首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with numerical tests of several rock physical relationships. The focus is on effective velocities and scattering attenuation in 3D fractured media. We apply the so‐called rotated staggered finite‐difference grid (RSG) technique for numerical experiments. Using this modified grid, it is possible to simulate the propagation of elastic waves in a 3D medium containing cracks, pores or free surfaces without applying explicit boundary conditions and without averaging the elastic moduli. We simulate the propagation of plane waves through a set of randomly cracked 3D media. In these numerical experiments we vary the number and the distribution of cracks. The synthetic results are compared with several (most popular) theories predicting the effective elastic properties of fractured materials. We find that, for randomly distributed and randomly orientated non‐intersecting thin penny‐shaped dry cracks, the numerical simulations of P‐ and S‐wave velocities are in good agreement with the predictions of the self‐consistent approximation. We observe similar results for fluid‐filled cracks. The standard Gassmann equation cannot be applied to our 3D fractured media, although we have very low porosity in our models. This is explained by the absence of a connected porosity. There is only a slight difference in effective velocities between the cases of intersecting and non‐intersecting cracks. This can be clearly demonstrated up to a crack density that is close to the connectivity percolation threshold. For crack densities beyond this threshold, we observe that the differential effective‐medium (DEM) theory gives the best fit with numerical results for intersecting cracks. Additionally, it is shown that the scattering attenuation coefficient (of the mean field) predicted by the classical Hudson approach is in excellent agreement with our numerical results.  相似文献   

2.
We study the propagation of elastic waves that are generated in a fluid‐filled borehole surrounded by a cracked transversely isotropic medium. In the model studied the anisotropy and borehole axes coincide. To obtain the effective elastic moduli of a cracked medium we have applied Hudson's theory that enables the determination of the overall properties as a function of the crack orientation in relation to the symmetry axis of the anisotropic medium. This theory takes into account the hydrodynamic mechanism of the elastic‐wave attenuation caused by fluid filtration from the cracks into a porous matrix. We have simulated the full waveforms generated by an impulse source of finite length placed on the borehole axis. The kinematic and dynamic parameters of the compressional, shear and Stoneley waves as functions of the matrix permeability, crack orientation and porosity were studied. The modelling results demonstrated the influence of the crack‐system parameters (orientation and porosity) on the velocities and amplitudes of all wave types. The horizontally orientated cracks result in maximal decrease of the elastic‐wave parameters (velocities and amplitudes). Based on the fact that the shear‐ and Stoneley‐wave velocities in a transversely isotropic medium are determined by different shear moduli, we demonstrate the feasibility of the acoustic log to identify formations with close to horizontal crack orientations.  相似文献   

3.
The previous finite‐difference numerical schemes designed for direct application to second‐order elastic wave equations in terms of displacement components are strongly dependent on Poisson's ratio. This fact makes theses schemes useless for modelling in offshore regions or even in onshore regions where there is a high Poisson's ratio material. As is well known, the use of staggered‐grid formulations solves this drawback. The most common staggered‐grid algorithms apply central‐difference operators to the first‐order velocity–stress wave equations. They have been one of the most successfully applied numerical algorithms for seismic modelling, although these schemes require more computational memory than those mentioned based on second‐order wave equations. The goal of the present paper is to develop a general theory that enables one to formulate equivalent staggered‐grid schemes for direct application to hyperbolic second‐order wave equations. All the theory necessary to formulate these schemes is presented in detail, including issues regarding source application, providing a general method to construct staggered‐grid formulations to a wide range of cases. Afterwards, the equivalent staggered‐grid theory is applied to anisotropic elastic wave equations in terms of only velocity components (or similar displacements) for two important cases: general anisotropic media and vertical transverse isotropy media using, respectively, the rotated and the standard staggered‐grid configurations. For sake of simplicity, we present the schemes in terms of velocities in the second‐ and fourth‐order spatial approximations, with second‐order approximation in time for 2D media. However, the theory developed is general and can be applied to any set of second‐order equations (in terms of only displacement, velocity, or even stress components), using any staggered‐grid configuration with any spatial approximation order in 2D or 3D cases. Some of these equivalent staggered‐grid schemes require less computer memory than the corresponding standard staggered‐grid formulation, although the programming is more evolved. As will be shown in theory and practice, with numerical examples, the equivalent staggered‐grid schemes produce results equivalent to corresponding standard staggered‐grid schemes with computational advantages. Finally, it is important to emphasize that the equivalent staggered‐grid theory is general and can be applied to other modelling contexts, e.g., in electrodynamical and poroelastic wave propagation problems in a systematic and simple way.  相似文献   

4.
裂缝介质旋转交错网格正演模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
吴国忱  秦海旭 《地震学报》2014,36(6):1075-1088
油气勘探实践表明, 裂缝是油气的储存空间或运移通道, 裂缝介质地震波场的研究越来越受到关注. 实际地层中裂缝形成受多种因素控制, 物理属性比较复杂, 表现出强烈的各向异性. 由于上覆地层的压力使得水平或低陡倾角裂缝存在较少, 大多数为高陡倾角裂缝, 利用线性滑动裂缝介质的等效理论将高陡倾角裂缝介质等效为横向各向同性介质, 便于实际应用. 本文采用各向异性弹性波旋转交错网格模拟方法对含裂缝介质单炮记录进行模拟与分析. 结果表明: 裂缝的存在相当于人为增加反射界面; 裂缝密度越大, 裂缝纵横比越小, 裂缝充填物与背景介质弹性性质差别越大, 引起的反射波能量变化越大. 本文模拟结果为利用地震数据进行裂缝介质参数反演与储层识别及油气预测提供了依据.   相似文献   

5.
Differential effective medium theory has been applied to determine the elastic properties of porous media. The ordinary differential equations for bulk and shear moduli are coupled and it is more difficult to obtain accurate analytical formulae about the moduli of dry porous rock. In this paper, in order to decouple these equations we first substitute an analytical approximation for the dry‐rock modulus ratio into the differential equation and derive analytical solutions of the bulk and shear moduli for dry rock with three specific pore shapes: spherical pores, needle‐shaped pores and penny‐shaped cracks. Then, the validity of the analytical approximations is tested by integrating the full differential effective medium equation numerically. The analytical formulae give good estimates of the numerical results over the whole porosity range for the cases of the three given pore shapes. These analytical formulae can be further simplified under the assumption of small porosity. The simplified formulae for spherical pores are the same as Mackenzie's equations. The analytical formulae are relatively easy to analyse the relationship between the elastic moduli and porosity or pore shapes and can be used to invert some rock parameters such as porosity or pore aspect ratio. The predictions of the analytical formulae for experimental data show that the formulae for penny‐shaped cracks are suitable to estimate the elastic properties of micro‐crack rock such as granite, they can be used to estimate the crack aspect ratio while the crack porosity is known and also to estimate the crack porosity evolution with pressure if the crack aspect ratio is given.  相似文献   

6.
利用随机过程的谱展开理论以及Hudson等人的裂纹介质模型构造一种裂纹数密度是空间平稳随机过程的随机介质模型。这个模型可以将裂纹的微观参数(裂纹数密度)与裂纹介质的宏观性质(弹性常数)联系起来,能灵活、有效地描述实际非均匀裂纹介质。模型算例表明,弹性常数的空问分布特征与裂纹数密度的有差别,而且对不同的弹性常数影响不同。通过改编自相关长度的大小,可以模拟裂缝在两个坐标轴方向上具有不同分布尺度的情况。最后,利用高阶的交错网格有限差分方法,我们模拟了地震波在具有随机分布裂缝岩石中的传播特征。  相似文献   

7.
We present a discrete modelling scheme which solves the elastic wave equation on a grid with vertically varying grid spacings. Spatial derivatives are computed by finite-difference operators on a staggered grid. The time integration is performed by the rapid expansion method. The use of variable grid spacings adds flexibility and improves the efficiency since different spatial sampling intervals can be used in regions with different material properties. In the case of large velocity contrasts, the use of a non-uniform grid avoids spatial oversampling in regions with high velocities. The modelling scheme allows accurate modelling up to a spatial sampling rate of approximately 2.5 gridpoints per shortest wavelength. However, due to the staggering of the material parameters, a smoothing of the material parameters has to be applied at internal interfaces aligned with the numerical grid to avoid amplitude errors and timing inaccuracies. The best results are obtained by smoothing based on slowness averaging. To reduce errors in the implementation of the free-surface boundary condition introduced by the staggering of the stress components, we reduce the grid spacing in the vertical direction in the vicinity of the free surface to approximately 10 gridpoints per shortest wavelength. Using this technique we obtain accurate results for surface waves in transversely isotropic media.  相似文献   

8.
裂缝发育导致的地震波场各向异性,是裂缝型油气藏的一个重要特征.然而针对该类油气藏的叠前弹性阻抗技术,一直没有通过各向异性弹性阻抗公式建立与裂缝参数的直接关系.本文在回顾封闭平行硬币状裂缝模型和线性滑动模型的基础上,将裂缝填充物性质、分布密度与围岩的横纵波速度比,引入裂缝型HTI介质弹性阻抗公式,并对相应的归一化弹性阻抗响应特征进行模拟分析.分析表明,弹性阻抗受以上三参数的影响规律存在明显差异,其中含气裂隙介质随裂缝密度的变化要明显高于对应的流体裂隙介质,流体填充裂隙介质随横、纵波速度比的变化幅度要高于对应的含气裂隙介.该结论初步为裂缝型油气藏流体识别工作提供了依据.  相似文献   

9.
The existence of rugged free‐surface three‐dimensional tunnel conditions in the coal seams, caused either by geological or mining processes, will inevitably influence wave propagation characteristics when the seismic waves go through the coal mines. Thus, a modified image algorithm has been developed to account for seismic channel waves propagating through this complicated topography with irregular free surfaces. Moreover, the seismic channel waves commonly exhibit damped and dispersive signatures, which is not only because of their own unique sandwich geometry of rock–coal–rock but also because of the viscoelastic behavior of coal. Considering the complexity of programming in three‐dimensional tunnel models with rugged free surfaces, an optimized vacuum grid search algorithm, enabling to model highly irregular topography and to compute efficiently, is also proposed when using high‐order staggered finite‐difference scheme to simulate seismic channel wave propagations in viscoelastic media. The numerical simulations are implemented to investigate the accuracy and stability of the method and the impact of coal's viscoelastic behavior on seismic channel wave propagation characteristics. The results indicate that the automatic vacuum grid search algorithm can be easily merged into high‐order staggered finite‐difference scheme, which can efficiently be applied to calculate three‐dimensional tunnel models with rugged free surfaces in the viscoelastic media. The simulation also suggests that the occurrence of a three‐dimensional tunnel with free surfaces has a remarkable influence on the seismic channel wave propagation characteristics and elastic energy distribution.  相似文献   

10.
Staggering grid is a very effective way to reduce the Nyquist errors and to suppress the non‐causal ringing artefacts in the pseudo‐spectral solution of first‐order elastic wave equations. However, the straightforward use of a staggered‐grid pseudo‐spectral method is problematic for simulating wave propagation when the anisotropy level is greater than orthorhombic or when the anisotropic symmetries are not aligned with the computational grids. Inspired by the idea of rotated staggered‐grid finite‐difference method, we propose a modified pseudo‐spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered‐grid pseudo‐spectral method based on stiffness matrix decomposition and a possible alternative using the Lebedev grids, the rotated staggered‐grid‐based pseudo‐spectral method possesses the best balance between the mitigation of artefacts and efficiency. A 2D example on a transversely isotropic model with tilted symmetry axis verifies its effectiveness to suppress the ringing artefacts. Two 3D examples of increasing anisotropy levels demonstrate that the rotated staggered‐grid‐based pseudo‐spectral method can successfully simulate complex wavefields in such anisotropic formations.  相似文献   

11.
An approximation to plane-wave propagation through a composite material is examined using a physical model with oriented but randomly distributed penny-shaped rubber inclusions within an isotropic epoxy resin matrix. A pulse transmission method is used to determine velocities of shear and compressional waves as a function of angle of incidence and crack density. The experimental and theoretical results of Hudson were compared and limitations within the crack parameters used in this study have been determined. Results from both polarized shear waves (S1, S2) compare favourably with the theory for a composite with up to 7% crack density, but theory and experiment diverge at higher crack densities. On the other hand, compressional-wave velocities at low crack densities (1% and 3%) compare favourably with the theory. It is also shown that the velocity ratio Vp/Vs for two extreme cases, i.e. propagation normal and parallel to the cracks, as a function of crack density and porosity, has a strong directional dependence.  相似文献   

12.
Finite-difference modelling of S-wave splitting in anisotropic media   总被引:4,自引:0,他引:4  
We have implemented a 3D finite‐difference scheme to simulate wave propagation in arbitrary anisotropic media. The anisotropic media up to orthorhombic symmetry were modelled using a standard staggered grid scheme and beyond (monoclinic and triclinic) using a rotated staggered grid scheme. The rationale of not using rotated staggered grid for all types of anisotropic media is that the rotated staggered grid schemes are more expensive than standard staggered grid schemes. For a 1D azimuthally anistropic medium, we show a comparison between the seismic data generated by our finite‐difference code and by the reflectivity algorithm; they are in excellent agreement. We conducted a study on zero‐offset shear‐wave splitting using the finite‐difference modelling algorithm using the rotated staggered grid scheme. Our S‐wave splitting study is mainly focused on fractured media. On the scale of seismic wavelenghts, small aligned fractures behave as an equivalent anisotropic medium. We computed the equivalent elastic properties of the fractures and the background in which the fractures were embedded, using low‐frequency equivalent media theories. Wave propagation was simulated for both rotationally invariant and corrugated fractures embedded in an isotropic background for one, or more than one, set of fluid‐filled and dry fractures. S‐wave splitting was studied for dipping fractures, two vertical non‐orthogonal fractures and corrugated fractures. Our modelling results confirm that S‐wave splitting can reveal the fracture infill in the case of dipping fractures. S‐wave splitting has the potential to reveal the angle between the two vertical fractures. We also notice that in the case of vertical corrugated fractures, S‐wave splitting is sensitive to the fracture infill.  相似文献   

13.
本文通过数值模拟研究了介质黏弹性对瑞雷波传播的影响.模拟采用结合了交错Adams-Bashforth时间积分法、应力镜像法和多轴完美匹配层的标准交错网格高阶有限差分方案.通过模拟结果和理论结果对比,测试了方法的精度,验证了结果的正确性.在均匀半空间模型中,分别从波场快照、波形曲线及频散能量图三个角度,对黏弹性介质瑞雷波衰减和频散特性进行了详细分析.两层速度递增模型被用于进一步分析瑞雷波在黏弹性层状介质中的特性.结果表明:由于介质的黏弹性,瑞雷波振幅发生衰减,高频成分比低频成分衰减更剧烈,衰减程度随偏移距增大而增强;瑞雷波相速度发生频散,且随频率增大而增大,频散能量的分辨率有所降低;黏弹性波动方程中的参考频率,不会影响瑞雷波振幅衰减和相速度频散的程度,但决定了黏弹性和弹性介质瑞雷波相速度相等的频率位置.本研究有助于人们更好地理解地球介质中瑞雷波的行为,并为瑞雷波勘探的应用和研究提供了科学和有价值的参考.  相似文献   

14.
This paper introduces a novel method of modelling acoustic and elastic wave propagation in inhomogeneous media with sharp variations of physical properties based on the recently developed grid‐characteristic method which considers different types of waves generated in inhomogeneous linear‐elastic media (e.g., longitudinal, transverse, Stoneley, Rayleigh, scattered PP‐, SS‐waves, and converted PS‐ and SP‐waves). In the framework of this method, the problem of solving acoustic or elastic wave equations is reduced to the interpolation of the solutions, determined at earlier time, thus avoiding a direct solution of the large systems of linear equations required by the FD or FE methods. We apply the grid‐characteristic method to compare wave phenomena computed using the acoustic and elastic wave equations in geological medium containing a hydrocarbon reservoir or a fracture zone. The results of this study demonstrate that the developed algorithm can be used as an effective technique for modelling wave phenomena in the models containing hydrocarbon reservoir and/or the fracture zones, which are important targets of seismic exploration.  相似文献   

15.
煤层中存在的裂隙会导致介质表现为各向异性,本文以HTI型煤层为例,结合各向异性介质弹性矩阵和各向异性裂隙理论,推导出不同充填物的垂直裂隙中各向异性参数表达式,将其应用于地震波响应分析;通过改进的交错网格差分法和各向异性Christoffel方程波场分解法,得到地震波合成记录和分解后的P波和SV波记录;将Thomsen群速度与相速度公式,经过坐标轴旋转变换,得到HTI型煤层中不同各向异性参数的地震波速度响应表达式;建立不同类型煤层地质模型,分析了裂隙密度、裂隙充填物以及煤层厚度等参数变化时的地震波响应特征.研究结果为分析垂向裂隙各向异性薄煤层地震波传播规律提供工具,为选用相应地震数据进行地震波各向异性参数反演提供依据.  相似文献   

16.
在油、气储层的勘探和开发中观察到的一个现象是储层岩石中普遍存在孔隙和裂隙.随着近年来孔、裂隙介质弹性波动理论的进展,我们可以将此理论应用于测井技术,以此来指导从声波测井中测量孔、裂隙地层的声学参数.本文计算了孔、裂隙地层里充流体井眼中的多极子声场,分析了声场随裂隙介质的两个主要参数(即裂隙密度和裂隙纵横比)的变化特征.井孔声场的数值计算表明裂隙密度可以大幅度地降低井中声波纵、横波的波速和振幅.随着裂隙密度的增加,在测井频段内也可以看到纵、横波速的频散现象(这种频散在孔隙地层中一般是观察不到的).本文还研究了多极子模式波 (即单极的Stoneley波、伪瑞利波以及偶极的弯曲波)随裂隙参数的变化特征.结果表明,这些模式波的振幅激发和速度频散都受裂隙密度的影响.裂隙密度越高影响越大.此外,裂隙还对模式波的传播造成较大的衰减.相对裂隙密度而言,裂隙纵横比是一个频率控制参数,它控制裂隙对声场影响的频率区间.本文的分析结果对裂缝、孔隙型地层的声波测井具有指导意义.  相似文献   

17.
Generally, local stress induced by individual crack hardly disturbs their neighbours for small crack densities, which, however, could not be neglected as the crack density increases. The disturbance becomes rather complex in saturated porous rocks due to the wave-induced diffusion of fluid pressures. The problem is addressed in this study by the comparison of two solutions: the analytical solution without stress interactions and the numerical method with stress interactions. The resultant difference of effective properties can be used to estimate the effect of stress interactions quantitatively. Numerical experiments demonstrate that the spatial distribution pattern of cracks strongly affects stress interactions. For regularly distributed cracks, the resulting stress interaction (shielding or amplification) shows strong anisotropy, depending on the arrangement and density of cracks. It has an important role in the estimation of effective anisotropic parameters as well as the incident-angle-dependency of P- and SV-wave velocities. Contrarily, randomly distributed cracks with a relative small crack density generally lead to a strong cancellation of stress interactions across cracks, where both the numerical and analytical solutions show a good agreement for the estimation of effective parameters. However, for a higher crack density, the incomplete cancellation of stress interactions is expected, exhibiting an incidence-angle dependency, slightly affecting effective parameters, and differentiating the numerical and analytical solutions.  相似文献   

18.
Physical modelling of cracked/fractured media using downscaled laboratory experiments has been used with great success as a useful alternative for understanding the effect of anisotropy in the hydrocarbon reservoir characterization and in the crustal and mantle seismology. The main goal of this work was to experimentally verify the predictions of effective elastic parameters in anisotropic cracked media by Hudson and Eshelby–Cheng's effective medium models. For this purpose, we carried out ultrasonic measurements on synthetic anisotropic samples with low crack densities and different aspect ratios. Twelve samples were prepared with two different crack densities, 5% and 8%. Three samples for each crack density presented cracks with only one crack aspect ratio, whereas other three samples for each crack density presented cracks with three different aspect ratios in their composition. It results in samples with aspect ratio values varying from 0.13 to 0.26. All the cracked samples were simulated by penny‐shaped rubber inclusions in a homogeneous isotropic matrix made with epoxy resin. Moreover, an isotropic sample for reference was constructed with epoxy resin only. Regarding velocity predictions performed by the theoretical models, Eshelby–Cheng shows a better fit when compared with the experimental results for samples with single and mix crack aspect ratio (for both crack densities). From velocity values, our comparisons were also performed in terms of the ε, γ, and δ parameters (Thomsen parameters). The results show that Eshelby–Cheng effective medium model fits better with the measurements of ε and γ parameters for crack samples with only one type of crack aspect ratio.  相似文献   

19.
本文应用交错网格高阶有限差分方法模拟弹性波在三维各向同性介质中的传播。采用时间上二阶、空间上高阶近似的交错网格高阶差分公式求解三维弹性波位移-应力方程,并在计算边界处应用基于傍轴近似法得到的三维弹性波方程吸收边界条件。在此基础上进行了三维盐丘地质模型的地震波传播数值模拟试算。试算结果表明该方法模拟精度高,在很大程度上减小了数值频散,绕射波更加丰富,而且适用于介质速度具有纵向变化和横向变化的情况。  相似文献   

20.
Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity–stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10–16% when the frequency is above 10 Hz due to the velocity dispersion of P and S waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号