首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
Tellurium isotope data acquired by multiple-collector inductively coupled plasma-mass spectrometry (MC-ICPMS) are presented for sequential acid leachates of the carbonaceous chondrites Orgueil, Murchison, and Allende. Tellurium isotopes are produced by a broad range of nucleosynthetic pathways and they are therefore of particular interest given the isotopic anomalies previously identified for other elements in these meteorites. In addition, the data provide new constraints on the initial solar system abundance of the r-process nuclide 126Sn, which decays to 126Te with a half-life of 234,500 years. The 126Te/128Te ratios of all leachates were found to be identical, within uncertainty, despite variations in 124Sn/128Te of between about 0.002 and 1.4. The data define a 126Sn/124Sn ratio of <7.7 × 10−5 at the time of last isotopic closure, consistent with the value of <18 × 10−5 previously reported for bulk carbonaceous chondrites. How close this is to the initial 126Sn/124Sn ratio of the solar system depends on when the investigated samples last experienced redistribution of Sn and Te. No clear evidence is found for nucleosynthetic anomalies in the abundances of p-, s-, and r-process nuclides. The largest effect detected in this study is a small excess of the r-process nuclide 130Te in a nitric acid leachate of Murchison. This fraction displays an anomalous ε130Te of +3.5 ± 2.5. Although barely resolvable given the analytical uncertainties, this is consistent with the presence of a small excess r-process component or an s-process deficit. The general absence of anomalies contrasts with previous results obtained for K, Cr, Zr, Mo, and Ba isotopes in similar leachates, which display nucleosynthetic anomalies of up to 3.8%. The reason for this discrepancy is unclear but it may reflect volatility and more efficient mixing of Te in the solar nebula.  相似文献   

2.
Acid leaching of the primitive C-chondrite Murchison and O-chondrite QUE 97008 reveal nucleosynthetic anomalies in Cr, Sr, Ba, Nd, Sm and Hf. The anomalies in all but Cr and Sm are best explained by variable additions of pure s-process nuclides to a background nebular composition slightly enriched in r-process isotopes compared to average Solar System material. Leaching leaves a residue in Murchison that is strongly enriched in s-process nuclides with depletions of over 0.1% in 135Ba and seven parts in 10,000 in 84Sr. If there are p-process anomalies in these two elements, they are lost in the variability caused by different r-, s-process contributions to the normalizing isotopes. The concentration and isotope systematics are consistent with the Ba and Sr isotopic composition in the Murchison residue being strongly influenced by s-process-rich presolar SiC. In general, the nucleosynthetic isotope anomalies are 2- to 5-fold smaller in QUE 97008 than in Murchison. The different magnitudes of isotope anomalies are similar to the difference in matrix abundance between CM and O chondrites consistent with the suggestion that the carriers of nucleosynthetically anomalous material preferentially reside in the matrix and that some of this material has been distributed throughout the O-chondrite minerals as a result of thermal metamorphism.Neodymium, Sm and Hf display variable s-, r-process nuclide abundances as in Ba and Sr, but the anomalies are much smaller (e.g. ε148Nd, ε148Sm = −5.7, 2.1, respectively, in Murchison and −0.43, 0.16, respectively in QUE 97008 residues). After correcting Nd and Sm for s-, r-process variability, Sm in whole rock chondrites shows variable relative abundances of the p-process isotope 144Sm that correlate weakly with 142Nd suggesting that the direct p-process contribution to 142Nd is small (∼7-9%). Nucleosynthetic variability in Nd explains the range in 142Nd/144Nd seen between C and O, E-chondrites, but not the difference between chondrites and all modern Earth rocks, leaving decay of 146Sm and a superchondritic Sm/Nd ratio as the likely explanation for Earth’s high 142Nd/144Nd.  相似文献   

3.
The extinct radionuclide 107Pd decays to 107Ag (half-life of 6.5 Ma) and is an early solar system chronometer with outstanding potential to study volatile depletion in the early solar system. Here, a comprehensive Ag isotope study of carbonaceous and ordinary chondrites is presented. Carbonaceous chondrites show limited variations (ε107Ag = −2.1 to +0.8) in Ag isotopic composition that correlate with the Pd/Ag ratios. Assuming a strictly radiogenic origin of these variations, a new initial 107Pd/108Pd of 5.9 (±2.2) × 10−5 for the solar system can be deduced. Comparing the Pd-Ag and Mn-Cr data for carbonaceous chondrites suggests that Mn-Cr and Pd-Ag fractionation took place close to the time of calcium-aluminium-rich inclusion (CAI) and chondrule formation ∼4568 Ma ago. Using the new value for the initial 107Pd abundance, the revised ages for the iron-rich meteorites Gibeon (IVA, 8.5 +3.2/−4.6 Ma), Grant (IIIAB, 13.0 +3.5/−4.9 Ma) and Canyon Diablo (IA, 19.5 +24.1/−10.4 Ma) are consistent with cooling rates and the closure temperature of the Pd-Ag system. In contrast to carbonaceous chondrites, ordinary chondrites show large stable isotope fractionation of order of 1 permil for 107Ag/109Ag. This indicates that different mechanisms of volatile depletion were active in carbonaceous and ordinary chondrites. Nebular processes and accretion, as experienced by carbonaceous chondrites, did not led to significant Ag isotope fractionation, while the significant Ag isotope variations in ordinary chondrites are most likely inflicted by open system parent body metamorphism.  相似文献   

4.
We discuss the possible stellar sources of short-lived radionuclides (SLRs) known to have been present in the early solar system (26Al, 36Cl, 41Ca, 53Mn, 60Fe, 107Pd, 129I, 182Hf, 244Pu). SLRs produced primarily by irradiation (7Be, 10Be) are not discussed in this paper. We evaluate the role of the galactic background in explaining the inventory of SLRs in the early solar system. We review the nucleosynthetic processes that produce the different SLRs and place the processes in the context of stellar evolution of stars from 1 to 120 M. The ejection of newly synthesized SLRs from these stars is also discussed. We then examine the extent to which each stellar source can, by itself, explain the relative abundances of the different SLRs in the early solar system, and the probability that each source would have been in the right place at the right time to provide the SLRs. We conclude that intermediate-mass AGB stars and massive stars in the range from ∼20 to ∼60 M are the most plausible sources. Low-mass AGB stars fail to produce enough 60Fe. Core-collapse Type II supernovae from stars with initial masses of <20 M produce too much 60Fe and 53Mn. Sources such as novae, Type Ia supernovae, and core-collapse supernovae of O-Ne-Mg white dwarfs do not appear to provide the SLRs in the correct proportions. However, intermediate-mass AGB stars cannot provide 53Mn or the r-process elements, so if an AGB star provided the 41Ca, 36Cl, 26Al, 60Fe, and 107Pd, and if a late stellar source is required for 53Mn and the r-process elements, then two types of sources would be required. A separate discussion of the production of r-process elements highlights the difficulties in modeling their production. There appear to be two sources of r-process elements, one that produces the heavy r-process elements, including the actinides, and one that produces the elements from N to Ge and the elements ∼110 < A < ∼130. These can be assigned to SNII explosions of stars of ?11 M and stars of 12-25 M, respectively. More-massive stars, which leave black holes as supernova remnants, apparently do not produce r-process elements.  相似文献   

5.
Owing to the rapid increase in available data on the natural variations of the 238U/235U ratio, new isotopic geochemical mark of redox processes are beginning to emerge. In this connection, numerical estimates of the 238U and 235U fractionation factor (α(UIV?UVI)) accompanying the reduction UVI → UIV are needed. Such an estimate has been obtained for hydrothermal pitchblende formation based on results of high-precision (±0.06‰) measurements of the 238U/235U ratio in local microsamples of coarse spherulitic pitchblende from carbonate-pitchblende veins at the Oktyabr’sky deposit (Strel’tsovsky uranium ore field, eastern Transbaikal region). For this purpose, we used the formation temperature of hydrothermal pitchblende and a maximum estimate of the fractionation factor for 238U and 235U isotopes in the solution-solid phase system under normal (25°C) conditions (Murphy et al., 2014). The most probable isotopic fractionation factor accompanying pitchblende crystallization from hydrothermal solution at T = 320?250°C falls into the interval α(UIV?UVI) = 1.00020?1.00023.  相似文献   

6.
We have determined 238U/235U ratios for a suite of commonly used natural (CRM 112a, SRM 950a, and HU-1) and synthetic (IRMM 184 and CRM U500) uranium reference materials by thermal ionisation mass-spectrometry (TIMS) using the IRMM 3636 233U-236U double spike to accurately correct for mass fractionation. Total uncertainty on the 238U/235U determinations is estimated to be <0.02% (2σ). These natural 238U/235U values are different from the widely used ‘consensus’ value (137.88), with each standard having lower 238U/235U values by up to 0.08%. The 238U/235U ratio determined for CRM U500 and IRMM 184 are within error of their certified values; however, the total uncertainty for CRM U500 is substantially reduced (from 0.1% to 0.02%). These reference materials are commonly used to assess mass-spectrometer performance and accuracy, calibrate isotope tracers employed in U, U-Th and U-Pb isotopic studies, and as a reference for terrestrial and meteoritic 238U/235U variations. These new 238U/235U values will thus provide greater accuracy and reduced uncertainty for a wide variety of isotopic determinations.  相似文献   

7.
We present results of a study of the 53Mn-53Cr isotope systematics in the enstatite chondrites and achondrites (aubrites). The goal of this study was to explore the capabilities of this isotope system to obtain chronological information on these important classes of meteorites and to investigate the original distribution in the inner solar system of the short-lived radionuclide 53Mn. Our earlier work (Lugmair and Shukolyukov, 1998; Shukolyukov and Lugmair, 2000a) has shown that the asteroid belt bodies are characterized by essentially the same initial 53Mn abundance. However, we have found the presence of a gradient in the abundance of the radiogenic 53Cr between the earth-moon system, Mars, and the asteroid Vesta. If this gradient is considered as a function of the heliocentric distance a linear radial dependence is indicated. This can be explained either by an early, volatility controlled Mn/Cr fractionation in the nebula or by an original radially heterogeneous distribution of 53Mn. The enstatite chondrites are suggested to form in the inner zones of the solar nebula, much closer to the Sun than the ordinary chondrites. Therefore, their investigation may be an important test on the hypothesis on a radial heterogeneity in the initial 53Mn.We have studied the bulk samples of the EH4-chondrites Indarch and Abee and the EL6-chondrite Khairpur. Although these meteorites have essentially the same Mn/Cr ratio as the ordinary chondrites, the relative abundance of the radiogenic 53Cr is three times smaller than in the ordinary chondrites. Because these meteorites are primitive (undifferentiated) and no Mn/Cr fractionation had occurred within their parent bodies, this difference is a strong argument in favor of an initially heterogeneous distribution of 53Mn in the early inner solar system. This finding is also consistent with formation of the enstatite chondrites in the inner zones of the solar nebula. Using the characteristic 53Cr excess of the enstatite chondrites and the observed gradient, their place of origin falls at about 1.4 AU or somewhat closer to the Sun (i.e. >1.0-1.4 AU).We also present chronological results for the enstatite chondrites and achondrites. The ‘absolute’ 53Mn-53Cr ages of the EH4-chondrites are old: ∼4565 Ma. The EL6-chondrite Khairpur is ∼4.5 Ma younger, which is in good agreement with the 129I-129Xe data from the literature. The age of the aubrite Peña Blanca Spring appears to be similar to those of the enstatite chondrites while that of the aubrite Bishopville is at least ∼10 Ma younger, which is also in agreement with the 129I-129Xe data. The results from bulk samples of aubrites indicate that the last Mn/Cr fractionation in their parent body occurred ∼ 4563 Ma ago and imply an evolution of the Mn-Cr isotope system in an environment with an higher than chondritic Mn/Cr ratio for several millions of years.  相似文献   

8.
Application of 182Hf-182W chronometry to constrain the duration of early solar system processes requires the precise knowledge of the initial Hf and W isotope compositions of the solar system. To determine these values, we investigated the Hf-W isotopic systematics of bulk samples and mineral separates from several Ca,Al-rich inclusions (CAIs) from the CV3 chondrites Allende and NWA 2364. Most of the investigated CAIs have relative proportions of 183W, 184W, and 186W that are indistinguishable from those of bulk chondrites and the terrestrial standard. In contrast, one of the investigated Allende CAIs has a lower 184W/183W ratio, most likely reflecting an overabundance of r-process relative to s-process isotopes of W. All other bulk CAIs have similar 180Hf/184W and 182W/184W ratios that are elevated relative to average carbonaceous chondrites, probably reflecting Hf-W fractionation in the solar nebula within the first ∼3 Myr. The limited spread in 180Hf/184W ratios among the bulk CAIs precludes determination of a CAI whole-rock isochron but the fassaites have high 180Hf/184W and radiogenic 182W/184W ratios up to ∼14 ε units higher than the bulk rock. This makes it possible to obtain precise internal Hf-W isochrons for CAIs. There is evidence of disturbed Hf-W systematics in one of the CAIs but all other investigated CAIs show no detectable effects of parent body processes such as alteration and thermal metamorphism. Except for two fractions from one Allende CAI, all fractions from the investigated CAIs plot on a single well-defined isochron, which defines the initial ε182W = −3.28 ± 0.12 and 182Hf/180Hf = (9.72 ± 0.44) × 10−5 at the time of CAI formation. The initial 182Hf/180Hf and 26Al/27Al ratios of the angrites D’Orbigny and Sahara 99555 are consistent with the decay from initial abundances of 182Hf and 26Al as measured in CAIs, suggesting that these two nuclides were homogeneously distributed throughout the solar system. However, the uncertainties on the initial 182Hf/180Hf and 26Al/27Al ratios are too large to exclude that some 26Al in CAIs was produced locally by particle irradiation close to an early active Sun. The initial 182Hf/180Hf of CAIs corresponds to an absolute age of 4568.3 ± 0.7 Ma, which may be defined as the age of the solar system. This age is 0.5-2 Myr older than the most precise 207Pb-206Pb age of Efremovka CAI 60, which does not seem to date CAI formation. Tungsten model ages for magmatic iron meteorites, calculated relative to the newly and more precisely defined initial ε182W of CAIs, indicate that core formation in their parent bodies occurred in less than ∼1 Myr after CAI formation. This confirms earlier conclusions that the accretion of the parent bodies of magmatic iron meteorites predated chondrule formation and that their differentiation was triggered by heating from decay of abundant 26Al. A more precise dating of core formation in iron meteorite parent bodies requires precise quantification of cosmic-ray effects on W isotopes but this has not been established yet.  相似文献   

9.
New data on the U, Pu, and P distributions in less metamorphosed H-chondrites (type 3–5), coupled with literature results, permit a provisional picture to be assembled of the chemistry of these elements and for the rare earth elements in ordinary chondrites and the changes brought about by chondritic metamorphism. Preferential associations of phosphates with metals and/or sulndes in all chondrites strongly indicate an “initially” siderophile or conceivably chalcophile character for P in ordinary chondrite precursor materials with phosphate subsequently formed by oxidation. This oxidation occurred prior to or during chondritic metal-silicate fractionation. Uranium is initially concentrated in chondrule glass at ~ 100 ppb levels with phosphates (primarily merrillite) in H-3 chondrites being essentially U-free (<20 ppb). As chondrule glass devitrified during metamorphism, U migrated into phosphates reaching ~ 50 ppb in Nadiabondi (H-5) merrillite and 200–300 ppb in merrillite from equilibrated chondrites but “froze out” before total concentration in phosphates occurred. Relative 244Pu fission track densities in the outer 5 μm of olivine and pyroxene grains in contact with merrillite and with chondrule mesostasis in Bremervörde (H-3) give Pu(mesostasis)/Pu(merrillite) <0.01, implying total concentration of Pu in phosphates. Similarly, no detectable Pu (<0.1 ppb) was found in chondrule mesostasis in Tieschitz and Sharps; whereas, direct measurements of tracks in phosphates in H-3 chondrites are consistent with high (?10 ppb) Pu concentrations. Thus, a strong Pu-P correlation is indicated for ordinary chondrites. There is variable Pu/U fractionation in all chondritic phosphates reaching an extreme degree in the unequilibrated chondrites; therefore, the Pu/U ratio in phosphates appears relatively useless for relative meteorite chronology. Literature data indicate that the REE are located in chondrules in unequilibrated chondrites, most likely in glass; thus there may also be strong Pu/Nd fractionation within these meteorites. Like U, the REE migrate into phosphates during metamorphism but, unlike U, appear to be quantitatively concentrated in phosphates in equilibrated chondrites. Thus relative ages, based on Pu/Nd, may be possible for equilibrated chondrites, but the same chronological conclusions are probably obtainable from Pu concentrations in phosphates, i.e., on the Pu/P ratio. However, Pu/P chronology is possible only for ordinary chondrites; so there appears to be no universal reference element to cancel the effects of Pu chemical fractionation in all meteorites. Available data are consistent with — but certainly do not prove-that variations in Pu/P represent age differences, but if these age differences do not exist, then it is conceivable that the solar system 244Pu238U ratio, important for cosmochronology, is still lower than the presently accepted value of 0.007.  相似文献   

10.
The isotopic composition of U in nature is generally assumed to be invariant. Here, we report variations of the 238U/235U isotope ratio in natural samples (basalts, granites, seawater, corals, black shales, suboxic sediments, ferromanganese crusts/nodules and BIFs) of ∼1.3‰, exceeding by far the analytical precision of our method (≈0.06‰, 2SD). U isotopes were analyzed with MC-ICP-MS using a mixed 236U-233U isotopic tracer (double spike) to correct for isotope fractionation during sample purification and instrumental mass bias. The largest isotope variations found in our survey are between oxidized and reduced depositional environments, with seawater and suboxic sediments falling in between. Light U isotope compositions (relative to SRM-950a) were observed for manganese crusts from the Atlantic and Pacific oceans, which display δ238U of −0.54‰ to −0.62‰ and for three of four analyzed Banded Iron Formations, which have δ238U of −0.89‰, −0.72‰ and −0.70‰, respectively. High δ238U values are observed for black shales from the Black Sea (unit-I and unit-II) and three Kupferschiefer samples (Germany), which display δ238U of −0.06‰ to +0.43‰. Also, suboxic sediments have slightly elevated δ238U (−0.41‰ to −0.16‰) compared to seawater, which has δ238U of −0.41 ± 0.03‰. Granites define a range of δ238U between −0.20‰ and −0.46‰, but all analyzed basalts are identical within uncertainties and slightly lighter than seawater (δ238U = −0.29‰).Our findings imply that U isotope fractionation occurs in both oxic (manganese crusts) and suboxic to euxinic environments with opposite directions. In the first case, we hypothesize that this fractionation results from adsorption of U to ferromanganese oxides, as is the case for Mo and possibly Tl isotopes. In the second case, reduction of soluble UVI to insoluble UIV probably results in fractionation toward heavy U isotope compositions relative to seawater. These findings imply that variable ocean redox conditions through geological time should result in variations of the seawater U isotope compositions, which may be recorded in sediments or fossils. Thus, U isotopes might be a promising novel geochemical tracer for paleo-redox conditions and the redox evolution on Earth. The discovery that 238U/235U varies in nature also has implications for the precision and accuracy of U-Pb dating. The total observed range in U isotope compositions would produce variations in 207Pb/206Pb ages of young U-bearing minerals of up to 3 Ma, and up to 2 Ma for minerals that are 3 billion years old.  相似文献   

11.
To study geochemical processes for migration and fixation of fissiogenic rare earth elements (REE) in association with uranium dissolution, in situ isotopic analyses using an ion microprobe were performed on U- and REE-bearing secondary minerals, such as coffinite, françoisite, uraniferous goethite, and uraninite found in a sandstone layer 30 to 110 cm beneath a natural fission reactor at Bangombé, Gabon. Phosphate minerals such as phosphatian coffinite and françoisite with depleted 235U (235U/238U = 0.00609 to 0.00638) contained large amount of fissiogenic light REE, while micro-sized uraninite grains in a solid bitumen aggregate have normal U isotopic values (235U/238U = 0.00725) and small amount of fissiogenic REE components. The proportions of fissiogenic and non-fissiogenic REE components in four samples from the core of BAX03 vary in depth ranging from 30 cm to 130 cm beneath the reactor, which suggests mixing between fissiogenic isotopes from the reactor and non-fissiogenic isotopes from original minerals in the sandstone. Significant chemical fractionation was observed between Ce and the other REE in the secondary minerals, which shows evidence of an oxidizing atmosphere during their formation. Pb-isotopic analyses of individual minerals do not directly provide chronological information because of the disturbance of U-Pb decay system due to recent geologic alteration. However, systematic Pb-isotopic results from all of the minerals reveal the mobilization of fissiogenic isotopes, Pb and U from the reactor in association with dolerite dyke intrusion ∼0.798 Ga ago and the formation of the secondary minerals by mixing event between 2.05 Ga-old original minerals and reactor materials due to recent alteration.  相似文献   

12.
Stepwise dissolutions of the carbonaceous chondrites Orgueil (CI), Murchison (CM) and Allende (CV) reveal large nucleosynthetic anomalies for Zr isotopes that contrast with the uniform compositions found in bulk meteorites. Two complementary nucleosynthetic components are observed: one enriched and one depleted in s-process nuclides. The latter component, characterized by excess 96Zr, is most distinctive in the acetic acid leachate (up to ε96Zr ≈ 50). The excess decreases with increasing acid strength and the final leaching steps of the experiment are depleted in 96Zr and thus enriched in s-process nuclides. Presolar silicon carbide grains are likely host phases for part of the anomalous Zr released during these later stages. However, by mass balance they cannot account for the 96Zr excesses observed in the early leaching steps and this therefore hints at the presence of at least one additional carrier phase with significant amounts of anomalous Zr. The data provide evidence that average solar system material consists of a homogenized mixture of different nucleosynthetic components, which can be partly resolved by leaching experiments of carbonaceous chondrites.  相似文献   

13.
We present major and trace element and Sr-Nd-Pb and U-Th-Pa-Ra isotope data for a small sample suite of primarily post-glacial, mildly alkalic volcanic rocks from the Snaefellsjökull central volcano situated off the main rift systems in western Iceland. The volcanic rocks are crystal-poor and range from olivine alkali basalt to trachyte and show tight correlations of major and trace elements that are explained by fractional crystallization involving removal of olivine, plagioclase, clinopyroxene, Fe-Ti oxide and apatite. Sr-Nd-Pb isotopes are practically invariant, consistent with derivation from the same source region. During fractionation from primitive basalt to evolved trachyte, (230Th/232Th), (230Th/238U) and (231Pa/235U) decrease progressively at broadly constant (238U/232Th). A continuous closed-system fractionation model that assumes constant initial (230Th/232Th) in the basaltic precursor melt indicates that hawaiite was derived from olivine basalt by ∼50% fractional crystallization within and trachyte by ∼80% fractionation within . An overrepresentation of evolved basalts and hawaiites with young inferred magma ages in the dataset is consistent with the parental precursor to these magmas intruded into the sub-volcanic magma plumbing system as a consequence of lithospheric rebound caused by deglaciation. Lavas affected by apatite removal have higher (231Pa/235U) than predicted for simple radioactive decay, suggesting apatite significantly fractionates U from Pa. The proposed fractionation model consistently explains our U-series data assuming and and . If applicable, these D values would indicate that the effect of apatite fractionation must be adequately considered when assessing differentiation time scales using (231Pa/235U) disequilibria data.  相似文献   

14.
The isotopic (U-Pb, 238U-235U, 234U-238U) and chemical study of whole-rock samples and finegrained fractions of rocks in a vertical section of the terrigenous sequence at the Dybryn uranium deposit in the Khiagda ore field shows that a wide U-Pb isotopic age range (26.9-6.5 Ma) is caused by oxidation and disturbance of the U-Pb isotopic system in combination with protracted uranium ore deposition. The oxidation of rocks resulted in the loss of uranium relative to lead and eventually to an overestimated 206Pb/238U age at sites with a low U content. The 238U/235U ratios in the studied samples are within the range of 137.74–137.88. Samples with a high uranium content are characterized by a decreasing 238U/235U ratio with a decrease in 207Pb/235U and 206Pb/238U ages. A nonequilibrium 234U/238U ratio in most studied samples furnishes evidence for young (<1.5 Ma) transformation of the Miocene uranium ore, which is responsible for uranium migration and its redeposition.  相似文献   

15.
A new abundance table has been compiled, based on a critical review of all C1 chondrite analyses up to mid-1982. Where C1 data were inaccurate or lacking, data for other meteorite classes were used, but with allowance for fractionation among classes. In a number of cases, interelement ratios from meteorites or lunar and terrestrial rocks as well as solar wind were used to check and constrain abundances. A few elements were interpolated (Ar, Kr, Xe, Hg) or estimated from astronomical data (H, C, N, O, He, Ne).For most elements, the new abundances differ by less than 20% from those of Cameron (1982a). In 14 cases, the change is between 20 and 50% (He, Ne, Be, Br, Nb, Te, I, Xe, La, Gd, Tb, Yb, Ta and Pb) and in 5 others, it exceeds 50% (B, P, Mo, W, Hg). Some important interelement ratios (NaK, SeTe, RbSr, KrXe, LaW, ThU, PbU, etc.) are significantly affected by these changes.Three tests were carried out, to see how closely C1 chondrites approximate primordial solar system abundances. (1) A plot of solar vs Cl abundances shows only 7 discrepancies by more than twice the nominal error of the solar abundance: Ga, Ge, Nb, Ag, Lu, W and Os. Most or all apparently reflect errors in the solar data or f-values. (2) The major cosmochemical groups (refractories, siderophiles, volatiles, etc.) show no significant fractionation between the Sun and C1's, except possibly for a slight enrichment of volatiles in Cl's. (3) Abundances of odd-A nuclides between A = 65 and 209 show an almost perfectly smooth trend, with elemental abundances conforming to the slope defined by isotopic abundances. There is no evidence for systematic fractionation of the major cosmochemical groups from each other. Small irregularities (10–15%) show up in the Ag-Cd-In and Sm-Eu regions; the former may be due to a ~ 15% error in the Ag abundance and the latter, to a 10–20% fractionation of Eu during condensation, to contamination of C1 chondrites with interplanetary dust during regolith exposure, or to a change from s-process to r-process dominance.It appears that the new set of abundances is accurate to at least 10%, as irregularities of 5–10% are readily detectable. Accordingly, Cl chondrites seem to match primordial solar-system matter to ? 10%, with only four exceptions. Br and I are definitely and B is possibly fractionated by hydrothermal alteration, whereas Eu seems to be enriched by nebular condensation or regolith contamination.  相似文献   

16.
The variations in 238U/235U values accompanying mobilization of U by fracture waters from uranium-bearing rocks, in which U occurs as a fine impregnation of oxides and silicates, were studied by the high-precision (±0.07‰) MC–ICP–MS method. Transition of U into the aqueous phase in the oxidized state U(VI) is accompanied by its isotope fractionation with enrichment of dissolved U(VI) in the heavy isotope 238U up to 0.32‰ in relation to the composition of the solid phases. According to the sign, this effect is consistent with the tendency of the behavior of 238U and 235U upon interaction of river waters with rocks of the catchment areas [11] and with the effect observed during oxidation of uraninite by the oxygen-bearing NaHCO3 solution [12].  相似文献   

17.
Chondrules and chondrites provide unique insights into early solar system origin and history, and iron plays a critical role in defining the properties of these objects. In order to understand the processes that formed chondrules and chondrites, and introduced isotopic fractionation of iron isotopes, we measured stable iron isotope ratios 56Fe/54Fe and 57Fe/54Fe in metal grains separated from 18 ordinary chondrites, of classes H, L and LL, ranging from petrographic types 3-6 using multi-collector inductively coupled plasma mass spectrometry. The δ56Fe values range from −0.06 ± 0.01 to +0.30 ± 0.04‰ and δ57Fe values are −0.09 ± 0.02 to +0.55 ± 0.05‰ (relative to IRMM-014 iron isotope standard). Where comparisons are possible, these data are in good agreement with published data. We found no systematic difference between falls and finds, suggesting that terrestrial weathering effects are not important in controlling the isotopic fractionations in our samples. We did find a trend in the 56Fe/54Fe and 57Fe/54Fe isotopic ratios along the series H, L and LL, with LL being isotopically heavier than H chondrites by ∼0.3‰ suggesting that redox processes are fractionating the isotopes. The 56Fe/54Fe and 57Fe/54Fe ratios also increase with increasing petrologic type, which again could reflect redox changes during metamorphism and also a temperature dependant fractionation as meteorites cooled. Metal separated from chondrites is isotopically heavier by ∼0.31‰ in δ56Fe than chondrules from the same class, while bulk and matrix samples plot between chondrules and metal. Thus, as with so many chondrite properties, the bulk values appear to reflect the proportion of chondrules (more precisely the proportion of certain types of chondrule) to metal, whereas chondrule properties are largely determined by the redox conditions during chondrule formation. The chondrite assemblages we now observe were, therefore, formed as a closed system.  相似文献   

18.
We review two models for the origin of the calcium-, aluminum-rich inclusion (CAI) oxygen isotope mixing line in the solar nebula: (1) CO self-shielding, and (2) chemical mass-independent fractionation (MIF). We consider the timescales associated with formation of an isotopically anomalous water reservoir derived from CO self-shielding, and also the vertical and radial transport timescales of gas and solids in the nebula. The timescales for chemical MIF are very rapid. CO self-shielding models predict that the Sun has Δ17OSMOW ∼ −20‰ (Clayton, 2002), and chemical mass-independent fractionation models predict Δ17OSMOW ∼0‰. Preliminary Genesis results have been reported by McKeegan et al. (McKeegan K. D., Coath C. D., Heber, V., Jarzebinski G., Kallio A. P., Kunihiro T., Mao P. H. and Burnett D. S. (2008b) The oxygen isotopic composition of captured solar wind: first results from the Genesis. EOS Trans. AGU 89(53), Fall Meet. Suppl., P42A-07 (abstr)) and yield a Δ17OSMOW of ∼ −25‰, consistent with a CO self-shielding scenario. Assuming that subsequent Genesis analyses support the preliminary results, it then remains to determine the relative contributions of CO self-shielding from the X-point, the surface of the solar nebula and the parent molecular cloud.The relative formation ages of chondritic components can be related to several timescales in the self-shielding theories. Most importantly the age difference of ∼1-3 My between CAIs and chondrules is consistent with radial transport from the outer solar nebula (>10 AU) to the meteorite-forming region, which supports both the nebular surface and parent cloud self-shielding scenarios. An elevated radiation field intensity is predicted by the surface shielding model, and yields substantial CO photolysis (∼50%) on timescales of 0.1-1 My. An elevated radiation field is also consistent with the parent cloud model. The elevated radiation intensities may indicate solar nebula birth in a medium to large cluster, and may be consistent with the injection of 60Fe from a nearby supernova and with the photoevaporative truncation of the solar nebula at KBO orbital distances (∼47 AU). CO self-shielding is operative at the X-point even when H2 absorption is included, but it is not yet clear whether the self-shielding signature can be imparted to silicates. A simple analysis of diffusion times shows that oxygen isotope exchange between 16O-depleted nebular H2O and chondrules during chondrule formation events is rapid (∼minutes), but is also expected to be rapid for most components of CAIs, with the exception of spinel. This is consistent with the observation that spinel grains are often the most 16O-rich component of CAIs, but is only broadly consistent with the greater degree of exchange in other CAI components. Preliminary disk model calculations of self-shielding by N2 demonstrate that large δ15N enrichments (∼ +800‰) are possible in HCN formed by reaction of N atoms with organic radicals (e.g., CH2), which may account for 15N-rich hotspots observed in lithic clasts in some carbonaceous chondrites and which lends support to the CO self-shielding model for oxygen isotopes.  相似文献   

19.
Metallic aggregates with a size of a few tens μm and consisting mainly of Ru, Rh, Pd, Te, Pb, As, Sb, S and Bi were found in the acid residue of SD37-S2/CD uraninite taken from Oklo natural reactor zone (RZ) 13. Quantitative analyses of major elements using an electron probe microanalyzer and in situ isotopic analyses of Zr, Mo, Ru, Pb and U using a sensitive high-resolution ion microprobe were performed on the metallic aggregates to determine the geochemical behaviors of fission products and actinides and to ascertain the processes of formation of the aggregates in the RZs. The chemical compositions of the aggregates investigated in this study are significantly different from those reported previously, showing lower Pb content and no correlation between the contents of Pb and S in the individual grains. The 235U/238U ratios in metallic aggregates vary significantly from 0.00478 to 0.01466, indicating chemical fractionation between U and Pu during the formation of the aggregates. The Pb isotopic data indicate that most of the Pb in the aggregates decayed from 2.05 Ga-old uraninite that existed in the RZ originally and that there was chemical fractionation between U and Pb in some aggregates. The Zr and Mo isotopic ratios, 90Zr/91Zr and 95Mo/97Mo, for most of the aggregates had small variations, which can be simply explained by constant separate mixing of fissiogenic and nonfissiogenic components. On the other hand, a large variation in the 99Ru/101Ru ratio (0.324-1.73) cannot be explained only by a two component mixing theory; thus, chemical fractionation between Tc and Ru during the reactor criticality is suggested. The large variations in the 235U/238U and 99Ru/101Ru isotopic ratios suggest that the aggregates formed under various redox conditions owing to the radiolysis of water.  相似文献   

20.
To examine the petrogenesis and sources of basalts from the Kolbeinsey Ridge, one of the shallowest locations along the global ridge system, we present new measurements of Nd, Sr, Hf, and Pb isotopes and U-series disequilibria on 32 axial basalts. Young Kolbeinsey basalts (full-spreading rate = 1.8 cm/yr; 67°05′-70°26′N) display (230Th/238U) < 1 and (230Th/238U) > 1 with (230Th/238U) from 0.95 to 1.30 and have low U (11.3-65.6 ppb) and Th (33.0 ppb-2.40 ppm) concentrations. Except for characteristic isotopic enrichment near the Jan Mayen region, the otherwise depleted Kolbeinsey basalts (e.g. 87Sr/86Sr = 0.70272-0.70301, εNd = 8.4-10.5, εHf = 15.4-19.6 (La/Yb)N = 0.28-0.84) encompass a narrow range of (230Th/232Th) (1.20-1.32) over a large range in (238U/232Th) (0.94-1.32), producing a horizontal array on a (230Th/232Th) vs. (238U/232Th) diagram and a large variation in (230Th/238U). However, the (230Th/238U) of the Kolbeinsey Ridge basalts (0.96-1.30) are inversely correlated with (234U/238U) (1.001-1.031). Samples with low (230Th/238U) and elevated (234U/238U) reflect alteration by seawater or seawater-derived materials. The unaltered Kolbeinsey lavas with equilibrium 234U/238U have high (230Th/238U) values (?1.2), which are consistent with melting in the presence of garnet. This is in keeping with the thick crust and anomalously shallow axial depth for the Kolbeinsey Ridge, which is thought to be the product of large degrees of melting in a long melt column. A time-dependent, dynamic melting scenario involving a long, slowly upwelling melting column that initiates well within the garnet peridotite stability zone can, in general, reproduce the (230Th/238U) and (231Pa/235U) ratios in uncontaminated Kolbeinsey lavas, but low (231Pa/235U) ratios in Eggvin Bank samples suggest eclogite involvement in the source for that ridge segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号