首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sulphur isotopic compositions of sulphides within garnet-rich rocks and high-grade ore from the Broken Hill deposit, New South Wales, Australia, have been determined and show a range of values of –3.3 to +6.7 per mil. Thermochemical considerations, including the spread of values of 34S, suggest that the deposit was derived from a mixed source of sulphur in which seawater, reduced by inorganic processes, mixed with magmatic sulphur or that sulphate from contemporaneous seawater was reduced biogenically at low temperatures. Thermochemical considerations also suggest that pyrrhotite formed by desulphidation of pyrite so that the original Fe-S-O assemblage was pyrite ± magnetite.34S measurements show a broad range which is considered to be due to isotopic reequilibration during retrograde metamorphism and analytical and sampling technique. These data should not be used to indicate original temperatures of deposition or metamorphic temperatures associated with the various metamorphic events.  相似文献   

2.
Regional background 34S values of pyrite-(marcasite) nodules throughout the Zechstein basin in Poland have been measured to help estimate the proportion of externally derived sulphur in the Kupferschiefer Cu-Ag ores. The 34S values of the 17 FeS2 nodules measured range widely, from -25.2 to -51.9%., similar to the previously published -28 to -43%. range in disseminated pyrite in the Kupferschiefer. The wide variation cannot be attributed to pyrite versus marcasite mineralogy, amount of contained chalcopyrite or sphalerite, carbonate versus shale host rock, early versus late formation, percent of included calcite, or to size, shape, or texture. There is also no relation with proximity to the centres of copper mineralization in southwestern Poland where sulphides are typically isotopically heavier. The 34S values do, however, vary directly with percent of host-rock fragments included in the nodules. Repeat samples that were washed with acid or hot water show the same wide variation, indicating that contamination by sulphate sulphur in the host rock is not a factor. Neither is organic sulphur because of its small volume. Instead, the sulphur composition may be fundamentally controlled by the formation mechanism of the nodule, whereby 34S-rich sulphide is preferentially concentrated, possibly replacing anhydrite lenses. Alternatively, a network of host rock inclusions might act as a more accessible conduit for later, 34S-rich fluids to infiltrate the nodule and add to earlier, 34S-poor pyrite.In the ore deposits, higher 34S values of ore nodules suggest less indigenous sulphur in limestone than shale lithologies. An isotopic temperature of 61 °C from a chalcopyrite-galena pair agrees with other estimates of <105°C. Higher values in ore nodules/veinlets than in adjacent disseminations, and the calculated 34Spy value from a pyrite-bornite mixture support the idea that metal-bearing 34S-rich fluids penetrated the Kupfer-schiefer through a network of fractures.Contribution to IGCP Project 254 Metalliferous Black Shales  相似文献   

3.
The Felbertal scheelite deposit is the largest known strata-bound tungsten concentration. It lies in an up to 400 m thick rock pile in the lowermost part of the volcanic rock sequence, probably of the Early Paleozoic Habach Formation. Both ore fields (eastern and western) have been affected by Variscan and Alpine metamorphism and tectonism, resulting in a remobilization of the ore mineralization. This ore deposit and the neighboring rocks show a strikingly low sulfur content. The eastern field with one major orebody has very little sulfide mineralization. The western field, with 8 orebodies (K1–K8) and two remobilized vein zones (S1 and S2), reveals somewhat more minor sulfide enrichments that are mainly within and around the K1 and K2 orebodies and in some parts of the interlayered schist sequence. Sulfur isotope compositions of 90 sulfide minerals (37 pyrrhotite, 20 chalcopyrite, 19 pyrite and 11 molybdenite and/or WS2-MoS2 solid solutions and 3 Pb-Bi sulfosalts, including 7 sulfides within scheelite grains) from 60 ore and host rock samples have been determined with a standard error of less than ±0.2 per mil. All data range from –3.6 to +4.3 34S. There are small differences in the sulfur isotope values from place to place and in time from the first and second to the third generation. In the western field, the K1 orebody differs from other orebodies (K2, K4, K7) due to isotopically heavier 34S values. The three scheelite generations show differences in the 34S values of the sulfide microphases within scheelite grains, from +1.0 to +4.3 per mil for the first and the second, and from –1.8 to –3.3 per mil for the third generation. Sulfide phases within molybdoscheelites may have crystallized under the same conditions as the other coeval sulfide minerals in the same orebody. They commonly formed later than scheelite. These changes may be explained using data from Ohmoto and Rye (1979): Small changes in temperature, pH, and/or may result in large changes in the 34S values with the precipitation of isotopically heavier sulfides under more reducing conditions. Only four samples with sulfide mineral pairs show isotopic equilibrium. All others display some disequilibrium. We suggest that the sulfides in the ores and surrounding volcanogenic host rocks formed contemporaneously from the same hydrothermal ore fluids, and that the sulfur species in these fluids may have been dominantly H2S.  相似文献   

4.
Stratiform sulphide deposits which have been metamorphosed to lower greenschist facies occur within the Paleozoic strata of the Hodgkinson Province, northeast Queensland. Massive cupreous pyrite is ubiquitous and Mt Molloy and Dianne also have layered chalcopyrite-rich and sphalerite-rich lenses. Sulphide 34S values for the mineralisation show a narrow spread, around 02030; at the Dianne and O.K. deposits, but a wider spread and an average several per mil higher at the Mt Molloy area. The minerals can not be used for geothermometry due to isotopic disequilibrium. However, metamorphic effects on the isotopic compositions appear not to have been significant. A decrease in temperature and contact of the ore fluid with sea water probably caused the precipitation of the ore minerals. A magmatic ore fluid with 34SS around 02030; predominated at the Dianne and OK deposits whereas the fluid at Mt Molloy mixed with sea water to acquire a higher 34SS value.  相似文献   

5.
The Myall Creek copper prospect is in unmetamorphosed carbonaceous dolosiltstone and sandstone at the base of the late Proterozoic (Adelaidean) Tapley Hill Formation. It contains disseminated, fine-grained chalcopyrite, zincian tennanite, bornite, chalcocite, pyrite, sphalerite and galena, and irregular to straight chalcopyrite-rich veinlets. Some ore minerals rim and/or partially replace pyrite or clastic grains. There is no evidence of hydrothermal activity. The 34SCDT values of pyrite and the other sulfides fall in the wide range –3.6 to +44.2. Dolomite in both mineralised and unmineralised samples has 13CPDB values concentrated around –3, and 18OSMOW values around +25. It is concluded that the mineralising fluids were near-neutral brines which leached metals from the basement and early Adelaidean rocks. They entered the Tapley Hill sediments at moderately low temperatures via permeable strata and faults. The metals were precipitated by biogenic H2S, and also fixed by reaction with iron sulfides and, possibly, organic matter. Continuing ascent of brines into the mineralised strata caused breakdown of detrital feldspars and Fe-Ti oxides, and some solution-remobilisation of early-formed sulfides.  相似文献   

6.
The Quesnel River gold deposit (1.2 million tonnes grading 5.22 g/t Au in three separate zones) occurs within Takla Group volcanic rocks of Upper Triassic age proximal to an alkalic stock. The deposit occurs in amphibole-augite phyric, fragmental, basaltic rocks. Alteration has produced an assemblage of epidote-chloritetremolite-calcite-quartz with lesser pyrite, chalcopyrite, pyrrhotite, sphalerite, marcasite, galena, arsenopyrite and gold.The West Zone comprises a tabular, conformable sulfide body underlain by bedded, variably altered fragmental basaltic rocks and overlain by siltstone and argillite. In the Main Zone, highest gold grades occur adjacent to a sharp discordant alteration front with barren, strongly carbonatized, pyritic basaltic lapilli-tuff. It is overlain by siltstone and argillite and bounded to the east and a depth by a west dipping reverse fault. To the west the auriferous, propylitically altered, rocks grade laterally into lower grade and barren basaltic rocks.Oxygen(18O = + 9 to + 15) and carbon (13O= -14 to –7) isotopic signatures of calcite from carbonate-altered and propylitically altered rocks are similar. However, sulfur isotopic values for pyrite are different, with gold-associated pyrite (34S = –7 to –3) distinct from pyrite in carbonate altered rocks with (34S = + 8 to + 13).The carbonization occurred before complete induration of the basaltic fragmental rocks, whereas propylitization and gold plus sulfide precipitation is clearly epigenetic.  相似文献   

7.
The Bleikvassli Zn-Pb-Cu deposit occurs in the Uppermost Allochthon in the Caledonides of northern Norway. The orebody is enclosed in amphibolite-facies schists and gneisses, underlain by amphibolites, and it has been classified as a sediment-hosted massive sulphide (SEDEX) deposit. The stratiform ore is dominantly pyritic, with a basal layer of pyrrhotitic ore. Sulphide veins occur in the footwall. The orebody generally has a limited range of 34S, from 0.3 to 4.5% (x = 2.4 ± 1.2, 1 , n = 26). The lowest 34S values (0.3–2.3) were found in sulphide veins in the footwall and vent proximal stratiform ore. More distal pyritic Zn-Pb ore has heavier average 34S values (up to 4.5). The ore sulphides were deposited from a hydrothermal solution with 34S about 2 perhaps with the incorporation of a minor portion of sulphide from the ambient seawater. The hydrothermal solution probably acquired most of its sulphide from the underlying mixed lithology; notably basaltic rocks. Sulphide produced by thermochemical reduction of seawater in the deep conduit system may also have been incorporated. Bacteriogenic sulphide is not likely as a major source of ore sulphur in the massive ore. Sulphide incorporated in distal pyrite, which have 34S from -12 to-10, could have formed either by oxidation of the hydrothermal sulphide, or by bacterial reduction of seawater sulphate in the depositional environment. Exchange of sulphur isotopes probably took place only on a localized scale during Caledonian metamorphism, the bulk sulphur isotopic composition of the ore being preserved in a hand specimen scale.  相似文献   

8.
New sulphur and sulphate-oxygen isotope measurements for the main discordant and stratiform lead-zinc-barite orebodies at Silvermines Co. Tipperary, allow reappraisal of previously offered differing interpretations (Graham, 1970; Greig et al., 1971) of the bearing of sulphur isotopes on the genesis of this important Irish deposit. The following aspects of the data are confirmed: barite 34 S-values range from 17–21, similar to lower Carboniferous seawater sulphate: stratiform sulphide lens pyrites have 34 S-values ranging from –13 to –36; vein sulphide 34 S-values range from –8 to 4; sulphide 34 S-values increase upwards and outwards respectively in the related discordant and stratiform G orebodies; galena-sphalerite isotope palaeotemperatures are not too consistent, ranging from 40 to 430°C (using the calibration of Czamanske and Rye (1974). New facts are as follows: barite 18O-values range from –13 to –17, stratiform barites ranging from 13 to 14.5; sulphides separated from a single stratiform ore lens hand specimen usually have 34 Ssl > 34 Sga > 34 Spy; the outward decrease in 34 S-values in the stratiform G orebody is confined to the first few hundred feet only; pyrite 34 S-values progressively increase downwards through one stratiform sulphide orebody; yet variations of 13 occur within a single colloform pyrite structure from another stratiform orebody. It is concluded that there were at least two sources of sulphur, seawater sulphate and deep-seated sulphur. The former was the dominant source of all sulphate and, via biogenic reduction, of the sulphur in the bulk of the stratiform sulphide. The latter was the source of the sulphur in the vein sulphides. There was minimal isotopic interaction between the cool seawater sulphate and the warm unwelling ore fluid sulphur species, even though the latter precipitated under near isotopic equilibrium conditions when the temperature dropped and/or the pH and Eh increased. The lack of isotopic equilibrium between pyrite and ore sulphides in the stratiform ore lenses may result from the latter having precipitated slightly later than the former because of solubility relationships. Overall the present isotopic evidence supports considerable geological evidence favoring a syngenetic origin for the stratiform Silvermines orebodies.  相似文献   

9.
Stable isotope analyses of rocks and minerals associated with the detachment fault and underlying mylonite zone exposed at Secret Creek gorge and other localities in the Ruby-East Humboldt Range metamorphic core complex in northeastern Nevada provide convincing evidence for meteoric water infiltration during mylonitization. Whole-rock 18O values of the lower plate quartzite mylonites (95% modal quartz) have been lowered by up to 10 per mil compared with structurally lower, compositionally similar, unmylonitized material. Biotite from these rocks has D values ranging from -125 to -175, compared to values of -55 to-70 in biotite from unmylonitized rocks. Mylonitized leucogranites have large disequilibrium oxygen isotope fractionations ( quartz-feldspar up to 8 per mil) relative to magmatic values ( quartz-feldspar1 to 2 per mil)). Meteoric water is the only major oxygen and hydrogen reservoir with an isotopic composition capable of generating the observed values. Fluid inclusion water from unstrained quartz in silicified breccia has a D value of-119 which provides a plausible estimate of the D of the infiltrating fluid, and is similar to the isotopic composition of present-day and Tertiary local meteoric water. The quartzite mylonite biotites would have been in equilibrium with such a fluid at temperatures of 480–620° C, similar to independent estimates of the temperature of mylonitization. The relatively high temperatures required for isotopic exchange between quartz and water, the occurrence of fluid inclusion trails and deformed veins in quartzite mylonites, and the spatial association of the low-18O, low-D rocks with the shear zone all constrain isotopic exchange to the mylonitic (plastic) deformation event. These observations suggest thata significant amount of meteoric water infiltrated the shear zone during mylonitization to depths of at least 5 to 10 km below the surface. The depth of penetration of meteoric fluids into the lower plate mylonites was at least 70 meters below the detachment fault. In contrast, the upper-plate unmylonitized fault slices are dominated by brittle fracture and are often intensely veined (carbonates) or silicified (volcanic rocks and breccias). The fluids associated with the veining and silicification were also meteoric as evidenced by low 18O values of the veins, which are often 10 per mil lower than the adjacent carbonate matrix, and the exceptionally low 18O values (down to-4.4) of the breccias. Several previous studies have documented the infiltration of meteoric fluids into the brittley deformed upper plate rocks of core complexes, but this study provides convincing evidence that surface fluids have penetrated lower plate rocks undergoing plastic deformation. It is proposed that infiltration took place as the shear zone began the transition from plastic flow to brittle fracture while the lower plate rocks were being uplifted. During this period, plastic flow and brittle fracture were operating simultaneously, perhaps allowing upper plate meteoric fluids to be seismically pumped down into the lower plate mylonites.  相似文献   

10.
Strata-bound sulfide deposits associated with clastic, marine sedimentary rocks, and not associated with volcanic rocks, display distributions of S34 values gradational between two extreme types: 1. a flat distribution ranging from S34 of seawater sulfate to values about 25 lower; and 2. a narrow distribution around value S34 (sulfide)=S34 (seawater sulfate) –50, and skewed to heavier values. S34 (seawater sulfate) is estimated from contemporaneous evaporites. There is a systematic relation between the type of S34 distribution and the type of depositional environment. Type 1 occurs in shallow marine or brackish-water environments; type 2 occurs characteristically in deep, euxinic basins. These distributions can be accounted for by a model involving bacterial reduction of seawater sulfate in systems which range from fully-closed batches of sulfate (type 1) to fully open systems in which fresh sulfate is introduced as reduction proceeds (type 2). The difference in the characteristic distributions requires that the magnitude of the sulfate-sulfide kinetic isotope effect on reduction be different in the two cases. This difference has already been suggested by the conflict between S34 data for modern marine sediments and laboratory experiments. The difference in isotope effects can be accounted for by Rees' (1973) model of steady-state sulfate reduction: low nutrient supply and undisturbed, stationary bacterial populations in the open system settings tend to generate larger fractionations.
Zusammenfassung Schichtgebundene Sulfid-Lagerstätten in Begleitung von klastischen, marinen Sedimentgesteinen ohne Beteiligung vulkanischer Gesteine zeigen kontinuierliche Verteilungen der S34-Werte zwischen zwei Extremtypen: 1. Eine flache Verteilung im Bereich von S34-Werten des Seewasser-Sulfats bis zu Werten, die etwa 25 niedriger liegen. 2. Eine eng begrenzte Verteilung um den S34 (Sulfid)-Wert=S34 (Seewasser-Sulfat) –50 und asymmetrischer Verteilungskurve mit stärkerer Besetzung bei den schwereren Werten. Das S34 (Seewasser-Sulfat) wird von gleichaltrigen Evaporiten abgeleitet. Es besteht eine systematische Beziehung zwischen der Art der S34-Verteilung und dem Milieu des Ablagerungsraumes. Typ 1 tritt im marinen Flachwasser oder in brackischer Umgebung auf. Typ 2 ist charakteristisch für tiefe euxinische Becken. Diese Verteilungen können erklärt werden mit Hilfe eines Modells mit bakterieller Reduktion von Meerwasser-Sulfat in Systemen, die von völlig abgeschlossenen Sulfat-Mengen (Typ 1) bis zu völlig offenen Systemen reichen, in die bei fortschreitender Reduktion frisches Sulfat zugeführt wird (Typ 2). Der Unterschied in den charakteristischen Verteilungen setzt voraus, daß die Stärke der kinetischen Sulfat-Sulfid-Isotopen-Wirkung auf die Reduktion in beiden Fällen verschieden ist. Dieser Unterschied wurde bereits wegen der Widersprüche zwischen den verschiedenen S34-Werten heutiger mariner Sedimente und Laborexperimente vermutet. Der Unterschied in der Isotopen-Wirkung kann durch das Modell von Rees (1973) für kontinuierlich ablaufende Sulfat-Reduktion erklärt werden. Geringes Nahrungsangebot und ungestörte, gleichbleibende Bakterien-Populationen in offenen Systemen neigen zur Erzeugung stärkerer Fraktionierungen.
  相似文献   

11.
Summary Pervasive hydrothermal alteration zones in quartz-feldspar porphyry domes underly all massive sulfide lenses in the D-68 Zone Cu-Zn deposit, Noranda. Alteration pipes are mineralogically zoned and contain chloritic cores consisting of stringer sulfides, enveloped by sericitic haloes. Silicified rocks are found locally.Alteration took place at nearly constant volume. Na depletion, and K enrichment relative to the least altered rocks, are found in all alteration zones. Fe and Mg have been added to the chloritic zone and subtracted in the sericitic and silicic zones. Ca and Si are enriched mainly in the silicic zone. Al, Ti and Zr were the least mobile of the elements studied.Whole-rock 18O values vary from +5.6 to +6.2 per mil in chloritized rocks, +5.8 to + 7.3 per mil in sericitized rocks and + 7.2 to + 8.3 per mil in silicified rocks. D values for two chloritized samples are – 63 and – 70 per mil whereas in two sericitized samples they are close to –62 per mil. Quartz from the chlorite alteration zone is isotopically heavier (18O = 8.6 per mil) than that from the sericite alteration zone (18O = 6.4 per mil), suggesting equilibration with different hydrothermal fluid or different temperature of alteration. Assuming an alteration temperature of 300° + 50°C the fluid in equilibrium with quartz and chlorite had 18O and D values of about 1.5 ± 2.0 per mil and –23 ± 5 per mil, respectively. The fluid in equilibrium with quartz and sericite had 18O and D values of about –0.5 ± 2 per mil and –30 ± 5 per mil, respectively. On the basis of isotopic data, seawater was probably the major constituent of the hydrothermal fluids.
Hydrothermale Umwandlung und Sauerstoff-Wasserstoff-Isotopengeochemie der Zone D-68 Cu-Zn Derberz Sulfidlagerstätte, Noranda District, Quebec, Canada
Zusammenfassung Hydrothermale Umwandlungszonen in porphyrischen Quarz-Feldspat Gesteinskörpern liegen unterhalb von Derberz Sulfidlinsen in der D-68 Zone Cu-Zn Lagerstätte, Noranda. Umgewandelte pipes sind mineralogisch zoniert; sie enthalten aus Sulfiden bestehende chloritische Kerne, die von sericitischen Höfen umhüllt werden. Lokal treten silicifizierte Gesteine auf.Die Umwandlung ging bei annähernd konstantem Volumen vor sich. Na-Verarmung und K-Anreicherung, bezogen auf die am wenigsten umgewandelten Gesteine, liegen in allen Umwandlungszonen vor. Fe und Mg wurden der Chloritzone zugeführt, in den Sericit- und Si-Zonen abgeführt. Ca und Si sind vor allem in der Si-Zone angereichert. Al, Ti und Zr waren von den untersuchten Elementen am wenigsten mobil.Gesamtgesteins-18O Werte variieren von +5,6 bis +6,2 in den chloritisierten Gesteinen, von +5,8 bis 7,3 in sericitisierten Gesteinen und von +7,2 bis +8,3 in den silicifizierten Gesteinen. Die D Werte für zwei chloritisierte Proben betragen –63 und –70, in zwei sericitisierten Proben liegen sie hingegen nahe bei –62. Quarz von der Chlorit-Umwandlungszone ist isotopisch schwerer (18O = 8,6) als von der Sericit-Umwandlungszone (18O = 6.4), was eine Gleichgewichtseinstellung mit verschiedenen hydrothermalen Lösungen oder eine verschiedene Umwandlungstemperatur nahelegt. Bei einer angenommenen Umwandlungstemperatur von 300 ± 50°C, hatte die im Gleichgewicht mit Quarz und Chlorit stehende Lösung 18O und D Werte von etwa 1,5 ± 2 bzw. –23 + 5. Die im Gleichgewicht mit Quarz und Sericit befindliche Lösung hatte 18O und D Werte von etwa –0,5 ± 2%o bzw. –30 ± 5. Aufgrund der Isotopendaten war wahrscheinlich Meerwasser der Hauptbestandteil der hydrothermalen Lösungen.


With 7 Figures  相似文献   

12.
U-Mo and Cu mineralization occurs in horizons as well as in veins in the Permian formations near Novoveská Huta. Ore mineralization is represented by uraninite, U-Ti oxides, coffinite, molybdenite, chalcopyrite, tennantite and pyrite. The isotopic composition of S and C displays a larger variability in the stratiform ores (34S from –32.7 to +2.7 and 13C from –27.1 to — 0.5) These data suggest mixing of meteoric solutions with fluids of volcanic origin and a complex history. There is a narrower range of 34S from –18.8 to –4.6 and 13C from –6.3 to –2.5% in quartz-carbonate veins with Cu mineralization suggesting a deep source of ore-bearing solutions. The Permian volcanics were a significant source of ore elements.Their contents of U, Mo, Cu and Y are from two to eight times higher than in sedimentary rocks. Accumulations of ore elements in the horizons were formed by the reduction and adsorption processes 240 ± 30 Ma ago according to U-Pb isotopic dating. Due to Alpine tectonism, these low-grade ores (U<0.1 wt%) were remobilized and higher-grade U-Mo ores (U>0.1 wt%) were formed 130 ± 20 Ma ago at temperatures ranging from 110 to 120° C, according to fluid inclusions. Younger veins with Cu mineralization were formed 115 ± 10 Ma according to the model age of Pb at temperatures ranging from 95 to 190°C.  相似文献   

13.
Dalradian metamorphic rocks, Lower Ordovician meta-igneous rocks (MGS) and Caledonian granites of the Connemara complex in SW Connemara all show intense retrograde alteration. Alteration primarily involves sericitization and saussuritization of plagioclase, the alteration of biotite and hornblende to chlorite and the formation of secondary epidote. The alteration is associated with sealed microcracks in all rocks and planes of secondary fluid inclusions in quartz where it occurs, and was the result of a phase of fluid influx into these rocks. In hand specimen K-feldspar becomes progressively reddened with increasing alteration. Mineralogical alteration in the MGS and Caledonian granites took place at temperatures 275±15°C and in the MGS Pfluid is estimated to be 1.5 kbar during alteration. The °D values of alteration phases are:-18 to-29 (fluid inclusions),-47 to-61 (chlorites) and-11 to-31 (epidotes). Chlorite 18O values are +0.2 to +4.3, while 18O values for quartz-K-feldspar pairs show both positively sloped (MGS) and highly unusual negatively sloped (Caledonian granites) arrays, diverging from the normal magmatic field on a - plot. The stable isotope data show that the fluid that caused retrogression continued to be present in most rocks until temperatures fell to 200–140°C. The retrograde fluid had D -20 to-30 in all lithologies, but the fluid 18O varied both spatially and temporally within the range-4 to +7. The fO2 of the fluid that deposited the epidotes in the MGS varied with its 18O value, with the most 18O-depleted fluid being the most oxidizing. The D values, together with low (<0) 18O values for the retrograde fluid in some lithologies indicate that this fluid was of meteoric origin. This meteoric fluid was probably responsible for the alteration in all lithologies during a single phase of fluid infiltration. The variation in retrograde fluid 18O values is attributed to the effects of variable oxygen isotope shifting of this meteoric fluid by fluid-rock interaction. Infiltration of meteoric fluid into this area was most likely accomplished by convection of pore fluids around the heat anomaly of the Galway granite soon after intrusion at 400 Ma. However convective circulation of meteoric water and mineralogical alteration could possible have occurred considerably later.  相似文献   

14.
Quartz phenocrysts from 31 granitoid stocks in the Colorado Mineral Belt yield 18O values less than 10.4, with most values between 9.3 and 10.4. An average magmatic value of about 8.5 is suggested. The stocks resemble A-type granites; these data support magma genesis by partial melting of previously depleted, fluorine-enriched, lower crustal granulites, followed by extreme differentiation and volatile evolution in the upper crust.Subsolidus interaction of isotopically light water with stocks has reduced most feldspar and whole rock 18O values. Unaltered samples from Climax-type molybdenumbearing granites, however, show no greater isotopic disturbance than samples from unmineralized stocks. Although meteoric water certainly played a role in post-mineralization alteration, particularly in feldspars, it is not required during high-temperature mineralization processes. We suggest that slightly low 18O values in some vein and replacement minerals associated with molybdenum mineralization may have resulted from equilibration with isotopically light magmatic water and/or heavy isotope depletion of the ore fluid by precipitation of earlier phases.Accumulation of sufficient quantities of isotopically light magmatic water to produce measured depletions of 18O requires extreme chemical stratification in a large magma reservoir. Upward migration of a highly fractionated, volatile-rich magma into a small apical Climax-type diapir, including large scale transport of silica, alkalis, molybdenum, and other vapor soluble elements, may occur with depression of the solidus temperature and reduction of magma viscosity by fluorine. Climax-type granites may provide examples of 18O depletion in magmatic systems without meteoric water influx.  相似文献   

15.
Kyser, O'Neil, and Carmichael (1981, 1982) measured the 18O values of coexisting minerals from peridotite nodules in alkali basalts and kimberlites, interpreting the nodules as equilibrium assemblages. Using Ca-Mg-Fe element-partition geothermometric data, they proposed an empirical18O/16O geothermometer: T(°C)=1,151–173–68 2, where is the per mil pyroxene-olivine fractionation. However, this geothermometer has an unusual crossover at 1,150 °C, and in contrast to what might be expected during closed-system equilibrium exchange, the most abundant mineral in the nodules (olivine) shows a much greater range in 18O (+4.4 to +7.5) than the much less abundant pyroxene (all 50 pyroxene analyses from spinel peridotites lie within the interval +5.3 to +6.5). On 18O-olivinevs. 18O-pyroxene diagrams, the mantle nodules exhibit data arrays that cut across the 18O=zero line. These arrays strongly resemble the non-equilibrium quartzfeldspar and feldspar-pyroxene 18O arrays that we now know are diagnostic of hydrothermally altered plutonic igneous rocks. Thus, we have re-interpreted the Kyser et al. data as non-equilibrium phenomena, casting doubt on their empirical geothermometer. The peridotite nodules appear to have been open systems that underwent metasomatic exchange with an external, oxygen-bearing fluid (CO2, magma, H2O, etc.); during this event, the relatively inert pyroxenes exchanged at a much slower rate than did the coexisting olivines and spinels, in agreement with available exchange-rate and diffusion measurements on these minerals. This accounts for the correlation between 18O pyroxene-olivine and the whole-rock 18O of the peridotites, which is a major difficulty with the equilibrium interpretation.Contribution No. 3978, Publications of the Division of Geological and Planetary Sciences, California Institute of Technology  相似文献   

16.
The Jurassic Notch Peak granitic stock, western Utah, discordantly intrudes Cambrian interbedded pure limestones and calcareous argillites. Contact metamorphosed argillite and limestone samples, collected along traverses away from the intrusion, were analyzed for 18O, 13C, and D. The 13C and 18O values for the limestones remain constant at about 0.5 (PDB) and 20 (SMOW), respectively, with increasing metamorphic grade. The whole rock 18O values of the argillites systematically decrease from 19 to as low as 8.1, and the 13C values of the carbonate fraction from 0.5 to –11.8. The change in 13C values can be explained by Rayleigh decarbonation during calcsilicate reactions, where calculated is about 4.5 permil for the high-grade samples and less for medium and low-grade samples suggesting a range in temperatures at which most decarbonation occurred. However, the amount of CO2 released was not anough to decrease the whole rock 18O to the values observed in the argillites. The low 18O values close to the intrusion suggest interaction with magmatic water that had a 18O value of 8.5. The extreme lowering of 13C by fractional devolatilization and the lowering of 18O in argillites close to the intrusion indicates oxgen-equivalent fluid/rock ratios in excess of 1.0 and X(CO2)F of the fluid less than 0.2. Mineral assemblages in conjunction with the isotopic data indicate a strong influence of water infiltration on the reaction relations in the argillites and separate fluid and thermal fronts moving thru the argillites. The different stable isotope relations in limestones and argillites attest to the importance of decarbonation in the enhancement of permeability. The flow of fluids was confined to the argillite beds (argillite aquifers) whereas the limestones prevented vertical fluid flow and convective cooling of the stock.  相似文献   

17.
The Changba Pb-Zn SEDEX deposit occurs in the Middle Devonian sequence of the Anjiaca Formation of the Western Qinling Hercynian Orogen in the Gansu Province, China. The Changba-II orebody is hosted in biotite quartz schist and is the largest of 143 stratiform orebodies that are hosted either in biotite quartz schist or marble. The Changba-II comprises two types of mineralization: a bedded facies and an underlying breccia lens. The bedded section exhibits three sulfide sub-facies zoned from bottom to top: 1) banded sphalerite intercalated with quartz albitite; 2) interbedded massive pyrite and sphalerite ore; and 3) banded sphalerite ore intercalated with banded baritite. Major metallic minerals are sphalerite, pyrite, galena, with minor arsenopyrite, pyrrhotite, boulangerite, and rare chalcopyrite. The bedded sulfides are underlain by a lens of brecciated and albitized biotite-quartz schists cemented by sulfides and tourmaline.Massive and bedded sulfide 34S values range from 8.1 to 29.3, whereas barite 34S values range from 20.8 to 31.5. Disseminated pyrite in footwall schists has 34S values ranging from 8.1 to 10.6, and increase to values ranging from 11.1 to 14.7 in the hangingwall. The lower 34S values for massive and bedded sulfides are interpreted to be derived from progressive bacterial sulfate reduction (BSR) of Devonian seawater in a sulfate-restricted sub-basin. The higher 34S values for massive and bedded sulfides could be a product of quantitative BSR but this is incompatible with barite being more abundant above the bedded sulfides. Instead, it is more likely that thermochemical sulfate reduction of seawater sulfate or of evaporite was the source of heavy hydrothermal sulfur. Heavy hydrothermal sulfur was injected into a sulfate-restricted sub-basin where it mixed with low 34S BSR sulfide to form the massive and bedded sulfides. The REE patterns of sulfide layers and associated quartz albitite and baritite are similar to those of the host biotite quartz schists, suggesting that the hydrothermal fluids leached REE from the underlying rocks. Pb isotope ratios in galena form an array between the Upper Crust and the Mantle reservoir curves, which indicates that the lead is derived from upper crustal rocks comprising mafic igneous units. The Sr87/Sr86 ratio of 0.7101 for carbonate within the sulfide layers also suggests that Sr is derived from the mixing of Sr leached from upper crustal rocks with Middle Devonian seawater Sr. A Rb-Sr isochron age of 389.4 ± 6.4 Ma for sulfide layers and the interbedded hydrothermal sediments is consistent with the age of host Mid-Devonian strata. Ar39/Ar40 plateau age at 352.8 ± 3.5 Ma and Ar39-Ar40 isochron age of 346.6 ± 6.4 Ma for albite in the quartz albitite intercalated with sulfide layers indicate either albite formation after the sulfides or thermal resetting of the Rb-Sr system at about 350 Ma, the age of collision between the North China and Yangtze cratons.Editorial handling: E. Frimmel  相似文献   

18.
The Turhal antimony sulfide ore deposits are hosted by a Permian-Jurassic sequence which consists of black phyllites at the base followed by interbedded phyllites and calcareous quartzites with metabasite interlayers and then by brown-gray phyllites with marble blocks. Four different styles and three distinct episodes of mineralization were distinguished according to deposition features of the ores and kinkbands in the stibnite crystals. Stibnite from stratiform, disseminated and vein occurrences as well as pyrite from black phyllites showed the following sulfur isotope composition (34S): +2.8 and +3.0 for stratiform stibnite (n = 2), +3.6 and +5.5 for disseminated stibnite (n = 2), +2.5 to +7.8 for vein stibnite (n = 11) and -6.1 to +0.1 for pyrite (n = 3). The 34S compositions of stibnite are interpreted as suggesting an ultimately single source for sulfur in the various styles of mineralization, i.e. synsedimentary volcanic exhalations for the stratiform and disseminated together with ores and hydrothermal mobilisation of these as well as leaching of volcanic rocks to form the vein ores. Deep basinal fluids probably under normal geothermal gradient conditions caused the leaching of the primary sulfides as suggested by the oxygen isotope composition of vein quartz associated with the ores. By contrast sulfur in pyrite is essentially a derivation of seawater sulfate through bacterial and/or chemical reduction.  相似文献   

19.
The world-class Idrija mercury deposit (western Slovenia) is hosted by highly deformed Permocarboniferous to Middle Triassic sedimentary rocks within a complex tectonic structure at the transition between the External Dinarides and the Southern Alps. Concordant and discordant mineralization formed concomitant with Middle Triassic bimodal volcanism in an aborted rift. A multiple isotopic (C, O, S) investigation of host rocks and ore minerals was performed to put constraints on the source and composition of the fluid, and the hydrothermal alteration. The distributions of the 13C and 18O values of host and gangue carbonates are indicative of a fracture-controlled hydrothermal system, with locally high fluid-rock ratios. Quantitative modeling of the 13C and 18O covariation for host carbonates during temperature dependent fluid-rock interaction, and concomitant precipitation of void-filling dolomites points to a slightly acidic hydrothermal fluid (13C–4 and 18O+10), which most likely evolved during isotopic exchange with carbonates under low fluid/rock ratios. The 34S values of hydrothermal and sedimentary sulfur minerals were used to re-evaluate the previously proposed magmatic and evaporitic sulfur sources for the mineralization, and to assess the importance of other possible sulfur sources such as the contemporaneous seawater sulfate, sedimentary pyrite, and organic sulfur compounds. The 34S values of the sulfides show a large variation at deposit down to hand-specimen scale. They range for cinnabar and pyrite from –19.1 to +22.8, and from –22.4 to +59.6, respectively, suggesting mixing of sulfur from different sources. The peak of 34S values of cinnabar and pyrite close to 0 is compatible with ore sulfur derived dominantly from a magmatic fluid and/or from hydrothermal leaching of basement rocks. The similar stratigraphic trends of the 34S values of both cinnabar and pyrite suggest a minor contribution of sedimentary sulfur (pyrite and organic sulfur) to the ore formation. Some of the positive 34S values are probably derived from thermochemical reduction of evaporitic and contemporaneous seawater sulfates.Editorial handling: P. Lattanzi  相似文献   

20.
Additional measurements of 34S/32S, 13C/12C and 18O/16O ratios in metallic sulphides, carbonates and organic residues suggest a mode of genesis of the McArthur deposit generally consistent with geological and geochemical evidence. A very stable marine environment is indicated by the constant values for 13C and 18O observed throughout the entire deposit. However, 34S contents of pyrites varied by 25 in a manner consistent with the water depths and sulphate availability postulated for the McArthur environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号