首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
中国近海潮汐变化对外海海平面上升的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
针对外海海平面上升对中国沿海潮波系统和潮汐水位可能带来的影响,通过西北太平洋潮波数学模型对边界海平面上升后潮波变化进行了数值模拟。研究发现边界海平面上升后,在无潮点附近东侧迟角增加,西侧迟角减小;无潮点北侧振幅增加,南侧振幅减小;辽东湾、渤海湾顶、辽东半岛东海域、海州湾至鲁南沿海、苏北沿海、台湾海峡至浙东沿海和南海平均潮差增加,海平面上升0.90 m后潮差最大增幅达0.40 m;长江口、杭州湾至对马海峡、朝鲜西海岸和莱州湾海域潮差减小。随着海平面上升量值的增加,渤海、台湾海峡潮差变化速率相对稳定,黄海、东海和南海站位变化速率有所变动;平均高水位的变化趋势与潮差一致;潮差增加的区域,高水位抬升幅度超过边界海平面上升幅度。海平面上升引起的高水位超幅变化,增加了沿海地区对风暴潮和其他灾害防护的风险。  相似文献   

2.
A salt water lens is found above fresh water under the shore between Dunkerque (France) and Nieuwpoort (Belgium). This inverse density distribution is in a dynamic equilibrium. It develops due to the infiltration of salt water on the back shore during high tide. Under this salt water lens, water infiltrated in the adjacent dune area flows towards the sea and discharges at the seabed. This water quality distribution differs from the classic salt water wedge under fresh water described in the literature. Here, the evolution to this water quality distribution is simulated with a density dependent numerical model. A large tidal range, shore morphology and a permeable groundwater reservoir are the main conditions for the observed water quality distribution. By altering these conditions, intermediate water quality distributions between the classic salt water wedge and the one discussed here develop. Based on these simulations, it is expected that similar kinds of inverse density distribution could be present in a number of coastal areas, which have tides, a gently sloping shore and a permeable substratum.  相似文献   

3.
Estuarine tidal mudflats form unique habitats and maintain valuable ecosystems. Historic measurements of a mudflat in San Fancsico Bay over the past 150 years suggest the development of a rather stable mudflat profile. This raises questions on its origin and governing processes as well as on the mudflats’ fate under scenarios of sea level rise and decreasing sediment supply. We developed a 1D morphodynamic profile model (Delft3D) that is able to reproduce the 2011 measured mudflat profile. The main, schematised, forcings of the model are a constant tidal cycle and constant wave action. The model shows that wave action suspends sediment that is transported landward during flood. A depositional front moves landward until landward bed levels are high enough to carry an equal amount of sediment back during ebb. This implies that, similar to observations, the critical shear stress for erosion is regularly exceeded during the tidal cycle and that modelled equilibrium conditions include high suspended sediment concentrations at the mudflat. Shear stresses are highest during low water, while shear stresses are lower than critical (and highest at the landward end) along the mudflat during high water. Scenarios of sea level rise and decreasing sediment supply drown the mudflat. In addition, the mudflat becomes more prone to channel incision because landward accumulation is hampered. This research suggests that sea level rise is a serious threat to the presence of many estuarine intertidal mudflats, adjacent salt marshes and their associated ecological values.  相似文献   

4.
A long-term (1948–2010) shoreward energy history of upper tidal shorelines in lower Chesapeake Bay was developed using a simple calculation of kinetic energy from corresponding wind and tide data. These data were primarily used to determine the likelihood of shoreline energy increases coincident with local sea level rise. Total annual shoreward energy ranged from 620 kJ/m of shoreline in 1950 to 17,785 kJ/m of shoreline in 2009. No clear linear trends are apparent, but mean annual energy shows an increase from 2,732 kJ/m before 1982 to 6,414 kJ/m since then. This increase in mean energy was accompanied by more numerous spikes of comparatively higher annual energy. Shoreward energy delivered to lower Chesapeake Bay’s upper tidal shorelines was enabled by an increasing amount of time per year that tidal height exceeds mean high water, accompanied by increasing heights of tidal anomalies. An index termed the Hydrologic Burden was developed that incorporates the combination of time and tidal height that demonstrates this increasing trend. Although opportunities for greater shoreward energy increased as the Hydrologic Burden increased, and even though there is evidence that greater energy was delivered to the shorelines during the latter time series, energy per hour delivery was shown not to have increased, and may have decreased, due to a steady reduction in average wind speed in lower Chesapeake Bay since the mid-1980s. Energy delivery in lower Chesapeake Bay was primarily from the northeast, and energy delivery over the time series is shown to organize symmetrically around a point between the northeast and north–northeast directions. This is evidence of a self-organizational phenomenon that transcends changes in local wind and tide dynamics.  相似文献   

5.
Vizianagaram–Srikakulam coastal shoreline consisting of beaches, mangrove swamps, tidal channel and mudflats is one of the vulnerable coasts in Andhra Pradesh, India. Five site-specific parameters, namely rate of geomorphology, coastal elevation, coastal slope, shoreline change and mean significant wave height, were chosen for constructing coastal vulnerability index and assessing coastal landscape vulnerability. The findings revealed a shift of 2.5 km in shoreline towards the land surface because of constant erosion and that of 1.82 km towards the sea due to accretion during 1997–2017. The rate of high erosion was found in zones IV and V, and high accretion was found in zones II and III. Coastal vulnerability index analysis revealed constant erosion along shoreline and sea level rise in the study area. Most of the coast in zone V has recorded very high vulnerability due to erosion, high slope, significant wave height and sea level rise. Erosion and accretion, significant wave height, sea level rise and slope are attributed to high vulnerability in zones III and IV. Zone II recorded moderate vulnerability. Relatively lower slope, mean sea wave height and sea level rise have made this zone moderately vulnerable. Very low vulnerability was found in zone I, and low vulnerability was recorded in zone II. Accretion, low slope and low sea level rise were found to be causative factors of lower vulnerability. Thus, zones III, IV and V should be accorded higher priorities for coastal management. The findings can be helpful in coastal land planning and management and preparing emergency plans of the coastal ecosystems.  相似文献   

6.
毛兴华  顾圣华  唐桂兰 《水文》2013,33(2):11-14
利用代表潮位站吴淞站19752010年实测资料,分析了长江口潮位变化对潮型的影响。研究结果表明,随着年平均潮位的上升,代表站年平均高(低)潮位会相应抬升,二者线性相关关系非常密切,而潮差、潮历时与年平均潮位的相关关系不明显。另外,年最高(低)高(低)潮位、年最大涨(落)潮潮差、年最大(小)涨(落)潮历时等各项极值与年平均潮位变化也没有明显的相关关系。  相似文献   

7.
崇明东滩盐沼潮沟水动力过程观测与分析   总被引:1,自引:0,他引:1       下载免费PDF全文
2007年7月在上海崇明东滩盐沼内部采用复合测量手段进行了现场观测,对取得的盐沼水动力过程数据进行了较系统的分析。崇明东滩盐沼内部的观测及分析结果表明:(1)潮沟及盐沼表面对潮波产生严重阻尼作用,潮波传播至盐沼内部时,潮沟水位波动明显异于外海,水位上升极快,而下降慢。当潮沟有退水时,涨潮初期的当地水位上升并不是潮水进入潮沟的结果,而是流向相反的潮沟进口涨潮水和潮沟内退潮水形成的水位壅高;(2)潮波进入盐沼内部时,风具有一定作用,向岸风可抬高潮沟及盐沼内部水位,离岸风反之;(3)潮沟水流流速与潮沟水位变化率、外海潮位变化率都不存在相关关系;(4)潮沟水位低时,过流断面较小,涨潮水进入潮沟时,潮沟水一旦改变流向,就具备很高的流速并伴随流速峰值的出现。潮沟水向盐沼表面漫溢时,过流断面突变,潮沟流速出现峰值。由于潮沟退潮水位变化慢,盐沼表面水归槽时并没有产生潮沟流速峰值。根据崇明东滩观测结果,概括了盐沼水动力过程的影响因素,指出了以后研究应重视的问题。  相似文献   

8.
Cores and exposed cliff sections in salt marshes around Ho Bugt, a tidal embayment in the northernmost part of the Danish Wadden Sea, were subjected to 14C dating and litho- and biostratigraphical analyses to reconstruct paleoenvironmental changes and to establish a late Holocene relative sea-level history. Four stages in the late Holocene development of Ho Bugt can be identified: (1) groundwater-table rise and growth of basal peat (from at least 2300 BC to AD 0); (2) salt-marsh formation (0 to AD 250); (3) a freshening phase (AD 250 to AD 1600?), culminating in the drying out of the marshes and producing a distinct black horizon followed by an aeolian phase with sand deposition; and (4) renewed salt-marsh deposition (AD 1600? to present). From 16 calibrated AMS radiocarbon ages on fossil plant fragments and 4 calibrated conventional radiocarbon ages on peat, we reconstructed a local relative sea-level history that shows a steady sea-level rise of 4 m since 4000 cal yr BP. Contrary to suggestions made in the literature, the relative sea-level record of Ho Bugt does not contain a late Holocene highstand. Relative sea-level changes at Ho Bugt are controlled by glacio-isostatic subsidence and can be duplicated by a glacial isostatic adjustment model in which no water is added to the world's oceans after ca. 5000 cal yr BP.  相似文献   

9.
华南红树林海岸生物地貌过程研究   总被引:30,自引:3,他引:30       下载免费PDF全文
红树林生物地貌过程是全球变化海岸带陆海相互作用研究重点内容之一。本文以海南东寨港林市村,广东廉江高桥镇凤地村和车板镇那腮村以及广东深圳福田和锦绣中华3个半定位试验区有关红树林群落结构、潮汐动力、沉积特征和地貌特征的调查资料为基础,探讨红树林生物地貌过程的生物学基础,沉积地貌表现,红树林生态系对人类活动和海平面上升的响应。  相似文献   

10.
A three-dimensional, intratidal sediment transport model is developed for the estuarine turbidity maximum (ETM) in the upper Chesapeake Bay. The model considers three particle size classes, including the fine class mostly in suspension in the water column, the medium class alternately suspended and deposited by tidal currents, and the coarse size suspended only during the times of relatively high energy events. Based on the results of a box model, depth-limited erosion with continuous deposition is employed for the medium and coarse classes by varying the critical shear stress for erosion as a function of eroded mass. For the fine class, mutually exclusive erosion and deposition is employed with a small constant value for the critical shear stresses for erosion and deposition to assure quick erosion of recently deposited fine particles but without allowing further erosion of consolidated bed sediments. The model is run to simulate the annual condition in 1996, and the model generally gives a reasonable reproduction of the observed characteristics of the ETM relative to the salt limit and tidal phase. The model results for 1996 are analyzed to study the characteristics of the ETM along the main channel of the upper bay in intertidal and intratidal time scales. Under a low flow condition, local erosion/deposition and bottom horizontal flux convergence are the main processes responsible for the formation of the ETM, with the settling flux confining the ETM to the bottom water. Under a high flow condition, a distinctive ETM is formed by strong convergence of the downstream flux of sediments eroded from the upstream of the null zone and the upstream flux of sediments settled at the downstream of the null zone. Intratidal variation of the ETM is mainly controlled by erosion and the tidal transport of eroded sediments for a low flow condition. Under the direct influence of a high flow event, the ETM is mainly formed by erosion during ebbing tidal current strengthened by large freshwater discharge and by convergence of ebbing freshwater discharge and flooding tidal current. During the rebounding stage of a high flow event, intratidal variations are mainly controlled by tidal asymmetry caused by the interaction between tidal currents, gravitational circulation, and stratification.  相似文献   

11.
Current, water level and wind data collected from a study site at the Aransas Pass, Texas, during a 45-day period in mid 1977 are used to describe tidal motions and low-frequency, meteorologically-forced exchanges between the inner shelf and a series of intracoastal bays. Analysis of individual tidal constituents indicates a mixed but principally diurnal tide. Tidal constituents move through the Pass as nearly progressive waves. Asymmetry in the co-oscillating tidal motions is explained as a result of unequal frictional forces acting on flood and ebb currents in the Pass. Tidal excursions computed from the tidal harmonic constants and from cumulative net displacements suggest that tidal-period exchanges are not effective in flushing the bays even under tropic tidal conditions. Nontidal water levels are related to the cross-shelf component of the coastal windstress at statistically significant levels. This suggests that low-frequency local meteorological forcing, as a set-up or set-down of coastal water levels, plays a valuable role in assisting tidally-driven exchanges.  相似文献   

12.
东濮凹陷沙河街组河口湾环境发育的最初征兆是出现震积岩(Seismites)和水下脱水收缩裂隙(Synaeresis),预示其基底有构造性下沉,海水在间歇性地灌入,接着淡水介形类开始大量死亡。与海水有关的生物痕迹如Ophiomorpha、Tigillites屡屡出现,说明此时此地淡水水体已被河口湾咸水水体所取代,最后剖面中见到滨海高能环境下的生物痕迹Arenicolites和鲕粒砂岩、介壳碎屑层等,指示潮道和潮汐坝的存在。至此,这一地区的河口湾以陆相(分流河道)-陆海混合相(河口湾点坝)-海相(潮道)为代表的三元结构,便完整地记录了一次海面升降周期。由陆相动物活动痕迹、植物活动痕迹和古土壤识别出的陆相部分在沙河街组有10层(开31井),由海相生物痕迹、海相生物及海相内源沉积物识别出的海相部分有12层(开31井、新胡4井),说明沙河街组沉积期曾有过10次以上的海面升降过程。海面下降时,河流沿兰聊断裂和内黄凸起间断裂谷地侵蚀切割两岸形成可容空间;海面上升期,此可容空间部分或全部被不同类型的沉积物所充填,形成了分流河道、河口湾点坝砂为代表的下切谷型储层和以潮道、滩坝砂体为代表的超覆型储层。  相似文献   

13.
Tide gauge data were used to identify the occurrence, characteristics, and cause of tsunamis of meteorological origin (termed ‘meteotsunamis’) along the Western Australian coast. This is the first study to identify meteotsunamis in this region, and the results indicated that they occur frequently. Although meteotsunamis are not catastrophic to the extent of major seismically induced basin-scale events, the wave heights of meteotsunamis examined at some local stations in this study were higher than those recorded through seismic tsunamis. In June 2012, a meteotsunami contributed to an extreme water-level event at Fremantle, which recorded the highest water level in over 115 years. Meteotsunamis (wave heights >0.4 m, when the mean tidal range in the region is ~0.5 m) were found to coincide with thunderstorms in summer and the passage of low-pressure systems during winter. Spectral analysis of tide gauge time series records showed that existing continental seiche oscillations (periods between 30 min and 5 h) were enhanced during the meteotsunamis, with a high proportion of energy transferred to the continental shelf oscillation period. Three recent meteotsunami events (22 March 2010, 10 June 2012, and 7 January 2013) two due to summer thunderstorms and one due to a winter frontal system were chosen for detailed analysis. The meteotsunami amplitudes were up to a factor 2 larger than the local tidal range and sometimes contributed up to 85 % of the non-tidal water signal. A single meteorological event was found to generate several meteotsunamis along the coast, up to 500 km apart, as the air pressure disturbance propagated over the continental shelf; however, the topography and local bathymetry of the continental shelf defined the local sea-level resonance characteristics at each location. With the available data (sea level and meteorological), the exact mechanisms for the generation of the meteotsunamis could not be isolated.  相似文献   

14.
A field investigation of temporal and spatial changes in wind and wave characteristics, runup and beach water table elevation was conducted on the foreshore of an estuarine beach in Delaware Bay during neap (April 9, 1995) and spring (April 16, 1995) tides under low wave-energy conditions. The beach has a relatively steep, sandy foreshore and semi-diurnal tides with a mean range of 1.6 m and a mean spring range of 1.9 m. Data from a pressure transducer placed on the low tide terrace reveal a rate of rise and fall of the water level on April 16 of 0.09 mm s−1 resulting in a steeper tidal curve than the neap tide on April 9. Data from three pressure transducers placed in wells in the intertidal foreshore reveal that the landward slope of the water table during the rising neap tide was lower than the slope during spring tide, and there was a slower rate of fall of the beach water table relative to the fall of the tide. Wave heights were lower on April 9 (significant height from 17.1 min records <0.16 m). The water table elevation was 0.08 m higher than the water in the bay at the time of high water, when maximum runup elevation was 0.29 m above high water and maximum runup width was 2.0 m. The elevation of the water table was 0.13 m higher than the maximum elevation of water level in the bay 74 min after high water, when wave height was 0.12 m and wave period was 2.7 s. The use of mean bay water level at high tide will underpredict the elevation of the water table in the beach, and demarcation of biological sampling stations across the intertidal profile based on mean tide conditions will not accurately reflect the water content of the sandy beach matrix.  相似文献   

15.
The salt marsh periwinkleLittoraria irrorata (Say) remains on the substratum during low tide but climbs above the water on stalks ofSpartina alterniflora Loisel during high tide. Rhythmic tidal migrations may allowL. irrorata to avoid predators such as blue crabsCallinectes sapidus Rathbun that forage when the marsh is inundated. These tidal rhythms may be driven by endogenous clocks or they may be easily entrained. Snails with flexible and entrainable climbing rhythms may be able to avoid predators in unpredictable environments (e.g., when water unexpectedly covers the substratum as in storm surges). We tested the behavioral response ofL. irrorata to different simulated tidal regimes in the laboratory, and the effect of remaining above mean high water (MHW) on snail survivorship in a smallS. alterniflora salt marsh. In laboratory mesocosms, vertical snail position was measured under constant water levels, simulated tidal cycles, and simulated tidal cycles 180° out of phase (reversed). Under constant water levels, snails ceased to migrate vertically after 1 d. When exposed to tidal and reversed tidal cycles, snails migrated in synchrony with the appropriate simulated rhythm.L. irrorata entrained quickly to differing tidal cycles and maintained their position above the water surfce when water levels were high. In a field experiment, snails were tethered toS. alteriflora plants near the substratum and above MHW in the marsh for 1 wk to assess survival. Survival of snails tethered above MHW was sigificantly greater than for snails tethered at the base of plants; no snails in control cages died. Rapid alteration of tidal vertical migrations may allowL. irrorata to avoid predators that forage when water inundates the marsh predictably or unexpectedly.  相似文献   

16.
In this paper we describe a three-step procedure to infer the spatial heterogeneity in microphytobenthos primary productivity at the scale of tidal estuaries and embayments. The first step involves local measurement of the carbon assimilation rate of benthic microalgae to determine the parameters of the photosynthesis-irradiance (P-E) curves (using non-linear optimization methods). In the next step, a resampling technique is used to rebuild pseudo-sampling distributions of the local productivity estimates; these provide error estimates for determining the significance level of differences between sites. The third step combines the previous results with deterministic models of tidal elevation and solar irradiance to compute mean and variance of the daily areal primary productivity over an entire intertidal mudflat area within each embayment. This scheme was applied on three different intertidal mudflat regions of the San Francisco Bay estuary during autumn 1998. Microphytobenthos productivity exhibits strong (ca. 3-fold) significant differences among the major sub-basins of San Francisco Bay. This spatial heterogeneity is attributed to two main causes: significant differences in the photosynthetic competence (P-E parameters) of the microphytobenthos in the different sub-basins, and spatial differences in the phase shifts between the tidal and solar cycles controlling the exposure of intertidal areas to sunlight. The procedure is general and can be used in other estuaries to assess the magnitude and patterns of spatial variability of microphytobenthos productivity at the level of the ecosystems.  相似文献   

17.
Water level records from two study sites in Indian River Lagoon, along Florida’s Atlantic Coast, are used to characterize the vertical displacement of the estuarine intertidal zone in response to subtidal frequency forcing. A 22-year water level record indicates that the seasonal cycle has a range approximately one-quarter greater than the mean tidal range. The intertidal zone thus rises and falls to such an extent that over time scales in excess of several weeks there is no layer which consistently experiences an alternating exposure and inundation. Six-year sets of high and low tide extremes from the second study site are expressed in the form of cummulative histograms to determine the probabilities with which high tide and low tide levels lying outside of median values will occur in response to the interaction of tidal constituents and low-frequency forcing. High and low water values are then stratified by month, and probability distributions are recomputed for each subset. In this study area, unpredictable, low-frequency water level fluctuations perturb the intertidal zone to such an extent that the probabilities of extreme high and low water levels, in addition to mean high and low water, must be determined to characterize the stuarine intertidal zone adequately. *** DIRECT SUPPORT *** A01BY034 00002  相似文献   

18.
In October of 2004, a 3-d observational program to measure flow and sediment resuspension within a coastal intertidal salt marsh was conducted in the North Inlet/Winyah Bay National Estuarine Research Reserve located near Georgetown, South Carolina. Current and acoustic backscatter profiles were obtained from a moored acoustic Doppler current profiler (ADCP) deployed in a shallow tidal channel during the spring phase of the tidal cycle under high discharge conditions. The channel serves as a conduit between Winyah Bay, a large brackish estuary, and North Inlet, a saline intertidal coastal salt marsh with little freshwater input. Salinity measurements indicate that the water column is vertically well mixed during flood, but becomes vertically stratified during early ebb. The stratification results from brackish (15 psu) Winyah Bay water entering North Inlet via the tidal channel, suggesting an exchange mechanism that permits North Inlet to receive a fraction of the poor water quality and high discharge flow from upland rivers. Although maximum flood currents exceed maximum ebb currents by 0.2 m s−1, suspended sediment concentrations are highest during the latter ebb phase and persist for a longer fraction of the ebb cycle. Even though the channel is flood-dominated, the higher concentrations occurring over a longer fraction of the ebb phase indicate net particulate transport from Winyah Bay to North Inlet during spring tide accompanied by high discharge. Our evidence suggests that the higher concentrations during ebb result from increased bed friction caused by flow asymmetries and variations in water depth in which the highest stresses occur near the end of ebb near low water despite stronger maximum currents during flood.  相似文献   

19.
Suspended sediment transport processes in a short tidal embayment with a simple geometry are investigated using analytic and numerical models. On the basis of numerical results, the horizontal gradient of depth-averaged suspended sediment concentration can be parameterized with a combination of the first harmonic and mean. Using the parameterization, the solution of the analytic model is obtained. Evaluation of the major terms from the solution of the analytic model shows that a quarter-diurnal frequency is significant near the mouth while a semidiurnal component dominates the interior area. The settling lag consists of local and nonlocal components. The local phase lag is a function of the ratio between tidal period and settling time. The nonlocal phase lag is determined by the phase difference between tidal velocity and the horizontal gradient of sediment concentration and by the strength of erosion and horizontal advection.  相似文献   

20.
综合利用沉积学、岩石矿物学、碳同位素地球化学等分析手段,对研究区中-上寒武统层序地层学特征进行了分析。结果表明:中-上寒武统可以划归为1个二级层序和5个三级层序,在二级层序时限范围内,浅水相区经历了由局限台地潮坪→开阔台地→局限台地潮坪的沉积演化,斜坡过渡带则经历了由台地边缘→前缘缓斜坡→台地边缘的演化,研究区东南部的深水相区则由深陆棚→盆地→浅水陆棚组成。三级层序海侵体系域中沉积的颗粒白云岩、叠层石礁以及晚期高水位体系域中形成的溶孔白云岩、岩溶角砾白云岩的层位具有重要的油气勘探潜力,是值得关注和研究的领域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号