depth distribution from 1979 to 2016 in China, combined with temperature, precipitation, humidity, sunlight and wind speed and other meteorological data, by taking advantage of traditional statistical methods and GIS spatial analysis methods, to study the temporal and spatial variation characteristics of snow cover days in northeast China region in the past 40 years, and to analyze their relationship with climatic factors. It turned out that the average annual snow cover days were 93 d in northeast China region, having an increasing trend, the rate was 0.6 d/10a, and the maximum average annual snow cover days appeared in 2013. Snow cover days in spring dominate the changes of the average snow days all year around. The snow cover days in northeast China region were affected by latitude, geography and land-sea thermal difference, which gradually decreased from north to south, and the maximum value appeared in the Da Hinggan area. Precipitation, humidity and snow cover days are positive correlation, and temperature, wind speed and sunlight are negative correlation. The correlation between climatic elements and snow cover days is as follows: temperature>humidity>wind speed>sunlight>precipitation. The influence of climatic elements on the seasonally frozen ground region is more significant than that in the permafrost region. The results show that temperature is the main factor that affects the average annual snow cover days in northeast China region.  相似文献   

12.
不同的覆盖条件下,季节冻土的特征会存在差异。为了分析积雪与森林/草地覆盖条件下季节冻土的特征,在新疆天山西部巩乃斯河上游的中国科学院天山积雪雪崩研究站的实验场地监测了森林-积雪,草地-积雪,以及草地覆盖条件下季节冻土的冻结深度,并对有无积雪覆盖条件下季节冻土发育过程中的土壤温度和土壤含水量进行了跟踪测量。结果表明:森林-积雪覆盖条件下季节冻土的冻结深度最浅,草地-积雪覆盖条件下次之,草地覆盖条件下最深。积雪的存在可以改变季节冻土的冻结深度,还会影响土壤温度和土壤含水量变化。在季节冻土的发育阶段,积雪的隔热作用使得有积雪覆盖条件下土壤温度和土壤含水量较高;在积雪消融阶段,由于积雪融水的补给,土壤含水量也相应地增加,积雪消失后由于蒸发的存在导致土壤含水量减少。  相似文献   

13.
青藏高原冻土区活动层厚度分布模拟   总被引:16,自引:10,他引:6  
活动层夏季融化、冬季冻结的近地表土(岩)层,是冻土地区热力动态最活跃的岩层,在冻土研究中有着重要意义.根据青藏高原地区80个气象观测台站1991-2000年的地面温度观测资料结合数字高程模型,计算出青藏高原冻土区的地面冻结指数和地面融化指数,然后应用斯蒂芬公式分别得到多年冻土区的季节融化深度和季节冻土区的季节冻结深度.  相似文献   

14.
青藏高原冬春积雪和季节冻土年际变化差异的成因分析   总被引:22,自引:13,他引:9  
高荣  韦志刚  董文杰 《冰川冻土》2004,26(2):153-159
利用青藏高原上72个常规气象观测站的逐日积雪厚度、冻结深度、气温、降水和地表温度资料,分析了高原积雪和季节冻土年际变化差异的原因.结果表明:气温和地表温度对高原积雪和季节冻土都有重要的影响,而降水对积雪的影响很重要,但是对季节冻土的影响则比较小.高原积雪对季节冻土有较大的影响,在积雪达到一定厚度以后,积雪的保温作用会影响冻结深度的变化,积雪越厚,保温作用越强;积雪越浅,保温作用越弱,当积雪小于某一厚度时其主要起降温作用.积雪的保温作用可能是积雪与季节冻土年际变化差异的原因之一.  相似文献   

15.
1979-2014年东北地区雪深时空变化与大气环流的关系   总被引:2,自引:2,他引:0  
基于被动微波遥感反演的雪深数据集(1979-2014年),利用Mann-Kendall检验、R/S分析、相关分析和小波分析等方法研究了东北地区雪深时空变化特征及其与大气环流的关系。结果表明:1979-2014年,东北地区年均雪深总体呈减小趋势,减小速率为-0.084 cm·(10a)-1。其中,春季雪深减小速率最大,为-0.19 cm·(10a)-1P<0.05),其次是冬季[-0.17 cm·(10a)-1],而秋季雪深减小速率最小,仅为-0.05 cm·(10a)-1。空间上,平原区(东北平原和三江平原)与少部分高原区(呼伦贝尔高原西南部)年均雪深呈增大趋势,山地(大、小兴安岭和长白山)与高原大部(内蒙古高原)雪深呈减小趋势,而且雪深增大区域的面积和变化速率均小于雪深减小的地区。东北地区年均雪深变化的Hurst指数为0.85,表明雪深未来减小的持续性很强;同时雪深变化具有22 a的主周期。春秋季雪深变化与东亚槽强度及北半球极涡面积呈显著负相关性,而冬季雪深与北半球副高强度关系密切。  相似文献   

16.
龚强  晁华  朱玲  蔺娜  于秀晶  刘春生  汪宏宇 《冰川冻土》2021,43(6):1782-1793
根据东北地区144个国家气象站1951—2016年的地温和土壤冻结深度资料,采用实测资料统计及统计建模推算的方法,对东北地区地温和冻结深度时空特征进行了细化分析。结果表明:东北地区地温整体由南到北逐渐降低,冻结深度逐渐增大。各层年平均地温呈向北2个纬度降低1 ℃左右,年平均最大冻结深度为向北2~3个纬度加深30 cm左右,极端最大冻结深度为向北2个纬度加深30 cm左右。地温和冻结深度与纬度关系显著,与经度和海拔也有一定相关性,但在东北北部的多年冻土区基本不受后两者影响。不同深度的地温季节特征不同,地表温度季节特征与气温一致,160 cm以下深度四季温度从高到低为秋、夏、冬、春。地表夏季与冬季温差达到33.5 ℃,而320 cm深处最热季与最冷季的温差仅为7 ℃。气候变暖使得东北地区各层地温升高、冻结深度减小、冻结期缩短,尤其在多年冻土区及其临近的高纬度季节冻土区更为显著。相对于下层土壤,地表升温最大。伊春地表升温趋势达到1.16 ℃?(10a)-1,40~320 cm土层升温趋势为0.60 ℃?(10a)-1左右,冻结深度减小、冻结期缩短趋势分别达到 23 cm?(10a)-1、8 d?(10a)-1,大幅升温不利于多年冻土的存在。  相似文献   

17.
东北多年冻土地区地基承载力对气候变化敏感性分析   总被引:1,自引:0,他引:1  
原喜忠  李宁  赵秀云  杨银涛 《岩土力学》2010,31(10):3265-3272
近年来,中国东北多年冻土地区正处于显著的增温过程中。由此导致多年冻土逐渐退化,并严重影响到构筑物的稳定性。以0.05 ℃的年平均气温上升率为背景,采用带有相变的传热学有限元方法,对中国东北多年冻土地区不同初始气温条件和不同含冰量类型冻土的地基温度状况以及季节活动层厚度变化进行了模拟;利用温度场有限元数值试验结果和已有承载力试验数据分析了不同类型冻土地基的力学性质对气温变化敏感性,评估了气温变化对各类冻土地基承载力的影响。气候变化对多年冻土地区构筑物稳定性影响程度取决于两个环节:其一,冻土地基温度状况对气候变化的响应;其二,冻土地基力学性质对地基温度变化的敏感性。研究结果表明,冻土地基含冰量和温度状态对其承载力随气温变化的敏感性具有显著的影响。含土冰层地基承载力对气温变化最为敏感,气温变化对高温冻土地区浅层地基承载力以及桩-土冻结强度影响较大;而深基础桩端冻土地基承载力受气候变化影响相对较小。  相似文献   

18.
三江源地区气象站点稀疏,依靠地面台站数据难以反映地面真实积雪情况。利用卫星遥感数据引入重心模型分析了三江源地区1980—2019年4个积雪参数(积雪日数、积雪深度、积雪初日和积雪终日)的时空动态特征,利用Mann-Kendall检验和Sen斜率估计分析了积雪和气候因子的变化趋势,并探究积雪对气候变化的响应。结果表明:1980—2019年三江源地区呈现积雪日数和积雪深度减少、积雪初日推迟、积雪终日提前的变化趋势,而该区域同期的气温和降水量则呈现上升趋势;4个积雪参数重心均呈现出东移趋势,而同期气温重心则呈现西移趋势,气温重心位置西移速率分别是积雪日数和积雪深度重心位置东移速率的6倍和2倍。这表明该区域4个积雪参数以及气候因子的变化趋势具有较强的空间异质性,西部气温升高速率大于东部,导致西部积雪日数和积雪深度减少速率同样大于东部,从而导致气温重心西移而积雪参数重心东移。澜沧江源区积雪日数减少、积雪深度减少、积雪初日推迟以及积雪终日提前的速率最大,其次是长江源区和黄河源区。进一步的相关性分析表明,三江源地区年平均气温的升高是导致积雪日数和积雪深度减少、积雪初日推迟、积雪终日提前的主要影响因子,积雪日数对气温升高响应最敏感,其次是积雪深度、初日和终日;而年降水量与4个积雪参数的相关性均不显著。研究可为三江源地区水资源和生态环境保护提供基础资料和理论依据。  相似文献   

19.
基于2000 - 2014年新疆伊犁地区不同海拔区域观测的冻融期内的冻土、 积雪和气象数据, 应用相关性分析和回归分析方法, 分析该地区季节冻土沿海拔的分布规律, 以及气温、 积雪对季节冻土特征的影响。结果表明: 伊犁地区表层土壤存在着每年11月份开始结冻, 于次年4月份完全融化的周期性变化。每个周期内土壤冻结时长随海拔以4 d·(100m)-1的趋势增加, 土壤最大冻结深度随海拔以3.9 cm·(100m)-1的趋势增加。土壤冻结时长与冻结期的平均气温具有显著负相关关系, 相关系数为-0.98(P<0.05)。土壤冻结日数与积雪覆盖历时呈正相关关系, 土壤的最大冻结深度与最大雪深呈负相关关系。随着海拔升高, 温度递减, 导致伊犁地区土壤最大冻结深度和土壤冻结日数整体呈现增加趋势。但在海拔相对较高的地区, 由于相对较厚积雪的影响, 出现土壤最大冻结深度随海拔升高而减小的反常现象。研究结果可为新疆伊犁地区季节冻土的分布对气候变化的响应研究提供支持, 帮助研究区域生态规划和水资源管理, 为农业发展制定适应气候变化对策。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号