首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous measurement of carbon dioxide exchange using the eddy covariance (EC) technique was made at two ChinaFLUX forest sites including the young subtropical Pinus plantation (Qianyanzhou) and old temperate broad-leaved Korean pine mixed forest (Changbai Mountains) as part of the ChinaFLUX network. Seasonal patterns and environmental control of ecosystem respiration in the subtropical and temperate forests were evaluated by the often-used multiplicative model and Q10 model as a function of temperature and soil water content. The resuits suggested that ( i ) temperature was found to be a dominant factor in the ecosystem respiration, and most of the temporal variability of ecosystem respiration was explained by temperature. However, in the drought-stressed ecosystem, soil water content controlled the temporal variability of ecosystem respiration other than temperature effects, and soil water content became a dominat factor when severe drought affected the ecosystem respiration; (ii) the regression models analysis revealed that in the drier soil, ecosystem respiration was more sensitive to soil moisture than was expressed by the often-used multiplicative model. It was possible to accurately estimate the seasonal variation of ecosystem respiration based on the Q10 model; and (iii)annual ecosystem respiration derived from the often-used multiplicative model was 1209 g C m-2and 1303 g C m-2, and was consistently a little higher than the Q10 model estimates of 1197 g C m-2 and 1268 g C m-2 for Qianyanzhou and Changbai Mountains, respectively.  相似文献   

2.
We measured soil, stem and branch respiration of trees and shrubs, foliage photosynthesis and respiration in ecosystem of the needle and broad-leaved Korean pine forest in Changbai Mountain by LI-6400 CO2 analysis system. Measurement of forest microclimate was conducted simultaneously and a model was found for the relationship of soil, stem, leaf and climate factors. CO2 flux of different components in ecosystem of the broad-leaved Korean pine forest was estimated based on vegetation characteristics. The net ecosystem exchange was measured by eddy covariance technique. And we studied the effect of temperature and photosynthetic active radiation on ecosystem CO2 flux. Through analysis we found that the net ecosystem exchange was affected mainly by soil respiration and leaf photosynthesis. Annual net ecosystem exchange ranged from a minimum of about ?4.671 μmol·m?2·s?1 to a maximum of 13.80 μmol·m?2·s?1, mean net ecosystem exchange of CO2 flux was ?2.0 μmol·m?2·s?1 and 3.9 μmol·m?2·s?1 in winter and summer respectively (mean value during 24 h). Primary productivity of tree, shrub and herbage contributed about 89.7%, 3.5% and 6.8% to the gross primary productivity of the broad-leaved Korean pine forest respectively. Soil respiration contributed about 69.7% CO2 to the broad-leaved Korean pine forest ecosystem, comprising about 15.2% from tree leaves and 15.1% from branches. The net ecosystem exchange in growing season and non-growing season contributed 56.8% and 43.2% to the annual CO2 efflux respectively. The ratio of autotrophic respiration to gross primary productivity (R a:GPP) was 0.52 (NPP:GPP=0.48). Annual carbon accumulation underground accounted for 52% of the gross primary productivity, and soil respiration contributed 60% to gross primary productivity. The NPP of the needle and broad-leaved Korean pine forest was 769.3 gC·m?2·a?1. The net ecosystem exchange of this forest ecosystem (NEE) was 229.51 gC·m?2·a?1. The NEE of this forest ecosystem acquired by eddy covariance technique was lower than chamber estimates by 19.8%.  相似文献   

3.
The impacts of temperature, photosynthetic active radiation (PAR) and vapor pressure deficit (VPD) on CO2 flux above broad-leaved Korean pine mixed forest in the Changbai Mountains were studied based on eddy covariance and meteorological factors measurements.The results showed that, daytime CO2 flux was mainly controlled by PAR and they fit Michaelis-Menten equation. Meanwhile VPD also had an influence on the daytime flux. Drier air reduced the CO2 assimilation of the ecosystem, the drier the air, the more the reduction of the assimilation. And the forest was more sensitive to VPD in June than that in July and August. The respiration of the ecosystem was mainly controlled by soil temperature and they fit exponential equation. It was found that this relationship was also correlated with seasons; respiration from April to July was higher than that from August to November under the same temperature. Daily net carbon exchange of the ecosystem and the daily mean air temperature fit exponential equation. It was also found that seasonal trend of net carbon exchange was the result of comprehensive impacts of temperature and PAR and so on. These resulted in the biggest CO2 uptake in June and those in July and August were next. Annual carbon uptake of the forest ecosystem in 2003 was -184 gC. m-2.  相似文献   

4.
The mechanism of the negative nighttime net CO2 flux in wintertime and reasonable treatment with it is of great importance in evaluating the carbon metabolism of boreal forest.Results, based on the data obtained with open-path eddy covariance system and CO2 profile measurement system from Nov. 2002 to Apr. 2003 and that obtained with five sonic anemometers in Nov. 1999, show that (1) the negative net ecosystem CO2 exchange flux (NEE) always appeared under conditions of strong wind; (2) the pressure fluctuation and horizontal advection flow are dominantly responsible for the negative NEE. Operable upper bound u* filtering method (UU* filtering) was introduced since the difficulties in real-time measuring of pressure fluctuation and horizontal advection fluxes under conditions of strong wind. Nighttime upper u* threshold for the broad-leaved Korean pine mixed forest of the Changbai Mountains is 0.4 ms-1 and can be applied to the daytime filtering; and (3) the UU* filtering corrected the nighttime ‘problem’ of negative NEE under strong wind and made the estimates more ecologically reasonable.  相似文献   

5.
As the third largest country in the world, China has highly variable environmental condition and eco logical pattern in both space and time. Quantification of the spatial-temporal pattern and dynamic of terrestrial ecosystem carbon cycle in China is of great significance to regional and global carbon budget. In this study, we used a high-resolution climate database and an improved ecosystem process-based model to quantify spatio-temporal pattern and dynamic of net ecosystem productivity (NEP) in China and its responses to climate change during 1981 to 2000. The results showed that NEP increased from north to south and from northeast to southwest. Positive NEP (carbon sinks) occurred in the west of Southwest China, southeastern Tibet, Sanjiang Plain, Da Hinggan Mountains and the mid-west of North China. Negative NEP (carbon sources) were mainly found in Central China, the south of Southwest China, the north of Xinjiang, west and north of Inner Mongolia, and parts of North China.From the 1980s to 1990s, the increasing trend of NEP occurred in the middle of Northeast China Plain and the Loess Plateau and decreasing trends mainly occurred in a greater part of Central China. In the study period, natural forests had minimal carbon uptake, while grassland and shrublands accounted for nearly three fourths of the total carbon terrestrial uptakes in China during 1981 -2000.  相似文献   

6.
Terrestrial ecosystems are both a carbon source and sink, therefore play an important role in the global carbon cycle that act as a link of interactions between human activities and climate changes[1,2]. Climate change impacts ecosystem carbon cycle through af- fecting biological processes, e.g. plant photosynthesis, respiration, and soil carbon decomposition. Land-use change directly modifies the distribution and structure of terrestrial ecosystems and hence the carbon storage and fluxes. Usi…  相似文献   

7.
As the third largest country in the world, China has highly variable environmental condition and ecological pattern in both space and time. Quantification of the spatial-temporal pattern and dynamic of terrestrial ecosystem carbon cycle in China is of great significance to regional and global carbon budget. In this study, we used a high-resolution climate database and an improved ecosystem process-based model to quantify spatio-temporal pattern and dynamic of net ecosystem productivity (NEP) in China and its responses to climate change during 1981 to 2000. The results showed that NEP increased from north to south and from northeast to southwest. Positive NEP (carbon sinks) occurred in the west of Southwest China, southeastern Tibet, Sanjiang Plain, Da Hinggan Mountains and the mid-west of North China. Negative NEP (carbon sources) were mainly found in Central China, the south of Southwest China, the north of Xinjiang, west and north of Inner Mongolia, and parts of North China. From the 1980s to 1990s, the increasing trend of NEP occurred in the middle of Northeast China Plain and the Loess Plateau and decreasing trends mainly occurred in a greater part of Central China. In the study period, natural forests had minimal carbon uptake, while grassland and shrublands accounted for nearly three fourths of the total carbon terrestrial uptakes in China during 1981–2000. Supported by the Ministry of Science and Technology of China (G2002CB412507), the Major Program of the National Natural Science Foundation of China (Grant No.30590384), the “Hundred Talent” Program of the Chinese Academy of Sciences, and K C WONE Education Foundation  相似文献   

8.
Continuous measurement of carbon dioxide exchange using the eddy covariance (EC) technique is made at the Qianyanzhou mid-subtropical planted forest as part of the ChinaFLUX network. Qianyanzhou planted forest is affected by typical subtropical continental monsoon climate. It has plentiful water and heat resource but is in inconsistency of its seasonal distribution in the mid-subtropical region, thus seasonal drought frequently occurs in this planted forest. In this study, seasonal drought effect on ecosystem carbon sequestration was analyzed based on net ecosystem productivity (NEP), ecosystem respiration (RE) and gross ecosystem productivity (GEP) at the month scale in 2003 and 2004. In this drought-stressed planted forest, ecosystem carbon sequestration showed a clear seasonality, with low rates during seasonal drought and in winter. The declining degree of ecosystem carbon sequestration under the seasonal drought condition was determined by the accumulation of soil moisture deficits and a co-occurrence of high temperatures. Different drought effects are expected for RE and GEP. The net effect of ecosystem carbon balance depends on how these two quantities are affected relatively to each other. Summer drought and heat wave are two aspects of weather that likely play an important part in the annual NEP of forest in this region.  相似文献   

9.
Continuous measurement of carbon dioxide exchange using the eddy covariance (EC) technique is made at the Qianyanzhou mid-subtropical planted forest as part of the ChinaFLUX net-work. Qianyanzhou planted forest is affected by typical subtropical continental monsoon climate. It has plentiful water and heat resource but is in inconsistency of its seasonal distribution in the mid-subtropical region, thus seasonal drought frequently occurs in this planted forest. In this study, seasonal drought effect on ecosystem carbon sequestration was analyzed based on net ecosystem productivity (NEP), ecosystem respiration (RE) and gross ecosystem productivity (GEP) at the month scale in 2003 and 2004. In this drought-stressed planted forest, ecosystem carbon sequestration showed a clear seasonality, with low rates during seasonal drought and in winter. The declining degree of ecosystem carbon sequestration under the seasonal drought condition was determined by the accumulation of soil moisture deficits and a co-occurrence of high temperatures. Different drought effects are expected for RE and GEP. The net effect of ecosystem carbon balance depends on how these two quantities are affected relatively to each other. Summer drought and heat wave are two aspects of weather that likely play an important part in the annual NEP of forest in this region.  相似文献   

10.
Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28′E and 42°24′N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of F NEE, F GPP and R E; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux.LAI and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter.The forest was a net sink of atmospheric CO2 and sequestered ?449 g C·m?2 during the study period; ?278 and ?171 gC·m?2 for 2003 and 2004 respectively. F GPP and F RE over 2003 and 2004 were ?1332, ?1294 g C·m?2. and 1054, 1124 g C·m?2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2.There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of F GPP, and 60.4, 62.1% of R E of the entire year.  相似文献   

11.

Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28′E and 42°24′N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of F NEE, F GPP and R E; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux.

LAI and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter.

The forest was a net sink of atmospheric CO2 and sequestered −449 g C·m−2 during the study period; −278 and −171 gC·m−2 for 2003 and 2004 respectively. F GPP and F RE over 2003 and 2004 were −1332, −1294 g C·m−2. and 1054, 1124 g C·m−2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2.

There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of F GPP, and 60.4, 62.1% of R E of the entire year.

  相似文献   

12.
Multiscale analysis of vegetation surface fluxes: from seconds to years   总被引:2,自引:0,他引:2  
The variability in land surface heat (H), water vapor (LE), and CO2 (or net ecosystem exchange, NEE) fluxes was investigated at scales ranging from fractions of seconds to years using eddy-covariance flux measurements above a pine forest. Because these fluxes significantly vary at all these time scales and because large gaps in the record are unavoidable in such experiments, standard Fourier expansion methods for computing the spectral and cospectral statistical properties were not possible. Instead, orthonormal wavelet transformations are proposed and used. The are ideal at resolving process variability with respect to both scale and time and are able to isolate and remove the effects of missing data (or gaps) from spectral and cospectral calculations. Using the spectra, we demonstrated unique aspects in three appropriate ranges of time scales: turbulent time scales (fractions of seconds to minutes), meteorological time scales (hour to weeks), and seasonal to interannual time scales corresponding to climate and vegetation dynamics. We have shown that: (1) existing turbulence theories describe the short time scales well, (2) coupled physiological and transport models (e.g. CANVEG) reproduce the wavelet spectral characteristics of all three land surface fluxes for meteorological time scales, and (3) seasonal dynamics in vegetation physiology and structure inject strong correlations between land surface fluxes and forcing variables at monthly to seasonal time scales. The broad implications of this study center on the possibility of developing low-dimensional models of land surface water, energy, and carbon exchange. If the bulk of the flux variability is dominated by a narrow band or bands of modes, and these modes “resonate” with key state and forcing variables, then low-dimensional models may relate these forcing and state variables to NEE and LE.  相似文献   

13.
Spatio-temporal patterns and driving mechanisms of forest carbon dioxide (CO2) exchange are the key issues on terrestrial ecosystem carbon cycles, which are the basis for developing and validating ecosystem carbon cycle models, assessing and predicting the role of forests in global carbon balance. Eddy covariance (EC) technique, an important method for measuring energy and material exchanges between terrestrial ecosystems and the atmosphere, has made a great contribution to understanding CO2 exchanges in the biosphere during the past decade. Here, we synthesized published EC flux measurements at various forest sites in the global network of eddy flux tower sites (FLUXNET) and regional flux networks. Our objective was to explore spatio-temporal patterns and driving factors on forest carbon fluxes, i.e. net ecosystem productivity (NEP), gross primary productivity (GPP) and total ecosystem respiration (TER). Globally, forest NEP exhibited a significant latitudinal pattern jointly controlled by GPP and TER. The NEP decreased in an order of warm temperate forest > cold temperate and tropical rain forests > boreal and subalpine forests. Mean annual temperature (MAT) made a greater contribution to forest carbon fluxes than sum of annual precipitation (SAP). As MAT increased, the GPP increased linearly, whereas the TER increased exponentially, resulting in the NEP decreasing beyond an MAT threshold of 20°C. The GPP, TER and NEP varied substantially when the SAP was less than 1500 mm, but tended to increase with increasing SAP. Temporal dynamics in forest carbon fluxes and determinants depended upon time scales. NEP showed a significant interannual variability mainly driven by climate fluctuations and different responses of the GPP and TER to environmental forcing. In a longer term, forest carbon fluxes had a significant age effect. The ecosystem was a net carbon source right after clearcutting, gradually switched to a net carbon sink when the relative stand age (i.e. ratio of actual stand age to the stand rotation age) approached 0.3, and maximized carbon sequestration capacity at premature or mature stand stages. This temporal pattern of NEP was correlated with stand leaf area index and associated GPP. This study highlights the significance of spatio-temporal dynamics in the CO2 exchange in forest carbon cycling studies. It is also suggested that in addition to forest biomes, interannual variations and stand age effects of forest carbon fluxes should be considered in the global carbon balance.  相似文献   

14.
Net radiation (Rn), water vapor flux (LE), sensible heat flux (Hs) and soil heat flux (G)were measured above a summer maize field with the eddy-covariance technique, simulation and analysis of water, heat fluxes and crop water use efficiency were made with the RZ-SHAW model at the same time in this study. The results revealed significant diurnal and seasonal variability of water vapor flux for summer maize. Most part of Rn was consumed by the evapotranspiration of the summer maize. The proportion of water vapor flux to net radiation ((LE/Rn) increased with the crop development and peaked around milk-filling stage with a value of 60%, a slightly lower than that obtained by the RZ-SHAW model. Daily evapotranspiration estimated by the model agreed with the results measured with the eddy-covariance technique, indices of agreement (IA) for hourly water vapor fluxes simulated and measured were above 0.75, root mean square errors (RMSE) were no more than 1.0. Diurnal patterns of Hs showed the shape of inverted "U" shifted to the forenoon with a maximum value around 11:30 (Beijing time), while LE exhibited an inverted "V" with a maximum value at around 13:00, about an hour later than Hs. Diurnal change of CO2showed an asymmetrical "V" curve and its maximal rates occurred at about 11:30. Variations of water use efficiency during the phonological stages of the summer maize showed a rapid increase with the photosynthetic photon flux density (PPFD) after sunrise, a state of equilibrium around 10:00 followed a decrease. Maximum values of water use efficiency were 24.3, and its average value ranged from 7.6 to 10.3 g kg-1.  相似文献   

15.
Advances in carbon flux observation and research in Asia   总被引:7,自引:0,他引:7  
As an important component of FLUXNET, Asia is increasingly becoming the hotspot in global carbon research for its vast territory, complex climate type and vegetation diversity. The present three regional flux observation networks in Asia (i.e. AsiaFlux, KoFlux and ChinaFLUX)have 54 flux observation sites altogether, covering tropic rainforest, evergreen broad-leaved forest, broad-leaved and coniferous mixed forest, shrubland, grassland, alpine meadow and cropland ecosystems with a latitudinal distribution from 2°N to 63°N. Long-term and continuous fluxes of carbon dioxide, water vapor and energy between the biosphere and atmosphere are mainly measured with eddy covariance technique to (1) quantify and compare the carbon, water and energy budgets across diverse ecosystems; (2) quantify the environmental and biotic controlling mechanism on ecosystem carbon, water and energy fluxes; (3) validate the soil-vegetation-atmosphere model; and (4) serve the integrated study of terrestrial ecosystem carbon and water cycle. Over the last decades, great advancements have been made in the theory and technology of flux measurement, ecosystem flux patterns, simulation and scale conversion by Asian flux community. The establishment of ChinaFLUX has greatly filled the gap of flux observation and research in Eurasia. To further promote the flux measurement and research,accelerate data sharing and improve the data quality, it is necessary to present a methodological system of flux estimation and evaluation over complex terrain and to develop the integrated research that combines the flux measurement, stable isotope measurement, remote sensing observation and GIS technique. It also requires the establishment of the Joint Committee of Asian Flux Network in the Asia-Pacific region in order to promote the cooperation and communication of ideas and data by supporting project scientists, workshops and visiting scientists.  相似文献   

16.
Increased nitrogen(N) deposition and land-use and land-cover change(LUCC) have influenced the terrestrial ecosystem carbon budget in China over the past few decades.However,the coupling effects of N deposition and LUCC on the carbon cycle remain unclear.This study first evaluated the effects of LUCC on N deposition based on estimated N deposition data from NO_2 column remote sensing data and the GlobeLand30 LUCC dataset,and then assessed the coupling effects of N deposition and LUCC on carbon budgets in China based on a terrestrial ecosystem process-based model.The results showed that the average rate of increase in N deposition in China was 0.35 Tg N yr~(-1)(Tg = 10~(12) g),which caused net primary production(NPP) and net ecosystem production(NEP) to rise by 92.2 Tg C yr~(-1) and 46.9 Tg C yr~(-1),respectively.The effects of LUCC reduced N deposition by 0.21 GgNyr~(-1)(Gg= 10~9g).The land changed from forest to cropland had the greatest rate of increase in N deposition among all types of land-cover change.Changes from cropland to forest slowed the rate of N deposition increase the most.Generally,the change in N deposition resulting from LUCC reduced NPP and NEP by 0.7 and 0.4 Gg C yr~(-1),respectively.Compared with the total effects of N deposition on NPP and NEP,N deposition changes caused by LUCC had a limited aggregate effect on the C budget.  相似文献   

17.
Roughness length and zero-plane displacement over three typical surfaces were calculated iteratively by least-square method, which are Yucheng Experimental Station for agriculture surfaces, Qianyanzhou Experimental Station for complex and undulant surfaces, and Changbai Mountains Experimental Station for forest surfaces. On the basis of roughness length dynamic, the effects of roughness length dynamic on fluxes were analyzed with SEBS model. The results indicate that, aerodynamic roughness length changes with vegetation conditions (such as vegetation height, LAI), wind speed, friction velocity and some other factors. In Yucheng and Changbai Mountains Experimental Station, aerodynamic roughness length over the fetch of flux tower changes with vegetation height and LAI obviously, that is, with the increase of LAI, roughness length increases to the peak value firstly, and then decreases. In Qianyanzhou Experimental Station, LAI changes slightly, so the relationship between roughness length and LAI is not obvious. The aerodynamic roughness length of Yucheng and Changbai Mountains Experimental Station changes slightly with wind direction, while aerodynamic roughness length of Qianyanzhou Experimental Station changes obviously with wind direction. The reason for that is the terrain in Yucheng and Changbai Mountains Experimental Station is relatively flat, while in Qianyanzhou Experimental Station the terrain is very undulant and heterogeneous. With the increase of wind speed, aerodynamic roughness length of Yucheng Experimental Station changes slightly, while it decreases obviously in Qianyanzhou Experimental Station and Changbai Mountains Experimental Station. Roughness length dynamic takes great effects on fluxes calculation, and the effects are analyzed by SEBS model. By comparing 1 day averaged roughness length in Yucheng Experimental Station and 5 day averaged roughness length of Qianyanzhou and Changbai Mountains Experimental Station with roughness length parameter chosen by the model, the effects of roughness length dynamic on flux calculation is analyzed. The maximum effect of roughness length dynamic on sensible heat flux is 2.726%, 33.802% and 18.105%, in Yucheng, Qianyanzhou, and Changbai Mountains experimental stations, respectively.  相似文献   

18.
Zhou  Yanlian  Sun  Xiaomin  Zhu  Zhilin  Zhang  Renhua  Tian  Jing  Liu  Yunfen  Guan  Dexin  Yuan  Guofu 《中国科学:地球科学(英文版)》2006,49(2):262-272

Roughness length and zero-plane displacement over three typical surfaces were calculated iteratively by least-square method, which are Yucheng Experimental Station for agriculture surfaces, Qianyanzhou Experimental Station for complex and undulant surfaces, and Changbai Mountains Experimental Station for forest surfaces. On the basis of roughness length dynamic, the effects of roughness length dynamic on fluxes were analyzed with SEBS model. The results indicate that, aerodynamic roughness length changes with vegetation conditions (such as vegetation height, LAI), wind speed, friction velocity and some other factors. In Yucheng and Changbai Mountains Experimental Station, aerodynamic roughness length over the fetch of flux tower changes with vegetation height and LAI obviously, that is, with the increase of LAI, roughness length increases to the peak value firstly, and then decreases. In Qianyanzhou Experimental Station, LAI changes slightly, so the relationship between roughness length and LAI is not obvious. The aerodynamic roughness length of Yucheng and Changbai Mountains Experimental Station changes slightly with wind direction, while aerodynamic roughness length of Qianyanzhou Experimental Station changes obviously with wind direction. The reason for that is the terrain in Yucheng and Changbai Mountains Experimental Station is relatively flat, while in Qianyanzhou Experimental Station the terrain is very undulant and heterogeneous. With the increase of wind speed, aerodynamic roughness length of Yucheng Experimental Station changes slightly, while it decreases obviously in Qianyanzhou Experimental Station and Changbai Mountains Experimental Station. Roughness length dynamic takes great effects on fluxes calculation, and the effects are analyzed by SEBS model. By comparing 1 day averaged roughness length in Yucheng Experimental Station and 5 day averaged roughness length of Qianyanzhou and Changbai Mountains Experimental Station with roughness length parameter chosen by the model, the effects of roughness length dynamic on flux calculation is analyzed. The maximum effect of roughness length dynamic on sensible heat flux is 2.726%, 33.802% and 18.105%, in Yucheng, Qianyanzhou, and Changbai Mountains experimental stations, respectively.

  相似文献   

19.
Using data from eddy covariance measurements in a subtropical coniferous forest, a test and evaluation have been made for the model of Carbon Exchange in the Vegetation-Soil-Atmosphere (CEVSA) that simulates energy transfers and water, carbon and nitrogen cycles based on ecophysiological processes. In the present study, improvement was made in the model in calculating LAI, carbon allocation among plant organs, litter fall, decomposition and evapotranspiration. The simulated seasonal variations in carbon and water vapor flux were consistent with the measurements. The model explained 90% and 86% of the measured variations in evapotranspiration and soil water content. However, the modeled evapotranspiration and soil water content were lower than the measured systematically, because the model assumed that water was lost as runoff if it was beyond the soil saturation water content, but the soil at the flux site with abundant rainfall is often above water saturated. The improved model reproduced 79% and 88% of the measured variations in gross primary production (GPP) and ecosystem respiration (Re), but only 31% of the variations in measured net ecosystem exchange (NEP) despite the fact that the modeled annual NEP was close to the observation. The modeled NEP was generally lower in winter and higher in summer than the observations. The simulated responses of photosynthesis and respiration to water vapor deficit at high temperatures were different from measurements. The results suggested that the improved model underestimated ecosystem photosynthesis and respiration in extremely condition. The present study shows that CEVSA can simulate the seasonal pattern and magnitude of CO2 and water vapor fluxes, but further improvement in simulating photosynthesis and respiration at extreme temperatures and water deficit is required.  相似文献   

20.
The projected changes in carbon exchange between China terrestrial ecosystem and the atmosphere and vegetation and soil carbon storage during the 21st century were investigated using an atmos-phere-vegetation interaction model (AVIM2). The results show that in the coming 100 a, for SRES B2 scenario and constant atmospheric CO2 concentration, the net primary productivity (NPP) of terrestrial ecosystem in China will be decreased slowly, and vegetation and soil carbon storage as well as net ecosystem productivity (NEP) will also be decreased. The carbon sink for China terrestrial ecosystem in the beginning of the 20th century will become totally a carbon source by the year of 2020, while for B2 scenario and changing atmospheric CO2 concentration, NPP for China will increase continuously from 2.94 GtC·a?1 by the end of the 20th century to 3.99 GtC·a?1 by the end of the 21st century, and vegetation and soil carbon storage will increase to 110.3 GtC. NEP in China will keep rising during the first and middle periods of the 21st century, and reach the peak around 2050s, then will decrease gradually and approach to zero by the end of the 21st century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号