首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth system and how humans will need to adapt. Our holistic review presents a broad array of evidence that illustrates convincingly; the Arctic is undergoing a system-wide response to an altered climatic state. New extreme and seasonal surface climatic conditions are being experienced, a range of biophysical states and processes influenced by the threshold and phase change of freezing point are being altered, hydrological and biogeochemical cycles are shifting, and more regularly human sub-systems are being affected. Importantly, the patterns, magnitude and mechanisms of change have sometimes been unpredictable or difficult to isolate due to compounding factors. In almost every discipline represented, we show how the biocomplexity of the Arctic system has highlighted and challenged a paucity of integrated scientific knowledge, the lack of sustained observational and experimental time series, and the technical and logistic constraints of researching the Arctic environment. This study supports ongoing efforts to strengthen the interdisciplinarity of arctic system science and improve the coupling of large scale experimental manipulation with sustained time series observations by incorporating and integrating novel technologies, remote sensing and modeling.  相似文献   

2.
Ecosystem stewardship is a framework for actively shaping trajectories of ecological and social change to foster a more sustainable future for species, ecosystems, and society. We apply this framework to conservation challenges and opportunities in the Arctic, where the rapid pace of human-induced changes and their interactions force us now to consider a new relationship between people and the rest of nature. Biodiversity, which has traditionally been the target of conservation efforts, is increasingly affected by human impacts such as energy demand and industrial development that are motivated more by short-term profits than by concerns for societal consequences of long-term arctic biodiversity change. We posit that effective approaches to conservation must (a) foster both ecosystem resilience and human wellbeing, (b) integrate ecological and social processes across scales, and (c) take actions that shape the future rather than seeking only to restore the past. To this end, we identify progress through actions that have been or could be taken at local, national, and international scales to promote arctic resilience and conservation. A stewardship approach to conservation aims to prevent undesirable changes and prepares for adaptation to rapid and uncertain changes that cannot be avoided and for transformation to avoid or escape undesirable states. The greatest opportunity for arctic stewardship at the local scale may lie in building upon culturally engrained (often indigenous) respect for nature and reliance on local environment, empowering it through knowledge and power sharing with national regulatory frameworks. This, in turn, allows connection of drivers with impacts across scales and raises awareness of the value of human–environment relationships. At national and international scales stewardship provides rules for coordinated action to reconcile local and regional conservation actions with those that are motivated by constraints at the global level, to foster ecosystem integrity and human wellbeing in the face of transformative changes in environment, landscapes, species, and society.  相似文献   

3.
Arctic sea ice and Eurasian climate: A review   总被引:12,自引:0,他引:12  
The Arctic plays a fundamental role in the climate system and has shown significant climate change in recent decades,including the Arctic warming and decline of Arctic sea-ice extent and thickness. In contrast to the Arctic warming and reduction of Arctic sea ice, Europe, East Asia and North America have experienced anomalously cold conditions, with record snowfall during recent years. In this paper, we review current understanding of the sea-ice impacts on the Eurasian climate.Paleo, observational and modelling studies are covered to summarize several major themes, including: the variability of Arctic sea ice and its controls; the likely causes and apparent impacts of the Arctic sea-ice decline during the satellite era,as well as past and projected future impacts and trends; the links and feedback mechanisms between the Arctic sea ice and the Arctic Oscillation/North Atlantic Oscillation, the recent Eurasian cooling, winter atmospheric circulation, summer precipitation in East Asia, spring snowfall over Eurasia, East Asian winter monsoon, and midlatitude extreme weather; and the remote climate response(e.g., atmospheric circulation, air temperature) to changes in Arctic sea ice. We conclude with a brief summary and suggestions for future research.  相似文献   

4.
Recently much concern has been expressed regarding the impact of an increased atmospheric CO2 concentration on climate. Unfortunately, present understanding and models of the climate system are not good enough for reliable prediction of such impacts. This paper presents an analysis of recent climate data in order to illustrate the nature of regional temperature and rainfall changes in different seasons and to provide some guidance with regard to points which might be borne in mind when scenarios of future climate (especially those taking into account human impacts) are being formulated.Since it is believed that an increased atmospheric CO2 concentration will cause a warming and models and data suggest that the Arctic is more sensitive to climatic change than other latitudes, anomalies associated with warm Arctic seasons have been studied.The regional temperature, precipitation and pressure anomalies in the northern hemisphere for the 10 warmest Arctic winters and 10 warmest Arctic summers during the last 70 years have been investigated. Even when the Arctic area is warm, there are circulation changes such that large coherent anomalies occur elsewhere, with some regions warming and some cooling. The 10 warmest Arctic winters were characterised by larger amplitude anomalies, in the Arctic and elsewhere, than the 10 warmest summers, illustrating the difference in response between seasons. The precipitation differences for the 10 warmest Arctic winters and summers show for North America large coherent areas of increase or decrease, which again differ according to season. However, in winter the differences are not statistically significant, while the differences in two areas are significant in summer.  相似文献   

5.
北极涛动的年代际变化及其气候影响   总被引:1,自引:0,他引:1       下载免费PDF全文
北极涛动(Arctic Oscillation,AO)是北半球热带外地区大气环流变率的主导模态,对北半球以及区域尺度气温变化具有重要影响.AO可在没有外强迫条件下通过d波流相互作用形成,因此它被认为是全球气候系统内部变率的重要组成部分.研究年代际尺度上AO的变化及其气候影响,可加深对当前北半球气候变化规律的物理理解,也...  相似文献   

6.
Most discussions of impacts of Climate Change have focused on species from temperate or polar regions. Impacts to species inhabiting warm climates are often believed to be small relative to those of species living in cooler climates. However, it is evident that some tropical/sub-tropical species, including some marine megafauna may face potentially serious consequences from a changing climate. For example, larger, warmer oceans may appear to benefit marine wildlife species like cold-sensitive Florida manatees; however, findings regarding the impact of global climate change (GCC) on estuaries and nearshore areas of Florida indicate that predicted impacts of climate change may be detrimental to endangered manatees. An examination of how projected impacts of climate change will affect threats to manatees and their habitat indicates that threats may be exacerbated. The most significant threats to the Florida manatee population, such as cold-stress, watercraft collisions, and harmful algal blooms likely will increase. Habitat is likely to be degraded under future climate scenarios. Alterations to Florida’s marine environment are ongoing, yet current manatee management plans do not consider the impacts of climate change. The ability of manatees to adapt to change will be influenced by the speed of change and the degree to which human activity impedes or alters it. To minimize impacts to species we must recognize the influence GCC may have on populations, and begin to identify and implement ways to slow or reverse negative impacts arising from it.  相似文献   

7.
Peacebuilding countries are concentrated in areas of heightened vulnerability to climate change impacts, and almost certainly lack the capacity to manage these impacts. In spite of this overlap, climate change adaptation and mitigation projects are typically excluded from peacebuilding activities. This is particularly alarming given that many analysts believe climate change will trigger, amplify or perpetuate humanitarian crises, population displacement, political extremism and violent conflict in the regions in which most peacebuilding operations take place. This paper investigates opportunities for integrating climate change into peacebuilding. It identifies three obstacles to this integration—the lack of climate change tools and policies that can be easily introduced into typical peacebuilding programming; the skepticism and complacency of the donor community; and tensions between the objectives and timeframes of peacebuilding and those of climate change response. The paper then examines opportunities to integrate climate change into four principal programmatic areas of peacebuilding—socio-economic recovery, politics and governance, security and rule of law, and human rights—and concludes that more attention needs to be given to these opportunities in order to build resilience and reduce the likelihood of more daunting and costly challenges in the future.  相似文献   

8.
We explore the potential to improve understanding of the climate system by directly targeting climate model analyses at specific indicators of climate change impact. Using the temperature suitability of premium winegrape cultivation as a climate impacts indicator, we quantify the inter- and intra-ensemble spread in three climate model ensembles: a physically uniform multi-member ensemble consisting of the RegCM3 high-resolution climate model nested within the NCAR CCSM3 global climate model; the multi-model NARCCAP ensemble consisting of single realizations of multiple high-resolution climate models nested within multiple global climate models; and the multi-model CMIP3 ensemble consisting of realizations of multiple global climate models. We find that the temperature suitability for premium winegrape cultivation is substantially reduced throughout the high-value growing areas of California and the Columbia Valley region (eastern Oregon and Washington) in all three ensembles in response to changes in temperature projected for the mid-twenty first century period. The reductions in temperature suitability are driven primarily by projected increases in mean growing season temperature and occurrence of growing season severe hot days. The intra-ensemble spread in the simulated climate change impact is smaller in the single-model ensemble than in the multi-model ensembles, suggesting that the uncertainty arising from internal climate system variability is smaller than the uncertainty arising from climate model formulation. In addition, the intra-ensemble spread is similar in the NARCCAP nested climate model ensemble and the CMIP3 global climate model ensemble, suggesting that the uncertainty arising from the model formulation of fine-scale climate processes is not smaller than the uncertainty arising from the formulation of large-scale climate processes. Correction of climate model biases substantially reduces both the inter- and intra-ensemble spread in projected climate change impact, particularly for the multi-model ensembles, suggesting that—at least for some systems—the projected impacts of climate change could be more robust than the projected climate change. Extension of this impacts-based analysis to a larger suite of impacts indicators will deepen our understanding of future climate change uncertainty by focusing on the climate phenomena that most directly influence natural and human systems.  相似文献   

9.
Temperature inversions are a common feature of the Arctic wintertime boundary layer. They have important impacts on both radiative and turbulent heat fluxes and partly determine local climate-change feedbacks. Understanding the spread in inversion strength modelled by current global climate models is therefore an important step in better understanding Arctic climate and its present and future changes. Here, we show how the formation of Arctic air masses leads to the emergence of a cloudy and a clear state of the Arctic winter boundary layer. In the cloudy state, cloud liquid water is present, little to no surface radiative cooling occurs and inversions are elevated and relatively weak, whereas surface radiative cooling leads to strong surface-based temperature inversions in the clear state. Comparing model output to observations, we find that most climate models lack a realistic representation of the cloudy state. An idealised single-column model experiment of the formation of Arctic air reveals that this bias is linked to inadequate mixed-phase cloud microphysics, whereas turbulent and conductive heat fluxes control the strength of inversions within the clear state.  相似文献   

10.
Anthropogenic greenhouse gas emissions that induce changes in the Earth’s climate affect particular variables and locations differently. A key part of this difference is the timescale at which this change takes place, which will eventually have important consequences for adaptation requirements. This idea of timescale associated with climate change has been used several times in the past to estimate the urgency of adaptation in particular regions. The definition of climate-change timescale is, however, not unique. For example, we can think of it in terms of an expected trend (e.g. in temperature) reaching a given threshold, or think of it in terms of the time it may take this trend to become statistically significant. We may also wonder about the validity of this speculation given that, due to natural variability, the expected trend may in fact not be realized. In this article we explore alternative ways of defining the timescale of climate-change, compare their properties, and illustrate them with an example for the case of projected surface temperature over North America. It is shown that these timescales are analytically related but may differ substantially in magnitude under certain conditions. In particular, it is shown that climate change impact on vulnerable systems may arrive before statistical detection of the variable’s trend takes place. This fact may have implications on how climate change impacts are seen by those with diverging interests.  相似文献   

11.
Climate change will have serious repercussions for agriculture, ecosystems, and farmer livelihoods in Central America. Smallholder farmers are particularly vulnerable due to their reliance on agriculture and ecosystem services for their livelihoods. There is an urgent need to develop national and local adaptation responses to reduce these impacts, yet evidence from historical climate change is fragmentary. Modeling efforts help bridge this gap. Here, we review the past decade of research on agricultural and ecological climate change impact models for Central America. The results of this review provide insights into the expected impacts of climate change and suggest policy actions that can help minimize these impacts. Modeling indicates future climate-driven changes, often declines, in suitability for Central American crops. Declines in suitability for coffee, a central crop in the regional economy, are noteworthy. Ecosystem models suggest that climate-driven changes are likely at low- and high-elevation montane forest transitions. Modeling of vulnerability suggests that smallholders in many parts of the region have one or more vulnerability factors that put them at risk. Initial adaptation policies can be guided by these existing modeling results. At the same time, improved modeling is being developed that will allow policy action specifically targeted to vulnerable groups, crops, and locations. We suggest that more robust modeling of ecological responses to climate change, improved representation of the region in climate models, and simulation of climate influences on crop yields and diseases (especially coffee leaf rust) are key priorities for future research.  相似文献   

12.
Hu  Didi  Xu  Min  Kang  Shichang  Wu  Hao 《Theoretical and Applied Climatology》2022,148(3-4):1663-1674
Theoretical and Applied Climatology - Runoff in the Arctic region has changed greatly under climate change and human activities. However, the quantitative impacts remain unclear in this region. In...  相似文献   

13.
Invasive species and climate change: an agronomic perspective   总被引:2,自引:0,他引:2  
In the current review we wish to draw attention to an additional aspect of invasive species and climate change, that of agricultural productivity and food security. We recognize that at present, such a review remains, in part, speculative, and more illustrative than definitive. However, recent events on the global stage, particularly in regard to the number of food riots that occurred during 2008, even at a time of record harvests, have prompted additional interest in those factors, including invasive species, which could, through climatic uncertainty, alter food production. To that end, as agricultural scientists, we wish to begin an initial evaluation of key questions related to food production and climate change including: how vulnerable is agriculture to invasive species?; are current pest management strategies sufficient to control invasive outbreaks in the future?; what are the knowledge gaps?; can we provide initial recommendations for scientists, land managers and policy makers in regard to available resources? Our overall goals are to begin a synthesis of potential impacts on productivity, to identify seminal research areas that can be addressed in future research, and to provide the scientific basis to allow agronomists and land managers to formulate mitigation and adaptation options regarding invasive species and climate change as a means to maintain food security.  相似文献   

14.
Climate change presents clear risks to natural resources, which carry potential economic costs. The limited nature of physical, financial, human and natural resources means that governments, as managers of natural resources, must make careful decisions regarding trade-offs and the potential future value of investments in climate change adaptation. This paper presents cost-benefit analysis of scenarios to characterise economic benefits of adaptation from the perspective of a public institution (the provincial government) and private agents (forest licensees). The example provided is the context of assisted migration strategies for regenerating forests that are currently being implemented in British Columbia to reduce future impacts of climate change on forests. The analysis revealed positive net present value of public investment in assisted migration across all scenarios under a range of conditions; however, private sector agents face disincentives to adopt these strategies. Uncertainty about how the costs, benefits and risks associated with climate change impacts will be distributed among public institutions and private actors influences incentives to adapt to climate change (the “principal-agent problem”) and further complicates adaptation. Absent development of risk-sharing mechanisms or re-alignment of incentives, uptake of assisted migration strategies by private agents is likely to be limited, creating longer-term risks for public institutions. Analyzing incentives and disincentives facing principals and agents using a well-known tool (cost-benefit analysis) can help decision-makers to identify and address underlying barriers to climate change adaptation in the context of public lands management.  相似文献   

15.
Dramatic climatic change in the Arctic elevates the importance of determining the risk of exposure for people living in vulnerable areas and developing effective adaptation programs. Climate change assessment reports are valuable, and often definitive, sources of information for decision makers when constructing adaptation plans, yet the scope of these reports is too coarse to identify site-specific exposure to the impacts of climate change and adaptation needs. Subsistence hunters and gatherers in the Arctic are valuable knowledge holders of climate-related change in their area. Incorporating both their traditional ecological knowledge and information found in climate science assessment reports can offer adaption planners a deeper understanding of exposure to climate change and local adaptation needs. In this study, we compare information found in assessment reports of climate change in the Arctic with what we have learned from the Alaskans Sharing Indigenous Knowledge project from 2009 to 2012, a research project documenting traditional ecological knowledge in two Native villages in Alaska, Savoonga and Shaktoolik. Content analysis of the interviews with hunters and gatherers reveal the site-specific impacts of climate change affecting these two villages. We find that their traditional ecological knowledge is complimentary and largely corroborates the climate science found in assessment reports. Traditional ecological knowledge, however, is more current to the social and local conditions of the villages, and presents a more unified social and biophysical portrayal of the impacts of climate change. If taken together, these two forms of knowledge can focus adaptation planning on the pertinent needs of the communities in question.  相似文献   

16.
Climate change affects biophysical processes related to the transmission of many infectious diseases, with potentially adverse consequences for the health of communities. While our knowledge of biophysical associations between meteorological factors and disease is steadily improving, our understanding of the social processes that shape adaptation to environmental perturbations lags behind. Using computational modeling methods, we explore the ways in which social cohesion can affect adaptation of disease prevention strategies when communities are exposed to different environmental scenarios that influence transmission pathways for diseases such as diarrhea. We developed an agent-based model in which household agents can choose between two behavioral strategies that offer different levels of protection against environmentally mediated disease transmission. One behavioral strategy is initially set as more protective, leading households to adopt it widely, but its efficacy is sensitive to variable weather conditions and stressors such as floods or droughts that modify the disease transmission system. The efficacy of the second strategy is initially moderate relative to the first and is insensitive to environmental changes. We examined how social cohesion (defined as average number of household social network connections) influences health outcomes when households attempt to identify an optimal strategy by copying the behaviors of socially connected neighbors who seem to have adapted successfully in the past. Our simulation experiments suggest that high-cohesion communities are able to rapidly disseminate the initially optimal behavioral strategy compared to low-cohesion communities. This rapid and pervasive change, however, decreases behavioral diversity; i.e., once a high cohesion community settles on a strategy, most or all households adopt that behavior. Following environmental changes that reduce the efficacy of the initially optimal strategy, rendering it suboptimal relative to the alternative strategy, high-cohesion communities can fail to adapt. As a result, despite faring better early in the course of computational experiments, high-cohesion communities may ultimately experience worse outcomes. In the face of uncertainty in predicting future environmental stressors due to climate change, strategies to improve effective adaptation to optimal disease prevention strategies should balance between intervention efforts that promote protective behaviors based on current scientific understanding and the need to guard against the crystallization of inflexible norms. Developing generalizable models allows us to integrate a wide range of theories and multiple datasets pertaining to the relationship between social mechanisms and adaptation, which can provide further understanding of future climate change impacts. Models such as the one we present can generate hypotheses about the mechanisms that underlie the dynamics of adaptation events and suggest specific points of measurement to assess the impact of these mechanisms. They can be incorporated as modules within predictive simulations for specific socio-ecological contexts.  相似文献   

17.
18.
Potential global climate change impacts on hydrology pose a threat to water resources systems throughout the world. The California water system is especially vulnerable to global warming due to its dependence on mountain snow accumulation and the snowmelt process. Since 1983, more than 60 studies have investigated climate change impacts on hydrology and water resources in California. These studies can be categorized in three major fields: (1) Studies of historical trends of streamflow and snowpack in order to determine if there is any evidence of climate change in the geophysical record; (2) Studies of potential future predicted effects of climate change on streamflow and; (3) Studies that use those predicted changes in natural runoff to determine their economic, ecologic, or institutional impacts. In this paper we review these studies with an emphasis on methodological procedures. We provide for each category of studies a summary of significant conclusions and potential areas for future work.  相似文献   

19.
This paper considers how farmers perceive and respond to climate change policy risks, and suggests that understanding these risk responses is as important as understanding responses to biophysical climate change impacts. Based on a survey of 162 farmers in California, we test three hypotheses regarding climate policy risk: (1) that perceived climate change risks will have a direct impact on farmer's responses to climate policy risks, (2) that previous climate change experiences will influence farmer's climate change perceptions and climate policy risk responses, and (3) that past experiences with environmental policies will more strongly affect a farmer's climate change beliefs, risks, and climate policy risk responses. Using a structural equation model we find support for all three hypotheses and furthermore show that farmers’ negative past policy experiences do not make them less likely to respond to climate policy risks through participation in a government incentive program. We discuss how future research and climate policies can be structured to garner greater agricultural participation. This work highlights that understanding climate policy risk responses and other social, economic and policy perspectives is a vital component of understanding climate change beliefs, risks and behaviors and should be more thoroughly considered in future work.  相似文献   

20.
Climate change impacts, adaptation and vulnerability studies tend to confine their attention to impacts and responses within the same geographical region. However, this approach ignores cross-border climate change impacts that occur remotely from the location of their initial impact and that may severely disrupt societies and livelihoods. We propose a conceptual framework and accompanying nomenclature for describing and analysing such cross-border impacts. The conceptual framework distinguishes an initial impact that is caused by a climate trigger within a specific region. Downstream consequences of that impact propagate through an impact transmission system while adaptation responses to deal with the impact propagate through a response transmission system. A key to understanding cross-border impacts and responses is a recognition of different types of climate triggers, categories of cross-border impacts, the scales and dynamics of impact transmission, the targets and dynamics of responses and the socio-economic and environmental context that also encompasses factors and processes unrelated to climate change. These insights can then provide a basis for identifying relevant causal relationships. We apply the framework to the floods that affected industrial production in Thailand in 2011, and to projected Arctic sea ice decline, and demonstrate that the framework can usefully capture the complex system dynamics of cross-border climate impacts. It also provides a useful mechanism to identify and understand adaptation strategies and their potential consequences in the wider context of resilience planning. The cross-border dimensions of climate impacts could become increasingly important as climate changes intensify. We conclude that our framework will allow for these to be properly accounted for, help to identify new areas of empirical and model-based research and thereby support climate risk management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号