首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are reporting the first paleomagnetic results from the Podhale Flysch, which crops out in the area between the Pieniny Klippen Belt and the Tatra Mts., where claystones and mudstones were drilled at 10 localities, mainly from subhorizontal strata. In all cases, the magnetic fabric was found to be typical of undeformed sediments, with well developed magnetic lineation (aligned with the sedimentary transport direction) at some of the localities; the dominant magnetic mineral was identified as magnetite, accompanied by iron sulphides. For six of the localities, with one exception for those with poorly developed lineation, we obtained statistically well-defined paleomagnetic mean directions, on AF or on combined AF and thermal demagnetization.The overall-mean paleomagnetic direction is D=298° 1=53° k=121, a95=6°, in tectonic coordinates. Similar direction was observed for Inner Carpathian flysch from the Levoča basin (Slovakia). We conclude, that the flysch of the two basins must have travelled a few hundred kilometres to the North, after the early Miocene tectonic phase: this displacement was accompanied by about 60° counterclockwise rotation with respect to Stable Europe.  相似文献   

2.
A combined sedimentological, shape-preferred orientation and anisotropy of magnetic susceptibility (AMS) analysis has been performed at the Arroyofrío Bed (Callovian–Oxfordian boundary level) in the locality of Moneva (Iberian Range, NE Spain). The Arroyofrío bed is a widespread iron-ooid limestone interval forming a condensed sequence. The present study has focused on the analysis of the potential presence of a preferred ooid orientation at the Arroyofrío bed. The obtained data show that ooids were originally ellipsoidal and had an imbricate disposition with respect to the bedding/lamination surface. The main ooid orientation within the bedding plane shows a NNE–SSW trend. Results of AMS analyses show a magnetic foliation parallel or slightly imbricated with respect to bedding and magnetic lineation parallel to the main ooid orientation. Magnetic mineralogy of studied samples shows that AMS is mainly controlled by magnetite with minor contributions of hematite and paramagnetic minerals (that can reach contributions of 35 %). The analyzed ooids show axial ratios between 1.4 and 2.8 (intrinsic anisotropy), while the anisotropy of their distribution shows lower anisotropies (e.g., Rs = 1.15) or very low values of the anisotropic magnetic parameters (e.g., P′ < 1.01). Sedimentary texture, matrix features, bioturbation and fossil content influenced both ooid main orientation and the magnetic fabric. Magnetic lineation and main orientation of long ooid axes are transverse to the inferred coastline in the studied area and parallel to the expected paleocurrent direction with respect to the Ejulve-Maestrazgo paleogeographic high. The direct correlation between AMS magnetic lineation and the ooid analysis permits to demonstrate that the paleocurrent imprint can be recorded by means of AMS despite the highly ferromagnetic context fabric and at coarse deposits. Obtained results support the interest and reliability of AMS to unravel paleocurrent imprints for paleogeographic reconstructions.  相似文献   

3.
On the ground of the sedimentary features of the Flysch the general conditions of sedimentation in the Carpathian Flysch sea are tentatively reconstructed. It is admitted that the Carpathian Flysch has been deposited in a fairly deep basin under the influence of turbidity currents. The directions of transport are presented and the distances covered by currents estimated. Some inferences concerning the shape and relief of the basin are discussed.  相似文献   

4.
 The Late Cretaceous to Early Miocene strata of the Carpathian foreland basin in southern Moravia (Czech Republic) are represented by a variety of facies which reflects the evolution of the foreland depositional system. However, because of the intensive deformation and tectonic displacement and the lack of diagnostic fossils the stratigraphic correlation and paleogeographic interpretation of these strata are difficult and often controversial. In order to better correlate and to integrate them into a broader Alpine–Carpathian foreland depositional system, these discontinuous and fragmentary strata have been related to four major tectonic and depositional events: (a) formation of the Carpathian foreland basin in Late Cretaceous which followed the subduction of Tethys and subsequent deformation of the Inner Alps-Carpathians; (b) Middle to Late Eocene transgression over the European foreland and the Carpathian fold belt accompanied by deepening of the foreland basin and deposition of organic-rich Menilitic Formation; (c) Late Oligocene to Early Miocene (Egerian) uplifting and deformation of inner zones of the Carpathian flysch belt and deposition of Krosno-type flysch in the foreland basin; and (d) Early Miocene (Eggenburgian) marine transgression and formation of late orogenic and postorogenic molasse-type foreland basin in the foreland. These four principal events and corresponding depositional sequences are recognized throughout the region and can be used as a framework for regional correlation within the Alpine–Carpathian foreland basin. Received: 18 August 1998 / Accepted: 9 June 1999  相似文献   

5.
The easternmost part of the Neoproterozoic Araçuaí belt comprises an anatectic domain that involves anatexites (the Carlos Chagas unit), leucogranites and migmatitic granulites that display a well-developed fabric. Microstructural observations support that the deformation occurred in the magmatic to submagmatic state. Structural mapping integrating field and anisotropy of magnetic susceptibility (AMS) revealed a complex, 3D structure. The northern domain displays gently dipping foliations bearing a NW-trending lineation, southward, the lineation trend progressively rotates to EW then SW and the foliation is gently folded. The eastern domain displays E–W and NE–SW trending foliations with moderate to steeply dips bearing a dominantly NS trending lineation. Magnetic mineralogy investigation suggests biotite as the main carrier of the magnetic susceptibility in the anatexites and ferromagnetic minerals in the granulites. Crystallographic preferred orientation (CPO) measurements using the electron backscatter diffraction (EBSD) technique suggest that the magnetic fabric comes from the crystalline anisotropy of biotite and feldspar grains, especially. The delineation of several structural domains with contrasted flow fabric suggests a 3D flow field involving westward thrusting orthogonal to the belt, northwestward orogen-oblique escape tectonics and NS orogen-parallel flow. This complex deformation pattern may be due to interplay of collision-driven and gravity-driven deformations.  相似文献   

6.
罗良  贾东  李一泉  邓飞  孙圣思 《地质学报》2008,82(6):850-856
磁组构是一种灵敏的应变指示计。单一方向应力作用下,在平行层缩短的初始阶段,磁线理与地层走向是一致的。然而,在构造叠加背景下弱变形的沉积岩地区,另一个(多个)不同方向的应力使得已经产生定向排列的磁性矿物发生旋转,表现为磁线理和与地层走向斜交。川西北盆地在新生代是一个典型的构造叠加区域,来自龙门山和米仓山的变形在此相互作用。本文在川西北盆地分3条剖面在18个采样点中采集了172个样品进行了磁组构研究。研究区内观察到3种弱变形的磁组构类型:沉积磁组构、初始变形磁组构和铅笔状磁组构。由于应变的叠加,由盆地内部向造山带前缘没有出现应变由弱到强的变化趋势,同时磁线理的方向也不一致。由盆地向造山带,来自米仓山的变形逐渐增强,磁线理从与地层走向一致转变成与地层走向斜交。  相似文献   

7.
Anisotropy of magnetic susceptibility (AMS) and paleomagnetic methods have been applied on the middle Miocene–Pleistocene sedimentary sequence in the Boso and Miura Peninsulas of central Japan in order to identify the invisible regional deformation sense as well as the intensity of deformation of sediments. The southern sequences of the two peninsulas were subjected to syn-sedimentary deformation of folding and faulting generated in compressional tectonics. A previous result of the AMS experiment on the sequences shows a development of a strong magnetic lineation. Thus, it is conceivable that the lineation had to be generated during the process of deformation, and in a direction perpendicular to the shortening. However, the orientation of the magnetic lineations is inconsistent among the different tectonic domains in the southern sequence. The paleomagnetic declination in each domain reveals a clockwise rotation in various degrees. Reconstructed directions of the magnetic lineations show a consistent pattern in the east–west direction, suggesting that the sedimentary sequence was subjected to a north-southward compression. In contrast, the compressive direction of the sediment cover on the Pliocene–Pleistocene sequence reveals a northwest direction. Our results suggest that the Philippine Sea Plate had been subducting northward during the middle Miocene–Pliocene, and changed its direction during the Pliocene.  相似文献   

8.
帕米尔-西昆仑地区新生代古地磁结果及其构造意义   总被引:1,自引:0,他引:1  
通过对帕米尔-西昆仑地区新生代地层51个采点古地磁样品系统的古地磁测试,获得了研究区新生代较可靠的古地磁数据。尽管上述研究剖面因为单斜地层无法对所获得的古地磁结果进行褶皱检验,但从实验结果可以看出,其地理坐标下平均的高温特征剩磁方向远离现代地磁场方向,且和田朗如乡古近纪、策勒恰恰古近纪、叶城柯克亚乡新近纪剖面所获得的古地磁结果具有正、反2种极性,由此,我们认为以上剖面的高温特征剩磁很可能代表了岩石形成时的原生剩磁方向。结合研究区已有的古地磁数据,认为在新生代印度板块向北挤压作用下,塔里木地块西缘地区(帕米尔高原东北缘)早白垩世-晚白垩世始相对欧亚大陆在古地磁误差范围内并没有发生明显的构造旋转作用(1°~1.6°),而始新世以来相对欧亚大陆则发生了明显的逆时针旋转(22°~38°),该地区的逆时针旋转作用可能与塔拉斯-费尔干纳断裂新生代以来的右旋走滑作用有关,而在帕米尔高原以东则主要以沿大型走滑断裂的走滑作用为主,并没有发生明显的旋转作用。  相似文献   

9.
10.
日喀则群砂泥质复理石的浊积层序非常发育,包括富泥的粘性高密度浊流、砂质高密度浊流、低密度浊流和Pickering及Hiscott(1986)的限制性泥质高密度浊流的沉积层序。其中,低密度浊流沉积层序的组合与鲍马(Bouma)层序很相似,两者的区别在于沉积的粒度、粒级分布范围、层序厚度和相组合等特征的不同。沉积相序、古流向和物源分析表明,日喀则群复理石盆地的南侧主要发育单向物源的海底扇体系,而盆地北侧以发育双向物源和多种沉积流体的复合沉积为特征。值得指出的是,特殊的浊积类型——限制性泥质高密度浊流沉积的发现为论证日喀则群复理石盆地属残留盆地又提供了一条有力的依据。  相似文献   

11.
This paper presents new paleomagnetic results on Cenozoic rocks from northern central Asia. Eighteen sites were sampled in Pliocene to Miocene clays and sandy clays of the Zaisan basin (southeastern Kazakhstan) and 12 sites in the upper Oligocene to Pleistocene clays and sandstones of the Chuya depression (Siberian Altai).Thermal demagnetization of isothermal remanent magnetization (IRM) showed that hematite and magnetite are the main ferromagnetic minerals in the deposits of the Zaisan basin. Stepwise thermal demagnetization up to 640–660 °C isolated a characteristic (ChRM) component of either normal or reverse polarity at nine sites. At two other sites, the great circles convergence method yielded a definite direction. Measurements of the anisotropy of magnetic susceptibility showed that the hematite-bearing sediments preserved their depositional fabric. These results suggest a primary origin of the ChRM and were substantiated by positive fold and reversal tests. The mean paleomagnetic direction for the Zaisan basin (D=9°, I=59°, k=19, α95=11°) is close to the expected direction derived from the APW path of Eurasia [J. Geophys. Res. 96 (1991) 4029] and shows that the basin did not rotated relative to stable Asia during the Tertiary.In the upper Pliocene–Pleistocene sandstones of the Chuya depression, a very stable ChRM carried by hematite was found. Its mean direction (D=9°, I=46°, k=25, α95=7°) is characterized by declination close to the one excepted for early Quaternary, whereas inclination is lower. In the middle Miocene to lower Pliocene clays and sandstones, a stable ChRM of both normal and reverse polarities carried by magnetite was isolated. Its mean direction (D=332°, I=63°, k=31, α95=4°) is deviated with respect to the reference direction and implies a Neogene, 39±8° counterclockwise rotation of the Chuya depression relative to stable Asia. These results and those from the literature suggest that the different amount of rotation found in the two basins is related to a sharp variation in their tectonic style, predominantly compressive in the Zaisan basin and transpressive in the Siberian Altai. At a larger scale, the pattern of vertical axis rotations deduced from paleomagnetic data in northern central Asia is consistent with the hypothesis of a large left-lateral shear zone running from the Pamirs to the Baikal. Heterogeneous rotations, however, indicate changes in style of faulting along the shear zone and local effect for the domains with the largest rotations.  相似文献   

12.
There is little visible primary hydrodynamic lamination preserved in the Bridport-Yeovil Sands as a result of intense bioturbation. Where lamination is present, it exhibits wave-produced characteristics, although current ripple lamination is also found. The grain orientation of a variety of bioturbated and non-bioturbated fine-grained sandstones has been determined by measuring the magnetic susceptibility anisotropy. The magnetic fabric is of a primary style and preserves two lineation directions approximately 90° apart in azimuth. These lineation directions are interpreted as the result of grain long-axis orientations produced by wave and current processes. The magnetic fabric is dominantly carried by a small proportion of paramagnetic minerals, thought to be largely detrital chlorite and micas. This magnetic fabric has been acquired by depositional alignment of the detrital phyllosilicates and by reorientation of the phyllosilicates during the early stages of compaction. The magnetic fabric of the intensely bioturbated sandstone is not significantly different in magnitude characteristics or in the preservation of lineation directions from that of the non-bioturbated sandstone.  相似文献   

13.
Abstract

The fabric and the anisotropy of magnetic susceptibility of the Cabo Ortegal eclogite (NW Spain) are studied. These mafic rocks were metamorphosed and deformed under high pressures and temperatures between 390 and 370 Ma in a subduction/collision tectonic setting. Massive eclogite slices and deformed eclogite in shear zones have bulk magnetic susceptibilities of 31 to 82·10?5 S.I. and 28 to 75·10?5 S.I., respectively. The paramagnetic mineral fraction is the principal magnetic susceptibility carrier. This fraction includes notably garnet and clinopyroxene as matrix minerals, and ilmenite and rutile as accessory constituents. Though magnetic anisotropy degree varies between 3.1 % and 6.6 %, variations of this parameter in each rock type are marked. In the deformed eclogite, magnetic lineation (Kmax) and the pole to the magnetic foliation (Kmin) are coaxial and coincident with macroscopic petrofabric elements (foliation and lineation). In the massive eclogite, the magnetic fabric is dispersed along the principal structural planes and inversions are associated with samples with small degrees of anisotropy. The anisotropy of magnetic susceptibility is interpreted as being due to the crystallographic preferred orientation and spatial organisation of the polymineralic aggregate. Relating the evolution of the symmetry of magnetic fabric to the symmetry of petrofabric or deformation is rather precluded since susceptibility has multiple origins and bulk magnetic fabric is due to minerals of different symmetry. © Elsevier, Paris  相似文献   

14.
Anisotropy of magnetic susceptibility (AMS) represents a valuable proxy able to detect subtle strain effects in very weakly deformed sediments. In compressive tectonic settings, the magnetic lineation is commonly parallel to fold axes, thrust faults, and local bedding strike, while in extensional regimes, it is perpendicular to normal faults and parallel to bedding dip directions. The Altotiberina Fault (ATF) in the northern Apennines (Italy) is a Plio-Quaternary NNW–SSE low-angle normal fault; the sedimentary basin (Tiber basin) at its hanging-wall is infilled with a syn-tectonic, sandy-clayey continental succession. We measured the AMS of apparently undeformed sandy clays sampled at 12 sites within the Tiber basin. The anisotropy parameters suggest that a primary sedimentary fabric has been overprinted by an incipient tectonic fabric. The magnetic lineation is well developed at all sites, and at the sites from the western sector of the basin it is oriented sub-perpendicular to the trend of the ATF, suggesting that it may be related to extensional strain. Conversely, the magnetic lineation of the sites from the eastern sector has a prevailing N–S direction. The occurrence of triaxial to prolate AMS ellipsoids and sub-horizontal magnetic lineations suggests that a maximum horizontal shortening along an E–W direction occurred at these sites. The presence of compressive AMS features at the hanging-wall of the ATF can be explained by the presence of gently N–S-trending local folds (hardly visible in the field) formed by either passive accommodation above an undulated fault plane, or rollover mechanism along antithetic faults. The long-lasting debate on the extensional versus compressive Plio-Quaternary tectonics of the Apennines orogenic belt should now be revised taking into account the importance of compressive structures related to local effects.  相似文献   

15.
磁组构成分析是利用岩石磁化率各向异性研究构造变形特征及其应力作用方式和方向的方法,研究表明,中甲地区岩石各向异性度P值比较小,反映本区总体变形较弱,但变质石英砂岩相对变形较强。变质石英砂岩磁面理发育,磁线理较弱,显示压扁变形,变形主压应力方向是NW-SE向。火山(碎屑)岩具有明显的磁线理,反映流纹构造特征;最大磁化率轴方向屡示本区火山岩流体构造为NW-SE向。矿化蚀变岩和矿石的磁各向异性度P值明显  相似文献   

16.
Single beds of up to 41 m thick are exposed for 16 km along the strike in an Eocene flysch, Spanish Pyrenees. These mega-beds consist of a lower calcarenite (up to 25 m) and an upper marlstone (up to 16 m). Their volume is minimally of the order of 1 km3. The mega-beds are underlain by slump sheets which in places exceed 100 m in thickness. The calcarenites show erosional sole markings, no internal amalgamation, a graded texture expressed by matrix percent, coarsest quartz grains, and coarsest foram tests. The marlstones are burrowed from their top, they are graded as expressed by matrix percent, coarsest quartz grains, and carbonate percent. Their grading continues the upward size decline in the underlying calcarenites, and their thickness and carbonate percent vary with those of the underlying calcarenites. Single calcarenite-marlstone beds are interpreted as deposited by turbidity currents. The great thickness and other uncommon features (e.g. consistent association with an underlying slump sheet, distal thickening, locally repetitive grading, compositional inhomogeneity) can be accounted for by (1) widespread slumping initiating voluminous turbidity currents, (2) concurrence of tributary turbidity currents to deposit a single mega-bed, and (3) ponding of the turbidity currents behind what may have been a local, palaeobasin floor high. Slumping and simultaneous turbidity currents were probably triggered by earthquakes of great magnitude. The basin floor high may have formed by basement faulting. The mega-beds do not occupy a particular niche in a facies sequence and their great thickness does not reflect a particular environment of deposition. Instead, they more likely reflect the seismic regime (periodic earthquakes of great magnitude) and tectonic style (block faulting) of the flysch basin.  相似文献   

17.
The paper reviews paleomagnetic data from the Central West Carpathians (CWC) of Poland and Slovakia. The CWC constitute an orogen deformed by pre-Tertiary and Tertiary events, situated on the internal side of the Pieniny Klippen Belt and the Tertiary Outer West Carpathian accretionary wedge. The CWC are regarded as the eastern prolongation of the Austroalpine series. There are paleomagnetic evidences for a counterclockwise rotation of the CWC after Oligocene. Having subtracted the effect of this rotation, Middle Cretaceous paleomagnetic poles from the CWC are brought into agreement with preGosau paleopoles from the Upper Austroalpine units of the Northern Calcareous Alps (NCA). It is inferred that a common clockwise rotation of the CWC and NCA had taken place between 90-60 Ma (Middle — Late Cretaceous) during the oblique convergence of the Austroalpine/Central Carpathian realm with the Penninic continental basement.  相似文献   

18.
《Geodinamica Acta》2013,26(1-3):101-126
The olistostromes formed in Northern Carpathians during the different stages of the development of flysch basins, from rift trough post-rift, orogenic to postorogenic stage. They are known from the Cretaceous, Paleocene, Eocene, Oligocene and Early Miocene flysch deposits of main tectonic units. Those units are the Skole, Subsilesian, Silesian, Dukla and Magura nappes as well as the Pieniny Klippen Belt suture zone. The oldest olistoliths in the Northern Carpathians represent the Late Jurassic-Early Cretaceous rifting and post-rifting stage of the Northern Carpathians and origin of the proto-Silesian basin. They are known from the Upper Jurassic as well as Upper Jurassic-Lower Cretaceous formations. In the southern part of the Polish Northern Carpathians as well as in the adjacent part of Slovakia, the olistoliths are known in the Cretaceous- Paleocene flysch deposits of the Pieniny Klippen Belt Zlatne Unit and in Magura Nappe marking the second stage of the plate tectonic evolution - an early stage of the development of the accretionary prism. The most spectacular olistostromes have been found in the vicinity of Haligovce village in the Pieniny Klippen Belt and in Jaworki village in the border zone between the Magura Nappe and the Pieniny Klippen Belt. Olistoliths that originated during the second stage of the plate tectonic evolution occur also in the northern part of the Polish Carpathians, in the various Upper Cretaceous-Early Miocene flysch deposits within the Magura, Fore-Magura, Dukla, Silesian and Subsilesian nappes. The Fore-Magura and Silesian ridges were destroyed totally and are only interpreted from olistoliths and exotic pebbles in the Outer Carpathian flysch. Their destruction is related to the advance of the accretionary prism. This prism has obliquely overridden the ridges leading to the origin of the Menilite-Krosno basin.

In the final, postcollisional stage of the Northern Carpathian plate tectonic development, some olistoliths were deposited within the late Early Miocene molasse. These are known mainly from the subsurface sequences reached by numerous bore-holes in the western part of the Polish Carpathians as well as from outcrops in Poland and the Czech Republic.

The largest olistoliths (kilometers in size bodies of shallow-water rocks of Late Jurassic-Early Cretaceous age) are known from the Moravia region. The largest olistoliths in Poland were found in the vicinity of Andrychów and are known as Andrychów Klippen. The olistostromes bear witness to the processes of the destruction of the Northern Carpathian ridges. The ridge basement rocks, their Mesozoic platform cover, Paleogene deposits of the slope as well as older Cretaceous flysch deposits partly folded and thrust within the prism slid northward toward the basin, forming the olistostromes.  相似文献   

19.
Granulite from 66 sites along the Além-Paraiba dextral shear zone were collected for magnetic analyses. The rocks were affected by the Braziliano orogeny, which was responsible for the present structural pattern. Magnetic fabrics were determined applying anisotropy of low—field magnetic susceptibility (AMS, all sites) and anisotropy of remanence magnetization (ARM, in 21 sites). The ferromagnetic minerals are magnetite, titanohematite, and in some samples, minor pyrrhotite. Hysteresis curves show that both para— and ferromagnetic minerals are the carriers of AMS. Thus AMS is due to the preferred crystallographic orientation of paramagnetic matrix minerals and titanohematite, to the shape anisotropy of magnetite grains, or to a combination of all three. ARM was performed imposing both anhysteretic remanence (AAR) and isothermal remanence (AIRM). The AMS, AAR, and AIRM fabrics are coaxial and are tectonic in origin. Their parallelism indicates that both ferromagnetic and paramagnetic minerals recorded the same metamorphic event. A passive—marker model is suggested for ferromagnetic minerals at the outcrop scale. The magnetic foliation is very close to the strike of the Além Paraíba shear zone, suggesting that this generated the local rock fabrics during the Braziliano orogeny.  相似文献   

20.
《Geodinamica Acta》2013,26(1-3):127-143
The western part of the Polish Outer Carpathians is built up from the thrust, imbricated Upper Jurassic-Neogene flysch deposits. The following Outer Carpathian nappes have been distinguished: Magura Nappe, Fore-Magura group of nappes, Silesian, Subsilesian and Skole nappes. Interpretation of seismic and magnetotelluric survey from the region South of Wadowice, allows observation of relationship between basement and flysch nappes in the Outer Carpathians. It also allows identification of dislocation cutting both flysch nappes and their basement. All the Outer Carpathian nappes are thrust over the southern part of the North European Platform. The platform basement is composed of older Precambrian metamorphic rocks belonging to the Bruno-Vistulicum terrane. Sedimentary cover consists of Paleozoic, Mesozoic and Neogene sequences. The characteristic features of this boundary are horsts and troughs of general direction NW-SE, turning W-E. Faults cutting only the consolidated basement and the Paleozoic cover were formed during the Hercynian Orogeny in the Carboniferous and the Early Permian. Most of the older normal faults were covered by allochtonous flysch nappes forming thus the blind faults. During the last stage of the geodynamic development the Carpathians thrust sheets moved towards their present position. Displacement of the Carpathians northwards is related to development of dextral strike-slip faults of N—S direction. The orientation of this strike-slip fault zones zone more or less coincides with the surface position of the major faults perpendicular to the strike of the Outer Carpathian thrustsheets. The huge fault cuts formations from the Paleozoic basement through the flysch allochton between the boreholes in Sucha Beskidzka area. The displacement of nappes of the Carpathian overthrust and diapiric extrusion of plastic formations of the lower flysch units occurred along this fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号