首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cross-flow ultrafiltration (CFF) is often used to obtain separation and concentration of colloids from bulk natural water samples. Application of the ultrafiltration permeation model allows the quantitative determination of the low molecular weight material (LMW, < 1 kDa) and colloids in bulk dissolved organic matter (DOM) from measurements of time series permeate samples obtained from CFF. Detailed analysis of a Yukon River water sample shows that DOM absorption coefficient and fluorescence follow the permeation model and that the complex spectral optical properties of LMW DOM can be reconstructed from CFF data. A combination of measured and modeled data indicates that the LMW contribution to bulk DOM optical properties obtained from CFF can be grossly underestimated by the use of a low concentration factor (CF, the ratio of initial sample volume to retentate volume). Even at a relatively high CF of 19, optical properties of LMW DOM calculated from measurements of the retentate or integrated permeate would underestimate true values by 5–36%. In the Yukon River sample, LMW dissolved organic carbon represented 26% of the bulk concentration, but only 3–14% of the colored DOM was in the LMW fraction while 31–33% of bulk DOM florescence was due to LMW DOM. The contrasting optical properties of LMW and colloidal DOM support the concept that analysis of bulk DOM absorption and fluorescence properties reveals information about DOM molecular weight.  相似文献   

2.
Sedimentary samples were collected from a site (57°02.9N, 176°57.4W: 3,650 m) in the Aleutian Basin of the Bering Sea and analyzed for organic carbon, total nitrogen and various organic materials. Organic carbon and total nitrogen were measured in the range of 0.1–1.9% and 0.01–0.2% of the dry weight of the sediment, these values tended to decrease with depth, but considerably lower values were obtained in the volcanogenic sediment layers. Carbohydrate, amino acid and protein and lipid carbons accounted for 40% of the total organic carbon on the surface of the sediment, and this value tended to decrease with depth to 20% at 10m depth from the top of the core sample. The carbon to nitrogen (C/N) ratios ranged from 6.3 to 9.0. Vertical change in the values of the ratios can be understood in terms of a higher decay rate of amino acids and proteins.Radiocarbon age determinations on five sedimentary samples yielded sedimentation rates ranging from 37 to 90cm/1,000y.  相似文献   

3.
This study reports on measurements of organic carbon (Corg) and total nitrogen (Ntot) in surface sediments originating from 6 transects along the northwest European continental margin. After elimination of carbonates by an acidification technique using sulphurous acid, both elements were analysed in the same sediment sample using an elemental analyser. Corg and Ntot in the sample were comparatively low, ranging between 1 and 10 mg C and 0.2 to 1 mg N g−1 dry sediment. In a second analysis, the samples were analysed without acid addition, resulting in Ntot concentrations of 0–50% higher compared to their acidified counterparts. As a consequence, molar C/N ratios derived from the analysis of Corg and Ntot in the acidified sample ranged between 6 to 11, while the Ntot separate analysis reduced C/N ratios to 6 to 8. It is suggested that the addition of sulphurous acid to eliminate inorganic carbon volatilises nitrogenous organic matter.  相似文献   

4.
Molecular organic biomarkers together with trace element composition were investigated in sediments east of Barrow Canyon in the western Arctic Ocean to determine sources and recycling of organic carbon in a continuum from the shelf to the basin. Algal biomarkers (polyunsaturated and short-chain saturated fatty acids, 24-methylcholesta-5,24(28)-dien-3β-ol, dinosterol) highlight the substantial contribution of organic matter from water column and sea-ice primary productivity in shelf environments, while redox markers such as acid volatile sulfide (AVS), Mn, and Re indicate intense metabolism of this material leading to sediment anoxia. Shelf sediments also receive considerable inputs from terrestrial organic carbon, with biomarker composition suggesting the presence of multiple pools of terrestrial organic matter segregated by age/lability or hydrodynamic sorting. Sedimentary metabolism was not as intense in slope sediments as on the shelf; however, sufficient labile organic matter is present to create suboxic and anoxic conditions, at least intermittently, as organic matter is focused towards the slope. Basin sediments also showed evidence for episodic delivery of labile organic carbon inputs despite the strong physical controls of water depth and sea-ice cover. Principal components analysis of the lipid biomarker data was used to estimate fractions of preserved recalcitrant (of terrestrial origin) and labile (of marine origin) organic matter in the sediments, with ranges of 12–79%, 14–45%, and 37–66% found for the shelf, slope, and basin cores, respectively. On average, the relative preserved terrestrial organic matter in basin sediments was 56%, suggesting exchange of organic carbon between nearshore and basin environments in the western Arctic.  相似文献   

5.
Recent carbonate data collected in the North Pacific were combined with the data in the literature in order to understand more clearly the carbonate chemistry in the North Pacific. Our analyses show that inorganic CaCO3 dissolution contributes about 26% of the total inorganic CO2 increase of deep water, after leaving the Southern Ocean. The calcium and alkalinity data indicate a CaCO3 dissolution rate of 0.060±0.010 and 0.053±0.005 µ mol kg–1 yr–1 respectively, for waters deeper than 2,000 m in reference to the Weddell Sea Deep Water. The organic carbon decomposition rate is 0.107±0.012 µ mol kg–1 yr–1 while the oxygen consumption rate is 0.13±0.002 µ mol kg–1 yr–1. These results which are based on the direct comparison of two water masses agree well with other estimates which are based on methods such as the one-dimensional-diffusion-advection model. Comparison of data along the two sections at 165°E and 150°W shows no significant difference in the ratio of the CaCO3 dissolution rate and the organic carbon decomposition rate. The eastern section, however, has a higher TCO2 input than the western section because of the older age of the deep water along the eastern section.  相似文献   

6.
The presence of electrolytes (salts) in aqueous solution modifies the solubility and related properties of organic compounds in water. Reported data for salting-out constants (Setschenow constants) which relate solubility to the salt concentration of aromatic and alkane hydrocarbons, and their chlorinated derivatives, and some organic acids have been compiled for 25 aqueous salt solutions at 20–25 °C. The salting-out sequences for various electrolytes are discussed and it is shown that the salting-out effect is greater for organic solutes with large molar volumes. A compilation of salting-out constants for NaCl solutions and seawater (natural or synthetic) with a variety of solutes, shows that the Setschenow constants are similar for natural or artificial seawater (at salinity of 30–35%.) and NaCl solutions (at 3.0–3.5% or 0.5 M). A simple correlation is suggested for estimating the Setschenow constants for a variety of organic solutes in seawater which typically yields a reduction in solubility by a factor of 1.36. The hydrophobicity of organic solutes is therefore increased by this factor, as is the air-water partition coefficient, implying an increased partitioning from aqueous solution into air, organic carbon and lipid phases. The effect must be quantified when comparing the behavior of organic contaminants in freshwater and marine conditions.  相似文献   

7.
The decomposition characteristics of particulate organic matter (POM) sampled with plankton nets in Hiroshima Bay were investigated under aerobic conditions in a laboratory experiment.The POM derived from plankton consisted of both a labile fraction (70–80 % of the whole) and a refractory fraction (20–30%). The labile fraction was completely decomposed within 40 days at 20°C. Although the concentrations of particulate organic carbon (POC) decreased gradually with time, an apparent lag phase was recognized in the decomposition of particulate phosphorus (PP) at an early stage, which might result from a specific uptake of dissolved inorganic phosphorus (DIP) by bacteria. A comparison of the metabolic activity between dissolved organic matter (DOM) and POM by measuring ATP contents showed that the former was one order of magnitude larger than the latter.On the other hand, there was no significant difference among the decomposition rates of POM collected at various depths. The change of the first-order rate constant (k) for the POM decomposition by temperature was expressed ask=0.0329 exp(0.0644T), and the Q10 value was 1.94. There were fairly large variances ink values obtained from the various plankton species. Thek values averaged 0.144 day–1 and ranged from 0.078 to 0.20 day–1 at 20°C.  相似文献   

8.
“Batfish” is a streamlined vehicle developed to house fast-responding oceanographic sensors. It is towed behind a ship or small vessel and its depth is controlled from the vessel by a manually or automatically produced command signal. Variable-angle wings permit the vehicle to be lowered and a novel control surface, which eliminates the need for heavy ballast, assures lateral stability. There are two models: the standard and the wide-wing Batfish. The standard Batfish has collected temperature and conductivity data at depths of up to 200 m when towed at 10–25 km/hr, and the wide-wing Batfish at depths to 400 m when towed at 10–16km/hr.  相似文献   

9.
A sediment core covering the last 145 kyrs was collected in the western subarctic Pacific (WSAP), and analyzed for Ba, U, Al, Sc, La, Yb, Th, biogenic opal (Opal) and organic carbon (Corg) as well as its isotopic ratio (δ13C). This study examined the change of past biological production in WSAP with multiple proxies, together with understanding the relation between Loess from the Asian continent and the biological production. The Loess content was estimated from the metal components, Al, Sc, La, Yb and Th. In this high latitude core (50°N), the Loess content was generally high during the glacial periods, but it was also high even in some interglacial periods. The excess amount of Ba relative to the detrital material composition, Baex, showed the best correlation with the Vostok δD (r = 0.72, p < 0.001), indicating that the biological production was lower in the glacial periods than in the interglacials. This corroborates the pervasive correlation between Baex in the polar region, WSAP and the Antarctic Sea, and Antarctic temperature, combined with previous research. This correlation might be explained by the stratification caused by cooling. In addition, the time variations of Baex in WSAP were similar to those of Baex in the Okhotsk Sea and of other proxies (Corg and Opal) in both the Okhotsk and the Bering Sea, indicating the spatial homogeneity of Baex in WSAP including proximal marginal seas. The Opal content was more weakly correlated with the Vostok δD (r = 0.46, p < 0.001) than Baex, reflecting that Opal in WSAP including proximal marginal seas was spatially heterogeneous compared to Baex. While both the Corg content and Uex, the excess amount of U relative to the detritus composition, were not positively correlated with the Vostok δD, they behaved similarly in the sediments. The positive correlation between δ13C and the Vostok δD (r = 0.42, p < 0.001), between δ13C and Baex (r = 0.60, p < 0.001) and between δ13C and Opal (r = 0.36, p < 0.01) indicates that δ13C in WSAP may give some information on the phytoplankton growth rate. There was not a significant correlation between the spatially homogeneous Baex in WSAP and Loess (r = − 0.16, p > 0.01), suggesting that the increase of biological production with the increase of Loess supply during the glacial periods did not occur.  相似文献   

10.
Cylindrical sediment traps were deployed at various depths in the anoxic water of Framvaren for two periods of one year (1981–1982 and 1983–1984). The traps were emptied three times during 1981–1982 and five times during 1983–1984. The vertical fluxes of total suspended material, organic carbon and nitrogen were calculated on a daily and annual basis. The average annual sediment flux 20 m above the bottom was approximately 60 g m−2 y−1 and the flux of organic carbon was 20 g m−2 y−1. On the basis of an average C/N ratio of 8 and a constant carbon flux below a depth of 20 m, it is concluded that little mineralization of the organic matter takes place in the anoxic water column. Assuming a primary production of the order to 50–100 g m−2 y−1, 22–24% of that reaches the anoxic water masses. Further breakdown of organic matter takes place in the surface sediments.  相似文献   

11.
The net uptake of inorganic carbon and nitrogen, phosphate and silicate and the net production of dissolved oxygen and organic carbon, nitrogen and phosphorus have been examined in the Ría de Arousa, a large coastal embayment in the NW Iberian upwelling system. Fluxes and net budgets were estimated with a non-stationary 2-D box model [Rosón, G., Álvarez-Salgado, X.A., Pérez, F.F., 1997. A non-stationary box-model to determine residual flows in a partially mixed estuary, based on both thermoline properties. Application to the Ría de Arousa (NW Spain). Estuarine, Coastal Shelf Sci., 44, 249–262] and the distributions of the different species acquired twice a week between May and October 1989 [Rosón, G., Pérez, F.F., Álvarez-Salgado, X.A., Figueiras, F.G., 1995. Variation of both thermohaline and chemical properties in an estuarine upwelling ecosystem: Ría de Arousa: 1. Time Evolution. Estuarine, Coastal Shelf Sci., 41, 195–213]. High N/P and N/Si net uptake ratios of 21 and 3.2 were observed during the upwelling season. The rapid recycling of phosphorus compared to nitrogen and the recurrent succession from pioneer diatoms (Si/N1) to red-tide forming species (Si/N=0) following the periodic upwelling pulses are the reasons behind the observed ratios. The molar ratios of dissolved oxygen production to inorganic carbon (−1.48) and nitrogen uptake (−10.2) during the upwelling season agree with the Redfield stoichiometry. On the contrary, net nutrient regeneration occurred with N/P, N/Si and O2/C ratios of 7.4, 1.0 and −1.02 during an intense autumn downwelling event. These low ratios are due to the release of an excess of phosphate, silicate and CO2 from the sediments. Conversely, the production of inorganic nitrogen is associated to the consumption of dissolved oxygen following a Redfield ratio of −10.0. Whereas the C/N ratio of the suspended organic matter produced during the upwelling season and consumed during the autumn downwelling event is 6.3–6.7, the N/P ratio changes from 11 during the upwelling season to 15 during the autumn downwelling. About 1/5 of the dissolved oxygen produced during the upwelling season and consumed during the autumn downwelling is delivered to and came from the atmosphere, respectively. Despite the C/N/P/O2 ratios differ from the Redfield values, the high correlation between nutrient salts consumption and dissolved oxygen production (r2=0.74–0.86) allow to estimate an average net ecosystem production (NEP) from the individual elements. The 3–4 d time-scale variability of the average NEP depends on the 2-week periodicity of upwelling pulses, the heat exchange across the sea surface and the stability of the water column. As much as 70% of the total variability can be explained with a linear combination of these parameters.  相似文献   

12.
The study on dissolved organic ligands capable to complex copper ions (LT), surface-active substances (SAS) and dissolved organic carbon (DOC) in the Northern Adriatic Sea station (ST 101) under the influence of Po River was conducted in period from 2006–2008. The acidity of surface-active organic material (Acr) was followed as well. The results are compared to temperature and salinity distributions. On that way, the contribution of the different pools of ligands capable to complex Cu ions could be determined as well as the influence of aging and transformation of the organic matter. The LT values in the investigated period were in the range of 40–300 nmol l−1. The range of DOC values for surface and bottom samples were 0.84–1.87 mg l−1 and 0.80–1.30 mg l−1, respectively. Total SAS concentrations in the bottom layer were 0.045–0.098 mg l−1 in equiv. of Triton-X-100 while those in the surface layer were 0.050–0.143 mg l−1 in equiv. of Triton-X-100. The majority of organic ligands responsible for Cu binding in surface water originate from new phytoplankton production promoted by river borne nutrients. Older, transformed organic matter, possessing higher relative acidity, is the main contributor to the pool of organic ligands that bind copper in the bottom samples. It was estimated that 9% of DOC in surface samples and 12% of DOC in the bottom samples are present as ligands capable to complex copper ions.  相似文献   

13.
The distribution of molecular masses of organic ligands for copper(II) in oceanic water was investigated. The bulk dissolved organic matter (DOM) was fractionated by ultrafiltration and organic ligands were extracted from the resultant fractions by using immobilized metal ion affinity chromatography (IMAC). Contributions of total organic ligands were 2.0–4.4% of the bulk DOM in surface waters, as determined by the UV absorbance. In the distribution of molecular masses of organic ligands, relative contribution of the fraction with low molecular masses (<1000 Da) was dominant (49–62%), while 26–33% of the total organic ligands was in the 1000–10,000 Da fraction, leaving 10–19% in the >10,000 Da fraction. The distribution of molecular masses of organic ligands shifted to higher molecular masses, as compared with that of the bulk DOM. The fluorescence intensities of organic ligands were shown to be associated with carboxyl contents, based on peak excitation/emission wavelengths and the pH-dependence of fluorescence. Two ligand classes with different conditional stability constants (log KCuL′≈7 and 9) were determined from fluorescence quenching of ligand fractions during copper(II) titration. Organic ligands in low molecular mass fractions were relatively weak and strong ligands occurred in higher molecular mass fractions. It is suggested that the weaker ligand sites would consist of two or more carboxyl groups (log KHL′=4), whereas carboxyl groups (log =2), which are protonated at lower pH, and primary amine may additionally contribute to the formation of more stable copper(II) complexes of the stronger ligand.  相似文献   

14.
The variability in dissolved and particulate organic matter, plankton biomass, community structure and metabolism, and vertical carbon fluxes were studied at four stations (D1–D4), placed along a coastal-offshore gradient of an upwelling filament developed near Cape Juby (NW Africa). The filament was revealed as a complex and variable system in terms of its hydrological structure and distribution of biological properties. An offshore shift from large to small phytoplankton cells, as well as from higher to lower autotrophic biomass, was not paralleled by a similar gradient in particulate (POC) or dissolved (DOC) organic carbon. Rather, stations in the central part of the filament (D2 and D3) presented the highest organic matter concentrations. Autotrophic carbon (POCChl) accounted for 53% (onshore station, D1) to 27% (offshore station, D4) of total POC (assuming a carbon to chlorophyll ratio of 50), from which nano- and pico-phytoplankton biomasses (POCA < 10 μm) represented 14% (D1) to 79% (D4) of POCChl. The biomass of small hetrotrophs (POCH < 10 μm) was equivalent to POCA < 10 μm, except at D1, where small autotrophs were less abundant. Dark community respiration (Rd) in the euphotic zone was in general high, almost equivalent to gross production (Pg), but decreasing offshore (D1–D4, from 108 to 41 mmol C m−2 d−1). POC sedimentation rates (POCsed) below the euphotic zone ranged from 17 to 6 mmol C m−2 d−1. Only at D4 was a positive carbon balance observed: Pg−(Rd + POCsed) = 42 mmol C m−2 d−1. Compared to other filament studies from the NE Atlantic coast, the Cape Juby filament presented lower sedimentation rates and higher respiration rates with respect to gross production. We suggest that this is caused by the recirculation of the filament water, induced by the presence of an associated cyclonic eddy, acting as a trapping mechanism for organic matter. The export capacity of the Cape Juby filament therefore would be constrained to the frequency of the interactions of the filament with island-induced eddies.  相似文献   

15.
Particulate matter was collected in the Bering Sea and the northern North Pacific Ocean during the cruise of R. V. Hakuho-maru, Ocean Research Institute of Tokyo University in summer of 1975. The particulate matter was analyzed for organic carbon and nitrogen, chlorophylla and amino acids.The concentrations of particulate organic carbon and nitrogen were measured with the range of 16–422gC l–1 and 1–85gN l–1, 19–186gC l–1 and 1–26gN l–1, 46–1,038gC l–1 and 6–79gN l–1 and 19–246gC l–1 and 2–25gN l–1 in the Oyashio, the Deep Bering Sea, the continental shelf of Bering Sea and the northern North Pacific, respectively. Particulate organic carbon and nitrogen decreased with depth throughout the areas. The average concentrations of organic carbon and nitrogen in the entire water column tended to decrease in the following order; the continental shelf > Oyashio > northern North Pacific > Deep Bering Sea.C/N of particulate matter varied in the range of 3–15 (7 on average) in surface waters throughout the areas and these values tended to increase with depth to 5–20 (11 on average) in deep waters without significant regional variability.Linear regressions between chlorophylla and particulate organic carbon in the euphotic layers indicate that detrital organic carbon accounted for 34.2, 44.9, 49.1 and 25.2 % of particulate organic carbon in the Oyashio, the Deep Bering Sea, the continental shelf and the northern North Pacific, respectively.Particulate amino acid was determined in the range of 10.3–78.0g l–1, 104–156g l–1 and 10.4–96.4g l–1 in the Deep Bering Sea, the continental shelf and the northern North Pacific, respectively. Aspartic acid, glutamic acid, serine, glycine and alanine were found as dominant species of amino acid of particulate matter.  相似文献   

16.
Concurrent distributions of dissolved and suspended particulate organic carbon (DOC and POCsusp), nitrogen (DON and PONsusp) and phosphorus (DOP and POPsusp), and of suspended particulate inorganic phosphorus (PIPsusp), are presented for the open ocean water column. Samples were collected along a three-station transect from the upper continental slope to the abyssal plain in the eastern North Pacific and from a single station in the Southern Ocean. The elemental composition of surface sedimentary organic matter (SOM) was also measured at each location, and sinking particulate organic matter (POMsink) was measured with moored sediment traps over a 110-d period at the abyssal site in the eastern North Pacific only. In addition to elemental compositions, C : N, C : P and N : P ratios were also calculated. Surface and deep ocean concentrations of dissolved organic matter (DOM) and inorganic nutrients between the two sites displayed distinct differences, although suspended POM (POMsusp) concentrations were similar. Concentrations of DOM and POMsusp displayed unique C, N and P distributions, with POMsusp concentrations generally about 1–2 orders of magnitude less than the corresponding DOM concentrations. These differences were likely influenced by different biogeochemical factors: whereas the dissolved constituents may have been influenced more by the physical regime of the study site, suspended particulate matter may have been controlled to a greater extent by biological and chemical alteration. Up to 80% of total particulate P in POMsusp, POMsink and SOM consisted of PIP. For all organic matter pools measured, elemental ratios reveal that organic P is preferentially remineralized over organic C and organic N at both sites. Increases in C : P and N : P ratios with depth were also observed for DOM at both sites, suggesting that DOP is also preferentially degraded over C and N as a function of depth. A simple one-dimensional vertical eddy diffusion model was applied to estimate the contributions of dissolved and suspended particulate organic C, N and P fluxes from the upper mixed layer into the permanent thermocline. Estimated vertical DOM fluxes were 28–63% of the total organic matter fluxes; POMsusp and POMsink fluxes were 8–20 and 28–52% of the total.  相似文献   

17.
To estimate the source and diagenetic state of organic matter reaching bottom sediments, fatty acids and sterols were measured in unconsolidated surface material (flocs) at 12 sites ranging from 600 to 2000 m across the mid-Atlantic continental slope off Cape Hatteras, North Carolina. Total free and esterefied fatty acids were similar in distribution and concentration to other coastal systems, with values ranging from 0.64 to 46.52 μg mg−1 organic carbon (1.10–68.85 μg g−1 dry sediment). Although shallow (600 m) stations contained significantly greater fatty acid concentrations than deep (> 1400m) stations, high variability observed at mid-depth (800 m) collections precluded a consistent relationship between total fatty acid concentration and station depth. At three sites where underlying sediments were also collected, decreases in total fatty acids, reduced amounts of polyenoic acids and significant presence of bacterial fatty acid suggest rapid reworking of labile organic material that reaches the sediment surface. The distribution of sterols was remarkably consistent among all sites even though there were large variations in concentrations (1.8–20.7 μg mg−1 organic carbon). Sterol composition indicated phytoplankton, principally diatoms and dinoflagellates, as the principal source of labile organic matter to sediments, together with a significant input of cholest-5-en-3β-ol typical of zooplankton and their feeding activity. A minor but widespread terrigenous input was also evident based upon significant concentrations of sterols dominant in vascular plants.  相似文献   

18.
Displaying “calculated minus observed” data for precise titrations of seawater with strong acid permits direct evaluation of important parameters and detection of systematic errors.At least two data sets from the GEOSECS (Geochemical Ocean Sections) program fit an equilibrium model (which includes carbonate, borate, sulfate, silicate, fluoride, and phosphate) within the most stringent experimental error, less than 2 μmol kg−1. The effect of various parameters on the fit of calculated to observed values depends strongly on pH. Although standard potential E0, total alkalinity At, total carbonate Ct, and first acidity constant of carbon dioxide pK1 are nearly independent, and can be determined for each data set, other parameters are strongly correlated. Within such groups, all but one parameter must be determined from data other than the titration curve.Adding an acid-base pair to the theoretical model (e.g. Cx=20 μmol kg−1, pKx=6.2) produces a deviation approaching 20 μmol kg−1 at constant Ct; however, adjustment of Ct by about −18 μmol kg−1 to produce a good fit leaves only ± 1.5 μmol kg−1 residual deviation from the reference values. Thus, at current standards of precision, an unidentified weak acid cannot be distinguished from carbonate purely on the basis of the titration curve shape.There are few full sets of numerical data published, and most show larger systematic errors (3–12 μmol l−1) than the above; one well-defined source is experiments performed in unsealed vessels. Total carbonate can be explicitly obtained as a function of pH by a rearrangement of the titration curve equation; this can reveal a systematic decrease in Ct in the pH range 5–6, as a result of CO2 gas loss from the titration vessel. Attempts to compensate for this by adjustment of At, Ct, or pK1 produce deviations which mimic those produced by an additional acid-base pair.Changing from the free H+ scale (for which [HSO4] and [HF] are explicit terms in the alkalinity) to the seawater scale (SWS) (where those terms are part of a constant factor multiplying [H+]) requires modification of the titration curve equation as well as adjustment of acidity constants. Even with this change, however, omission of pH-dependent terms in [HSO4] and [HF] produces small systematic errors at low pH.Shifts in liquid junction potential also introduce small systematic errors, but are significant only at pH <3. High-pH errors due to response of the glass electrode to Na+ as well as H+ can be adequately compensated to pH 9.5 by a linear selectivity expression.  相似文献   

19.
Coastal marine sediment, air and seawater samples were collected at six sampling stations in the Eastern Mediterranean Sea distant from pollutant point sources. All sediment samples were analyzed to determine polycyclic aromatic hydrocarbon (PAH), black carbon (BC) and organic carbon (OC) contents. The PAH contents of gaseous and seawater samples of the study were determined in order to evaluate the role of air–sea exchange as PAH nonpoint source to the marine sediments. The average concentration of the total PAHs (∑PAHs) in the sediments varied from 2.2 to 1056.2 ng g−1 dry weight. The average BC and OC contents varied from 0.3 to 5.6 and from 2.9 to 21.4 mg g−1 dry weight, respectively. ∑PAH concentration in the marine atmosphere varied from 20.0 to 83.2 ng m−3. Air–water exchange flux (FA–W) estimation has indicated air transport as a significant source of PAHs to pristine marine sediments of Eastern Mediterranean. In addition, the significant correlation between the PAHs and the organic and soot carbon content further suggests the importance of atmospheric input of PAHs to the sediments.  相似文献   

20.
An improved model is presented for the calculation of the solubility of carbon dioxide in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl, and SO42− in a wide temperature–pressure–ionic strength range (from 273 to 533 K, from 0 to 2000 bar, and from 0 to 4.5 molality of salts) with experimental accuracy. The improvements over the previous model [Duan, Z. and Sun, R., 2003. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533K and from 0 to 2000 bar. Chemical Geology, 193: 257–271] include: (1) By developing a non-iterative equation to replace the original equation of state in the calculation of CO2 fugacity coefficients, the new model is at least twenty times computationally faster and can be easily adapted to numerical reaction-flow simulator for such applications as CO2 sequestration and (2) By fitting to the new solubility data, the new model improved the accuracy below 288 K from 6% to about 3% of uncertainty but still retains the high accuracy of the original model above 288 K. We comprehensively evaluate all experimental CO2 solubility data. Compared with these data, this model not only reproduces all the reliable data used for the parameterization but also predicts the data that were not used in the parameterization. In order to facilitate the application to CO2 sequestration, we also predicted CO2 solubility in seawater at two-phase coexistence (vapor–liquid or liquid–liquid) and at three-phase coexistence (CO2 hydrate–liquid water–vapor CO2 [or liquid CO2]). The improved model is programmed and can be downloaded from the website http://www.geochem-model.org/programs.htm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号