首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dissolution of Iceland spar in CO2-saturated solutions at 25°C and 1 atm total pressure has been followed by measurement of pH as a function of time. Surface concentrations of reactant and product species have been calculated from bulk fluid data using mass transport theory and a model that accounts for homogeneous reactions in the bulk fluid. The surface concentrations are found to be close to bulk solution values. This indicates that calcite dissolution under the experimental conditions is controlled by the kinetics of surface reaction. The rate of calcite dissolution follows an empirical second order relation with respect to calcium and hydrogen ion from near the initial condition (pH 3.91) to approximately pH 5.9. Beyond pH 5.9 the rate of surface reaction is greatly reduced and higher reaction orders are observed. Calculations show that the rate of calcite dissolution in natural environments may be influenced by both transport and surface-reaction processes. In the absence of inhibition, relatively short times should be sufficient to establish equilibrium.  相似文献   

2.
《Applied Geochemistry》1997,12(3):291-303
The geochemical effects of microbially mediated degradation of aromatic hydrocarbons were observed as changes in solution composition of an artificial groundwater in packed-sand laboratory columns. Benzene, toluene, and xylene, both individually and in a combined fashion, were used as substrates in biodegradation experiments conducted under oxygenated and anoxic conditions in columns filled with quartz, calcite, or Fe3+-coated quartz sand. Typically, column effluent had increased concentrations of dissolved inorganic C, decreased pH, and decreased concentrations of NO3 and dissolved O2 relative to column influent. Efficiency of CO2 generation was similar for the three different substrates, ranging from 22.5 to 26.6% organic C converted to CO2. When all three substrates were combined, the percentage of CO2 produced fell within the range observed in the single substrate experiments. Nitrate disappearance was more varied as a function of substrate identity, with greatest amounts lost when toluene was the substrate. Calcite dissolved as a result of CO2 generated during the biodegradation reactions, and empirically calculated dissolution rates varied between 1.9 and 4.0 x 10−9 mmol cm−2 s−1. The calcite dissolution rate was slower than the biodegradation rate, as evidenced by excess generation of CO2 relative to Ca2+ production. The decrease in pH was less in experiments with calcite present than in those with quartz sand present due to buffering by calcite dissolution. Dissolution of Fe oxyhydroxides was not observed under any experimental conditions.  相似文献   

3.
The characteristics and formation mechanism of calcite cements in the tight sandstone of the Jurassic Lianggaoshan Formation in the northeastern Central Sichuan Basin were analysed using petrographic and isotopic techniques. In the tight sandstone of the Lianggaoshan Formation, cements are mostly calcite and occur as poikilitic, pore-filling, fracture-filling and replacement of clastic particles. Contents of Al, Si, Fe and Mn in the poikilitic calcites are significantly less than that in the dissolution pore-filling and metasomatic calcites. Three stages (early, middle and late) of authigenic calcites correspond to temperature ranges of <60, 60–100 and ≥100?°C, respectively, with most calcite cements formed under lower temperature (<100?°C) conditions. The δ18O values of the early–middle authigenic calcites are in equilibrium with connate water, and the δ18O values of late calcites are depleted in 18O indicating equilibrium at higher temperatures. The early authigenic calcites precipitated in a relatively open system associated with CO2 from bacterial fermentation at an immature to low-mature stage, and a Ca2+- and alkaline-rich environment owing to hydration–hydrolysis and dissolution of silicate minerals during phase A of eodiagenesis. The middle–late authigenic calcites precipitated in a relatively closed system with CO2 from decarboxylation of organic acids and Ca2+ from dissolution of silicate minerals and transformation of clay minerals during phase B of eodiagenesis to mesodiagenesis. Calcite cements mainly occur in the medium and fine sandstones of sand flats and beach bars. Authigenic calcite dissolution is extremely weak, and calcite cementation is pore-space destructive.  相似文献   

4.
Aragonite was converted to calcite in dilute CaCl2 fluid at temperatures ranging from 50 to 100°C. Surface areas of aragonite and calcite seed crystals were varied by over an order of magnitude to permit independent assessment of calcite nucleation and growth processes. Aragonite conversion rates were measured using isotopic attenuation of dissolved 44Ca, which was added to the fluid at the beginning of each experiment. Measured conversion rates were found to be constant with respect to time and proportional to the initial surface area of aragonite. Rates were independent of the surface area of calcite seed crystals owing to heterogeneous nucleation of calcite on aragonite during experiments. The data imply that calcite nucleates on aragonite surfaces until the level of saturation with respect to calcite reaches a critical threshold value where further nucleation is precluded. Thereafter, conversion to calcite occurs at a steady state rate consistent with aragonite dissolution at a fixed level of saturation. Aragonite converts to calcite under these conditions and in dilute fluids at rates of approximately 10 and 100 microns/yr at 25 and 100°C, respectively.  相似文献   

5.
为进一步查明泗滨砭石的矿物组成特征与砭石良好的红外发射功能间的关系,用激光喇曼光谱和高分辨透射电镜对砭石样品进行了研究.喇曼光谱研究除证实样品含有微米晶黄铁矿、石墨和锐钛矿外,还发现方解石、黄铁矿和锐钛矿的谱图上均有石墨的两个谱峰.TEM和HRTEM观察发现方解石全由纳米品组成,并普遍有石墨纳米粒子产出.纳米晶石墨多分布于方解石晶界间.4种矿物中纳米晶方解石含量最高,热容也最大,是泗滨砭石具有良好热辐射性质最重要的矿物学背景条件.纳米晶石墨的普遍存在提高了岩石整体导热和储热性能,其优良的热红外发射性能也是造成泗滨砭石在远红外波段具有很高发射率的一个重要原因.黄铁矿具有良好的热电性,而锐钛矿的红外线吸收和反射能力都较强、光电转换效率也高,它们也是泗滨砭石具有良好的热发射性能的一个辅助原因.上述4种矿物良好物理性质的共同作用,使加热后的泗滨砭石具有疏通经络、活血化淤、调理气血等重要的理疗功效,中医砭术在医疗保健上所利用的也正是砭石能辐射对人体有益的远红外线功能.  相似文献   

6.
This study of the dissolution of calcite in an acid environment demonstrates a significant dissolution anomaly for small particles. This cannot be attributed to very small, finely ground particles “stuck” to the grains, as there were too few to explain the magnitude of the observed anomaly. It is linked to the disruption resulting from the grinding. When observed in the electron microscope, the grains appear to be constructed of an aggregate of small crystals oriented in several principal directions. Their size increases progressively from the surface to the interior of the grain. An exothermic reaction is produced when the calcite is heated to 350° C. This causes a change in the microcrystalline structure leading to a nearly monocrystalline state. This recrystallisation retards the dissolution speed.  相似文献   

7.
Geochemistry of soil, soil water, and soil gas was characterized in representative soil profiles of three Michigan watersheds. Because of differences in source regions, parent materials in the Upper Peninsula of Michigan (the Tahquamenon watershed) contain only silicates, while those in the Lower Peninsula (the Cheboygan and the Huron watersheds) have significant mixtures of silicate and carbonate minerals. These differences in soil mineralogy and climate conditions permit us to examine controls on carbonate and silicate mineral weathering rates and to better define the importance of silicate versus carbonate dissolution in the early stage of soil-water cation acquisition.Soil waters of the Tahquamenon watershed are the most dilute; solutes reflect amphibole and plagioclase dissolution along with significant contributions from atmospheric precipitation sources. Soil waters in the Cheboygan and the Huron watersheds begin their evolution as relatively dilute solutions dominated by silicate weathering in shallow carbonate-free soil horizons. Here, silicate dissolution is rapid and reaction rates dominantly are controlled by mineral abundances. In the deeper soil horizons, silicate dissolution slows down and soil-water chemistry is dominated by calcite and dolomite weathering, where solutions reach equilibrium with carbonate minerals within the soil profile. Thus, carbonate weathering intensities are dominantly controlled by annual precipitation, temperature and soil pCO2. Results of a conceptual model support these field observations, implying that dolomite and calcite are dissolving at a similar rate, and further dissolution of more soluble dolomite after calcite equilibrium produces higher dissolved inorganic carbon concentrations and a Mg2+/Ca2+ ratio of 0.4.Mass balance calculations show that overall, silicate minerals and atmospheric inputs generally contribute <10% of Ca2+ and Mg2+ in natural waters. Dolomite dissolution appears to be a major process, rivaling calcite dissolution as a control on divalent cation and inorganic carbon contents of soil waters. Furthermore, the fraction of Mg2+ derived from silicate mineral weathering is much smaller than most of the values previously estimated from riverine chemistry.  相似文献   

8.
About 30% of the chromite grains of variable sizes in a chromitite seam at the base of the Merensky Reef of the Bushveld Complex on the farm Vlakfontein contain abundant composite mineral inclusions. The inclusions are polygonal to circular with radial cracks that protrude into the enclosing chromite. They vary from a few microns to several millimeters in diameter and are concentrated in the cores and mantles of chromite crystals. Electron backscattered patterns indicate that the host chromites are single crystals and not amalgamations of multiple grains. Na-phlogopite and orthopyroxene are most abundant in the inclusions. Edenitic hornblende, K-phlogopite, oligoclase and quartz are less abundant. Cl-rich apatite, rutile, zircon and chalcopyrite are present at trace levels. Na-phlogopite is unique to the inclusions; it has not been found elsewhere in the Bushveld Complex. Other minerals in the inclusions are also present in the matrix of the chromitite seam, but their compositions are different. The Mg/(Mg+Fe2+) ratios of orthopyroxene in the inclusions are slightly higher than those of orthopyroxene in the matrix. K-phlogopite in the inclusions contains more Na than in the matrix. The average compositions of the inclusions are characterized by high MgO (26 wt%), Na2O (2.4 wt%) and H2O (2.6 wt%), and low CaO (1.1 wt%) and FeO (4.4 wt%). The δ18O value of the trapped melt, estimated by analysis of inclusion-rich and inclusion-poor chromites, is ∼7‰. This value is consistent with the previous estimates for the Bushveld magma and with the δ18O values of silicate minerals throughout the reef. The textural features and peculiar chemical compositions are consistent with entrapment of orthopyroxene with variable amounts of volatile-rich melts during chromite crystallization. The volatile-rich melts are thought to have resulted from variable degrees of mixing between the magma on the floor of the chamber and Na-K-rich fluids expelled from the underlying crystal pile. The addition of fluid to the magma is thought to have caused dissolution of orthpyroxene, leaving the system saturated only in chromite. Both oxygen and hydrogen isotopic values are consistent with the involvement of a magmatic fluid in the process of fluid addition and orthopyroxene dissolution. Most of the Cr and Al in the inclusions was contributed through wall dissolution of the host chromite. Dissolution of minor rutile trapped along with orthopyroxene provided most of the Ti in the inclusions. The Na- and K-rich hydrous silicate minerals in the inclusions were formed during cooling by reaction between pyroxene and the trapped volatile-rich melts.  相似文献   

9.
Mineral dissolution and precipitation reactions actively participate to control fluid chemistry during water-rock interaction. However, it is difficult to estimate and normalize bulk reaction rates if the mineral surface area effectively participating in the reactions is unknown. In this study, we evaluated the changing of the reactive mineral surface area during the interaction between CO2-rich fluids and albitite rock reacting under flow-through conditions. Our methodology, adopting an inverse modelling approach, is based on the measured chemical fluid composition as raw data. We estimated the rates of dissolution and the reactive surface areas of the different minerals by reconstructing the chemical evolution of the interacting fluids. This was done by a reaction process schema that was defined by a fractional degree of advance of the irreversible mass-transfer process and by attaining the continuum limit during the water-rock interaction. Calculations were carried out for albite, microcline, biotite and calcite assuming that the ion activity of dissolved silica and aluminium ions was limited by the equilibrium with quartz and kaolinite.We found that the absolute dissolution rate of albite, microcline, biotite and calcite remains essentially constant as a function of time, and the calcite dissolution rate is orders of magnitude higher than silicate minerals. On the contrary, the reactive surface area of the parent minerals varied by more than two orders of magnitude during the observed reaction time, especially for albite. We propose that the reactive surface area depends mainly on the stability of the secondary mineral coating that may passivate the effective reactive surface area of the parent minerals.  相似文献   

10.
The experimental replacement of aragonite by calcite was studied under hydrothermal conditions at temperatures between 160 and 200 °C using single inorganic aragonite crystals as a starting material. The initial saturation state and the total [Ca2+]:[CO32−] ratio of the experimental solutions was found to have a determining effect on the amount and abundance of calcite overgrowths as well as the extent of replacement observed within the crystals. The replacement process was accompanied by progressive formation of cracks and pores within the calcite, which led to extended fracturing of the initial aragonite. The overall shape and morphology of the parent aragonite crystal were preserved. The replaced regions were identified with scanning electron microscopy and Raman spectroscopy.Experiments using carbonate solutions prepared with water enriched in 18O (97%) were also performed in order to trace the course of this replacement process. The incorporation of the heavier oxygen isotope in the carbonate molecule within the calcite replacements was monitored with Raman spectroscopy. The heterogeneous distribution of 18O in the reaction products required a separate study of the kinetics of isotopic equilibration within the fluid to obtain a better understanding of the 18O distribution in the calcite replacement. An activation energy of 109 kJ/mol was calculated for the exchange of oxygen isotopes between [C16O32−]aq and [H218O] and the time for oxygen isotope exchange in the fluid at 200 °C was estimated at ∼0.9 s. Given the exchange rate, analyses of the run products imply that the oxygen isotope composition in the calcite product is partly inherited from the oxygen isotope composition of the aragonite parent during the replacement process and is dependent on access of the fluid to the reaction interface rather than equilibration time. The aragonite to calcite fluid-mediated transformation is described by a coupled dissolution-reprecipitation mechanism, where aragonite dissolution is coupled to the precipitation of calcite at an inwardly moving reaction interface.  相似文献   

11.
A large body of recent work has linked the origin of Si-Al-rich alkaline glass inclusions to metasomatic processes in the upper mantle. This study examines one possible origin for these glass inclusions, i.e., the dissolution of orthopyroxene in Si-poor alkaline (basanitic) melt. Equilibrium dissolution experiments between 0.4 and 2 GPa show that secondary glass compositions are only slightly Si enriched and are alkali poor relative to natural glass inclusions. However, disequilibrium experiments designed to examine dissolution of orthopyroxene by a basanitic melt under anhydrous, hydrous and CO2-bearing conditions show complex reaction zones consisting of olivine, ± clinopyroxene and Si-rich alkaline glass similar in composition to that seen in mantle xenoliths. Dissolution rates are rapid and dependent on volatile content. Experiments using an anhydrous solvent show time dependent dissolution rates that are related to variable diffusion rates caused by the saturation of clinopyroxene in experiments longer than 10 minutes. The reaction zone glass shows a close compositional correspondence with natural Si-rich alkaline glass in mantle-derived xenoliths. The most Si-and alkali-rich melts are restricted to pressures of 1 GPa and below under anhydrous and CO2-bearing conditions. At 2 GPa glass in hydrous experiments is still Si-␣and alkali-rich whereas glass in the anhydrous and CO2-bearing experiments is only slightly enriched in SiO2 and alkalis compared with the original solvent. In the low pressure region, anhydrous and hydrous solvent melts yield glass of similar composition whereas the glass from CO2-bearing experiments is less SiO2 rich. The mechanism of dissolution of orthopyroxene is complex involving rapid incongruent breakdown of the orthopyroxene, combined with olivine saturation in the reaction zone forming up to 60% olivine. Inward diffusion of CaO causes clinopyroxene saturation and uphill diffusion of Na and K give the glasses their strongly alkaline characteristics. Addition of Na and K also causes minor SiO2 enrichment of the reaction glass by increasing the phase volume of olivine. Olivine and clinopyroxene are transiently stable phases within the reaction zone. Clinopyroxene is precipitated from the reaction zone melt near the orthopyroxene crystal and redissolved in the outer part of the reaction zone. Olivine defines the thickness of the reaction zone and is progressively dissolved in the solvent as the orthopyroxene continues to dissolve. Although there are compelling reasons for supporting the hypothesis that Si-rich alkaline melts are produced in the mantle by orthopyroxene – melt reaction in the mantle, there are several complications particularly regarding quenching in of disequilibrium reaction zone compositions and the mobility of highly polymerized melts in the upper mantle. It is considered likely that formation of veins and pools of Si-rich alkaline glass by orthopyroxene – melt reaction is a common process during the ascent of xenoliths. However, reaction in situ within the mantle will lead to equilibration and therefore secondary melts will be only moderately siliceous and alkali poor. Received: 24 August 1998 / Accepted: 2 December 1998  相似文献   

12.
Electron irradiation experiments were performed using a 30-keV electron beam on single crystals of olivine in a scanning electron microscope (SEM) and in an electron microprobe (EMP). We determined that, under certain conditions, structural damage is caused to the irradiated surface of iron-bearing olivines. The irradiated areas comprise spherules with sizes of hundreds of nanometers and micrometer-sized holes. In the immediate vicinities of the irradiated areas, droplets with sizes of tens of nanometers and branching tracks are observed. With increasing total charge, the hundreds of nanometer-sized spherules become larger and more irregular in shape. The size and shape of the nanometer-sized droplets remain almost constant, but their surface density increases (in m−2). Chemical fractionations compared to the initial olivine were found: the irradiated areas are slightly enriched in MgO, whereas the deposits are enriched in SiO2. Destabilization of olivine is not due to the dissipation of the implanted energy as heat, but results most probably from electrostatic discharges leading to the breakdown of the dielectric lattice. The possibility that such processes could be responsible for significant space weathering of interplanetary dust particles and regoliths of planetary surfaces should be taken into account. In the interplanetary medium, 10-keV range electrons are carried by the solar wind, whereas at 1 AU from the Sun, the lifetime of cometary dust and the exposure time of lunar regolith are, at least, 10 to 100 times greater than the duration required to accumulate the damaging electronic doses applied in this study. Moreover, the comparison of the microstructures of samples irradiated in the present study with features of lunar regolith grains reveals several chemical and structural similarities.  相似文献   

13.
蚯蚓肠道内小分子有机酸与摄入的土壤矿物相互作用,加速矿物溶解。摄入的土壤在蚯蚓肠道内平均停留时间约为12 h,不足以使土壤矿物产生显著的溶解特征,因此这一过程难以在蚯蚓体内进行评估。本研究通过体外实验控制pH值和有机酸浓度,模拟蚯蚓肠道中有机酸对土壤中常见矿物的溶解反应,探讨了方解石和钾长石在蚯蚓肠道环境中的初始溶解动力学。研究发现,矿物在混合有机酸中的溶解速率比在纯水中高一个数量级,说明有机配体和质子促进了矿物溶解。溶解速率及粒度分析表明,方解石(CaCO3)溶解速率不受溶解过程中粒度变化的影响,而钾长石(KAlSi3O8)粒度在溶解期间未出现显著变化。在此基础上,采用初始速率法模拟了钾长石的初始溶解动力学,计算得出的溶解速率表明钾长石在溶解初期主要为表面K~+的释放。使用缩核模型(shrink core model)和Hixson-Crowell模型对方解石溶解过程进行动力学解析,发现方解石的溶解主要受溶液中反应物内扩散的速率影响。这定量描述了两种矿物在有机酸溶液和纯水中的溶解差异。现有研究表明,有机配体和质子协同促...  相似文献   

14.
The Shishugou Group, which consists of Middle Jurassic Toutunhe Formation and Upper Jurassic Qigu Formation, is currently an important hydrocarbon exploration target in the Fukang Sag of Junggar Basin, China. The Shishugou Group sandstones experienced a complex diagenetic history with deep burial (3600–5800 m) to develop low–ultralow porosity and permeability reservoir with some high-quality reservoirs found in the tight sandstones owing to the reservoir heterogeneity. This integrated petrographic and geochemical study aims to unravel the origin and alteration of calcite cement in the Shishugou Group sandstones and predict fluid–rock interaction and porosity evolution. The Shishugou Group sandstones (Q43.8F7.4R48.8) have a dominant calcite cement with strong heterogeneity forming in two generations: poikilotopic, pore-filling masses that formed at an early diagenetic stage and isolated rhombs or partial grain replacements that formed at a late stage. The Shishugou Group, which are lacustrine sediments formed in low–medium salinity lake water in a semiarid–arid climatic environment, provided the alkaline diagenetic environment needed for precipitation of chlorite and early calcite cements in early diagenesis. The Ca2+ of the pore-filling calcite cements was sourced from weathering or dissolution of volcanic clasts in the sediment source or during transport in under oxidising conditions. The δ18OV-PDB and δ13CV-PDB values of calcite were significantly controlled by distance from the top unconformity and underlying coal-bearing stratum with carbon sourced from atmospheric CO2, and organic matter. The early carbonate cement inhibited burial compaction producing intergranular pore spaces with enhanced reservoir properties by late dissolution under acidic conditions. Anhydrite cement reflects reaction of organic acid and hydrocarbon with the sandstones and is associated with fluid migration pathways. The fluid–rock interactions and porosity evolution of the tight deep sandstones produced secondary pores that filled with hydrocarbon charge that forms this deep high-quality reservoir.  相似文献   

15.
The kinetics of (Mg, Fe)SiO3 pyroxene layer growth within silicate thin films with total thickness <1 μm was studied experimentally at 0.1 MPa total pressure, controlled fO2 and temperatures from 1,000 to 1,300°C. The starting samples were produced by pulsed laser deposition. Layer thickness before and after the experiments and layer composition as well as microstructures, grain size and shape of the interfaces were determined by Rutherford back scattering and transmission electron microscopy assisted by focused ion beam milling. Due to the miniaturization of the starting samples and the use of high resolution analytical methods the experimentally accessible temperature range for rim growth experiments was extended by about 300°C towards lower temperatures. The thickness of the layers at a given temperature increases proprotional to the square root of time, indicating a diffusion-controlled growth mechanism. The temperature dependence of rim growth yields an apparent activation energy of 426 ± 34 kJ/mol. The small grain size in the orthopyroxene rims implies a significant contribution of grain boundary diffusion to the bulk diffusion properties of the polycrystalline rims. Based on microstructural observations diffusion scenarios are discussed for which the SiO2 component behaves immobile relative to the MgO component. Volume diffusion data for Mg in orthopyroxene from the literature indicate that the measured diffusivity is probably controlled by the mobility of oxygen. The observed reaction rates are consistent with earlier results from dry high-temperature experiments on orthopyroxene rim growth. Compared to high pressure experiments at 1,000°C and low water fugacities, reaction rates are 3–4 orders of magnitude smaller. This observation is taken as direct evidence for a strong effect of small amounts of water on diffusion in silicate polycrystals. In particular SiO2 changes from an immobile component at dry conditions to an extremely mobile component even at very low water fugacities.  相似文献   

16.
The 1750-m-diameter, bowl-shaped Talemzane impact structure in Algeria is emplaced in Senonian or Eocene flint-bearing limestones. Field studies reveal a thin layer of light-colored polymict breccia with rounded, dark inclusions beneath a limestone megablock zone located at the top of the crater rim. The matrix of the rounded, dark inclusions consists of Si-rich glass and microcrystalline calcite. The latter is characterized by high contents of Si and Al suggesting rapid crystallization of the calcite from a melt. Backscattered electron imagery shows textural evidence for liquid immiscibility between the CaCO3-rich and Si-rich glass of the matrix in the form of intermingling of calcite with Si-rich glass, coalesced blebs within silicate glass, individual calcite blebs within Si-rich glass, carbonate spherical globules in fresh Si-rich-glass, and sharp menisci between silicate and calcite blebs. These features are interpreted as evidence of impact melting of limestone and flint. The low totals of the Si-Al-Mg-rich glasses suggest that they contain significant amounts of volatiles. X-ray diffraction analyses indicate partial alteration of the Si-Mg-Al-rich glass to phyllosilicates.  相似文献   

17.
Stromatolitic limestone and calcareous shale belonging to Chattisgarh Supergroup of Proterozoic age dominate the upper part of the Mahanadi river basin. X-ray diffractogram (XRD) of limestone rocks show presence of a significant amount of calcite, dolomite and ankerite. Shales of various colours contain calcite and dolomite. It is observed that congruent dissolution of carbonate minerals in the Charmuria pure limestone has given rise to a typical karst topography. On the other hand, limestones are also seen to support red and black soil profiles. This indicates that the limestone bedrock undergoes a parallel incongruent weathering, which leaves a residue of decomposed rock. The XRD analyses reveal that the limestone soils thus formed contain an assemblage of quartz, clays and Fe-oxides. It is likely that the silicate component trapped during deposition of the stromatolitic limestone weathers incongruently resulting in diverse soil profiles. Carbonate and silicate mineral weathering schemes have been worked out to explain the soil formation, fixation of Al in clay minerals, and Fe in goethite. The water quality parameters such as Ca, Mg and HCO3 in the river water suggest under saturation with respect to calcite and dolomite. The mineral stability diagrams indicate that kaolinite and Ca-smectite are stable in the river water environment, hence they occur in suspended sediments and soils. The dominant influence of carbonate weathering on the water quality is observed even in the downstream part of the river outside the limestone terrain.  相似文献   

18.
This study demonstrates that a hydrous, halide bearing silicate melt is a viable medium for diamond growth. Experiments were conducted in the MgO–SiO2–H2O–C ± KCl ± NaCl system, which was used as a model for harzburgitic mantle. In no case did we observe crystals that could be interpreted as spontaneously nucleated, but growth of diamond on seed crystals at 1,400–1,600°C and 7 GPa in experiments of 4 h duration was observed. The addition of KCl to the system produced crystallization of diamond at temperatures as low as 1,400°C. At higher temperatures, larger growth features were produced than those that seen in the KCl-free system at the same conditions. The NaCl-bearing system is different; in these experiments, the diamond seed crystals show evidence of possible dissolution and layer growth, albeit more subdued growth than in the KCl system. Therefore, NaCl may be an inhibitor of diamond growth in a hydrous silicate melt. Based on these results, hydrous silicate melts could play a role in formation of diamond in either deep subduction zones, or above slabs imbricated against a lithospheric ‘root’ in the sub-continental lithospheric mantle. The water and halide necessary for their formation could be transported into the mantle in hydrous phases such as serpentine in subducting lithospheric slabs. Dehydration of serpentine at >200 km depth would release hydrous, halide-bearing fluids into the overlying mantle wedge or lithospheric root, triggering melting at conditions similar to those of the formation of natural diamond.  相似文献   

19.
The study focuses on clinopyroxene from mantle xenolith-bearing East Serbian basanites and suggests that dissolution of mantle orthopyroxene played an important role in at least some stages of the crystallization of these alkaline magmas. Five compositional types of clinopyroxene are distinguished, some of them having different textural forms: megacrysts (Type-A), green/colourless-cored phenocrysts (Type-B), overgrowths and sieve-textured cores (Type-C), rims and matrix clinopyroxene (Type-D), and clinopyroxene from the reaction rims around orthopyroxene xenocrysts (Type-E). Type-A is high-Al diopside that probably crystallized at near-liquidus conditions either directly from the host basanite or from compositionally similar magmas in previous magmatic episodes. Type-B cores show high VIAl/IVAl≥1 and low Mg# of mostly <75 and are interpreted as typical xenocrysts. Type-C, D and E are interpreted as typical cognate clinopyroxene. Type-D has Mg#<78, Al2O3?=?6–13?wt.%, TiO2?=?1.5–4.5?wt.%, and Na2O?=?0.4–0.8?wt.% and compositionally similar clinopyroxene is calculated by MELTS as a phase in equilibrium with the last 30?% of melt starting from the average host lava composition. Type-C has Mg#?=?72–89, Al2O3?=?4.5–9.5?wt.%, TiO2?=?1–2.5?wt.%, Na2O?=?0.35–1?wt.% and Cr2O3?=?0.1–1.5?wt.%. This clinopyroxene has some compositional similarities to Type-E occurring exclusively around mantle orthopyroxene. Cr/Al vs Al/Ti and Cr/Al vs Na/Ti plots revealed that Type-C clinopyroxene can crystallize from a mixture of the host basanite magma and 2–20?wt.% mantle orthopyroxene. Sieve-textured Type-C crystals show characteristics of experimentally produced skeletal clinopyroxene formed by orthopyroxene dissolution suggesting that crystallization of Type-C was both texturally and compositionally controlled by orthopyroxene breakdown. According to FeO/MgOcpx/melt modelling the first clinopyroxene precipitating from the host basanite was Type-A (T?~?1250?°C, p?~?1.5?GPa). Dissolution of orthopyroxene produced decreasing FeO/MgOmelt and crystallization of Type-E and sieve-textured Type-C clinopyroxene (0.3–0.8?GPa and 1200–1050?°C). The melt composition gradually shifted towards higher FeO/MgOmelt ratios precipitating more evolved Type-C and Type-D approaching near-solidus conditions (<0.3?GPa; ~950?°C).  相似文献   

20.
A detailed geochemical study on river waters of the Australian Victorian Alps was carried out to determine: (i) the relative significance of silicate, carbonate, evaporite and sulfide weathering in controlling the major ion composition and; (ii) the factors regulating seasonal and spatial variations of CO2 consumption via silicate weathering in the catchments. Major ion chemistry implies that solutes are largely derived from evaporation of precipitation and chemical weathering of carbonate and silicate lithologies. The input of solutes from rock weathering was determined by calculating the contribution of halite dissolution and atmospheric inputs using local rain and snow samples. Despite the lack of carbonate outcrops in the study area and waters being undersaturated with respect to calcite, the dissolution of vein calcite accounts for up to 67% of the total dissolved cations, generating up to 90% of dissolved Ca and 97% of Mg. Dissolved sulfate has δ34S values of 16 to 20‰CDT, indicating that it is derived predominantly from atmospheric deposition and minor gypsum weathering and not from bacterial reduction of FeS2. This militates against sulphuric acid weathering in Victorian rivers. Ratios of Si vs. the atmospheric corrected Na and K concentrations range from ~ 1.1 to ~ 4.3, suggesting incongruent weathering from plagioclase to smectite, kaolinite and gibbsite.Estimated long-term average CO2 fluxes from silicate weathering range from ~ 0.012 × 106 to 0.039 × 106 mol/km2/yr with the highest values in rivers draining the basement outcrops rather than sedimentary rocks. This is about one order of magnitude below the global average which is due to low relief, and the arid climate in that region. Time series measurements show that exposure to lithology, high physical erosion and long water–rock contact times dominate CO2 consumption fluxes via silicate weathering, while variations in water temperature are not overriding parameters controlling chemical weathering. Because the atmospheric corrected concentrations of Na, K and Mg act non-conservative in Victorian rivers the parameterizations of weathering processes, and net CO2 consumption rates in particular, based on major ion abundances, should be treated with skepticism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号