首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper is focused on the estimate of the impact of the non-gravitational perturbations on the orbit of the Mercury Planetary Orbiter (MPO), one of the two spacecrafts that will be placed in orbit around the innermost planet of the solar system by the BepiColombo space mission. The key rôle of the Italian Spring Accelerometer (ISA), that has been selected by the European Space Agency (ESA) to fly on-board the MPO, is outlined. In the first part of the paper, through a numerical simulation and analysis we have estimated, over a time span of several years, the long-period behaviours of the disturbing accelerations produced by the incoming direct solar radiation pressure, and the indirect effects produced by Mercury’s albedo. The variations in the orbital parameters of the spacecraft, together with their spectral contents, have been estimated over the analysed period. The direct solar radiation pressure represents the strongest non-gravitational perturbation on the MPO in the very complex radiation environment of Mercury. The order-of-magnitude of this acceleration is quite high, about 10?6 m/s2, because of the proximity to the Sun and the large area-to-mass ratio of the spacecraft. In the second part of the paper, we concentrated upon the short-period effects of direct solar radiation pressure and Mercury’s albedo. In particular, the disturbing accelerations have been compared with the ISA measurement error and the advantages of an on-board accelerometer are highlighted with respect to the best modelling of the non-gravitational perturbations in the strong radiation environment of Mercury. The readings from ISA, with an intrinsic noise level of about $10^{-9}\,m/s^{2}/\sqrt{Hz}The paper is focused on the estimate of the impact of the non-gravitational perturbations on the orbit of the Mercury Planetary Orbiter (MPO), one of the two spacecrafts that will be placed in orbit around the innermost planet of the solar system by the BepiColombo space mission. The key r?le of the Italian Spring Accelerometer (ISA), that has been selected by the European Space Agency (ESA) to fly on-board the MPO, is outlined. In the first part of the paper, through a numerical simulation and analysis we have estimated, over a time span of several years, the long-period behaviours of the disturbing accelerations produced by the incoming direct solar radiation pressure, and the indirect effects produced by Mercury’s albedo. The variations in the orbital parameters of the spacecraft, together with their spectral contents, have been estimated over the analysed period. The direct solar radiation pressure represents the strongest non-gravitational perturbation on the MPO in the very complex radiation environment of Mercury. The order-of-magnitude of this acceleration is quite high, about 10−6 m/s2, because of the proximity to the Sun and the large area-to-mass ratio of the spacecraft. In the second part of the paper, we concentrated upon the short-period effects of direct solar radiation pressure and Mercury’s albedo. In particular, the disturbing accelerations have been compared with the ISA measurement error and the advantages of an on-board accelerometer are highlighted with respect to the best modelling of the non-gravitational perturbations in the strong radiation environment of Mercury. The readings from ISA, with an intrinsic noise level of about in the frequency band of 3·10−5–10−1 Hz, guarantees a very significant reduction of the non-gravitational accelerations impact on the space mission accuracy, especially of the dominant direct solar radiation pressure.  相似文献   

2.
3.
《Planetary and Space Science》2007,55(10):1398-1413
The BepiColombo Laser Altimeter (BELA) has been selected for flight on board the European Space Agency's BepiColombo Mercury Planetary Orbiter (MPO). The experiment is intended to be Europe's first planetary laser altimeter system. Although the proposed system has similarities to the Mercury Laser Altimeter (MLA) currently flying on board NASA's MESSENGER mission to Mercury, the specific orbit and construction of the MPO force the use of novel concepts for BELA. Furthermore, the base-lined range-finding approach is novel. In this paper, we describe the BELA system and show preliminary results from some prototype testing.  相似文献   

4.
A major goal of the BepiColombo mission to Mercury is the determination of the structure and state of Mercury's interior. Here the BepiColombo rotation experiment has been simulated in order to assess the ability to attain the mission goals and to help lay out a series of constraints on the experiment's possible progress. In the rotation experiment pairs of images of identical surface regions taken at different epochs are used to retrieve information on Mercury's rotation and orientation. The idea is that from observations of the same patch of Mercury's surface at two different solar longitudes of Mercury the orientation of Mercury can be determined, and therefore also the obliquity and rotation variations with respect to the uniform rotation.The estimation of the libration amplitude and obliquity through pattern matching of observed surface landmarks is challenging. The main problem arises from the difficulty to observe the same landmark on the planetary surface repeatedly over the MPO mission lifetime, due to the combination of Mercury's 3:2 spin-orbit resonance, the absence of a drift of the MPO polar orbital plane and the need to combine data from different instruments with their own measurement restrictions.By assuming that Mercury occupies a Cassini state and that the spacecraft operates nominally we show that under worst case assumptions the annual libration amplitude and obliquity can be measured with a precision of, respectively, 1.4 arcseconds (as) and 1.0 as over the nominal BepiColombo MPO lifetime with about 25 landmarks for rather stringent illumination restrictions. The outcome of the experiment cannot be easily improved by simply relaxing the observational constraints, or increasing the data volume.  相似文献   

5.
The Mercury Orbiter Radio science Experiment (MORE) is one of the experiments on-board the ESA/JAXA BepiColombo mission to Mercury, to be launched in October 2018. Thanks to full on-board and on-ground instrumentation performing very precise tracking from the Earth, MORE will have the chance to determine with very high accuracy the Mercury-centric orbit of the spacecraft and the heliocentric orbit of Mercury. This will allow to undertake an accurate test of relativistic theories of gravitation (relativity experiment), which consists in improving the knowledge of some post-Newtonian and related parameters, whose value is predicted by General Relativity. This paper focuses on two critical aspects of the BepiColombo relativity experiment. First of all, we address the delicate issue of determining the orbits of Mercury and the Earth–Moon barycenter at the level of accuracy required by the purposes of the experiment and we discuss a strategy to cure the rank deficiencies that appear in the problem. Secondly, we introduce and discuss the role of the Solar Lense–Thirring effect in the Mercury orbit determination problem and in the relativistic parameters estimation.  相似文献   

6.
The Radio Science Experiment is one of the on board experiments of the Mercury ESA mission BepiColombo that will be launched in 2014. The goals of the experiment are to determine the gravity field of Mercury and its rotation state, to determine the orbit of Mercury, to constrain the possible theories of gravitation (for example by determining the post-Newtonian parameters), to provide the spacecraft position for geodesy experiments and to contribute to planetary ephemerides improvement. This is possible thanks to a new technology which allows to reach great accuracies in the observables range and range rate; it is well known that a similar level of accuracy requires studying a suitable model taking into account numerous relativistic effects. In this paper we deal with the modelling of the space-time coordinate transformations needed for the light-time computations and the numerical methods adopted to avoid rounding-off errors in such computations.  相似文献   

7.
The ESA mission BepiColombo will include a Mercury Planetary Orbiter equipped with a full complement of instruments to perform Radio Science Experiments. Very precise range and range-rate tracking from Earth, on-board accelerometry, altimetry and accurate angular measurements with optical instruments will provide large data sets. From these it will be possible to study (1) the global gravity field of Mercury and its temporal variations due to tides, (2) the medium to short scale (down do 300400 km) gravity anomalies, (3) the rotation state of the planet, in particular the obliquity and the libration with respect to the 3/2 spin orbit resonance and (4) the orbit of the center of mass of the planet.With the global gravity field and the rotation state it is possible to tightly constrain the internal structure of the planet, in particular to determine whether the solid surface of the planet is decoupled from the inner core by some liquid layer, as postulated by dynamo theories of Mercury's magnetic field. With the gravity anomalies and altimetry it is possible to study the geophysics of the planet's crust, mantle and impact basins. With the orbit of the planet closest to the Sun it is possible to constrain relativistic theories of gravitation.The possibility of achieving these scientific goals has been tested with a full cycle numerical simulation of the Radio Science Experiments. It includes the generation of simulated tracking and accelerometer data, and the determination, by least squares fit, of a long list of variables including the initial conditions for each observed arc, calibration parameters, gravity field harmonic coefficients, and corrections to the orbit of Mercury. An error budget has been deduced both from the formal covariance matrices and from the actual difference between the nominal values used in the data simulation and the solution. Thus the most complete error budget contains the effect of systematic measurement errors and is by far more reliable than a formal one. For the rotation experiment an error budget has been computed on the basis of dedicated studies on each separate error source.The results of the full cycle simulation are positive, that is the experiments are feasible at the required level of accuracy. However, the extraction of the full accuracy results from the data will be by no means trivial, and there are a number of open problems, both in the data processing (e.g., the selection of the orbital arc length) and in the mission scheduling (e.g., the selection of the target areas for the rotation experiment).  相似文献   

8.
This paper presents a definition study of a laser altimeter for the topographic exploration of Mercury. The reference scenario is the BepiColombo mission, a cornerstone mission of European Space Agency (ESA) planned for 2012. BepiColombo will offer the chance to make a remarkable new contribution to our knowledge of the Solar System, by venturing into the hot region near the Sun and exploring Mercury, the most enigmatic of the earth's sisters among the terrestrial planets. First images of Mercury surface were acquired by Mariner 10 in 1974 and 1975 offering a coverage and resolution comparable to Earth-based telescopic coverage of the Moon before spaceflight. BepiColombo mission can be very beneficial by using an optical rangefinder for Mercury exploration. In fact starting from the first missions in 1970s until today, laser altimeters have been demonstrating to be particularly appropriate as part of the scientific payload whenever the topography of earth, lunar and planetary surface is the scientific objective of a space mission.Our system design is compliant to Mercury Polar Orbiter (MPO) of the mission. System performance analysis is carried out simulating main hermean topographic features and the potential targets on the planet by means of analytical models and computer codes and several plot are presented to analyse the performance of the instrument.  相似文献   

9.
The paper presents the results of the definition studies performed for the European Space Agency (ESA) on system architectures and enabling technologies for “BepiColombo”, a Cornerstone class mission to be launched in the 2007–2009 time frame. The scientific mission comprises 1-year observations by a Mercury Planetary Orbiter (MPO), dedicated to remote sensing, and a Mercury Magnetospheric Orbiter (MMO), dedicated to particles and fields, plus short-duration in situ analysis by a Mercury surface element (MSE). A flexible approach to the programme has been developed, comprising two alternative launch scenarios. In the first option (2009), the 2500-kg class satellite composite, including two propulsion modules and three scientific modules, is launched by an Ariane-5. The trajectory design is based on Venus and Mercury gravity assists plus the thrust provided by a Solar Electric Propulsion Module (SEPM), that is jettisoned before being captured into Mercury orbit. Capture and orbit insertion, executed by successive manoeuvres of a Chemical Propulsion Module (CPM), occur less than 2.5 yr after launch. In the second scenario, the mission is split into two launches of a small launch vehicle. Two 1200-kg class composites are launched either in the same one-month window or at an interval of 1.6 yr. One composite comprises the SEPM, CPM, MMO and MSE and the other comprises duplicate SEPM+CPM and the MPO. The trajectory design follows the same principles as the Ariane-5 mission, with the SEPM thrust reduced by half and cruise duration ranging between 2.3 and 3.5 yr. Whatever be the implementation, the mission is expected to return about 1700 Gbit of scientific data during the one-year observation phase. The crucial aspects of the spacecraft design are associated with, and constrained by, the high-temperature and high-radiation environment. Basic feasibility has been demonstrated by an extensive design and analysis exercise, and the focus of the programme has now moved to a 3-year preparatory programme dedicated for developing the enabling technologies.  相似文献   

10.
The BepiColombo space mission is one of the European Space Agency's cornerstone projects; it is planned for launch in 2013 to study the planet Mercury. One of the imaging instruments of BepiColombo is a STereo Camera (STC), whose main scientific objective is the global stereo mapping of the entire surface of Mercury. STC will permit the generation of a Digital Terrain Model (DTM) of Mercury's surface, improving the interpretation of morphological features at different scales and clarifying the stratigraphic relationships between different geological units.To evaluate the effectiveness of the STC-derived DTM for geological purposes, a series of simulations has been performed to find out to what extent the errors expected in the DTM may prevent the correct classification and interpretation of geological features. To meet this objective, Earth analogues (a crater, a lava cone and an endogenous dome) of likely components of the Hermean surface, small enough to be near the detection limit of the STC, were selected and a photorealistic three-dimensional (3D) model of each feature was generated using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) stereo images. Stereoscopic pairs of synthetic images of each feature were then generated from the 3D model at different locations along the BepiColombo orbit. For each stereo pair, the corresponding Hermean DTM was computed using image correlation and compared to the reference data to assess the loss of detail and interpretability. Results show that interpretation and quantitative analysis of simple craters morphologies and small volcanic features should be possible all along the periherm orbit arc. At the apoherm only the larger features can be unequivocally distinguished, but they will be reconstructed to a poor approximation.  相似文献   

11.
Because of its proximity to the Sun and its small size, Mercury has not been able to retain its atmosphere and only a thin exosphere surrounds the planet. The exospheric pressure at the planetary surface is approximately 10−10 mbar, set by the Mariner 10 occultation experiment. The existence of gaseous species H, He, and O has been established by Mariner 10. In addition Na, K, and Ca have been observed by ground based instrumentation. Other elements are expected to be found in Mercury's exosphere since the total pressure of the known species is almost two orders of magnitude less than the exospheric pressure.It is intended to measure these exospheric particle densities in situ with an instrument on board of ESA's BepiColombo Mercury Planetary Orbiter (MPO) spacecraft. Since the expected exospheric densities are very small we developed a Monte-Carlo computer model to investigate if such a measurement is feasible along the MPO spacecraft orbit. We model energy and ejection angle distributions of the particles at the surface, with the emission process determining the actual distribution functions. Our model follows the trajectory of each particle by numerical integration until the particle hits Mercury's surface again or escapes from the calculation domain. Using a large set of these trajectories bulk parameters of the exospheric gas are derived, e.g., particle densities for various atomic and molecular species. Our study suggests that a mass spectrometric measurement is feasible and, at least at MPO's periherm, all species that are released from the surface will be observed.  相似文献   

12.
GETEMME (Gravity, Einstein??s Theory, and Exploration of the Martian Moons?? Environment), a mission which is being proposed in ESA??s Cosmic Vision program, shall be launched for Mars on a Soyuz Fregat in 2020. The spacecraft will initially rendezvous with Phobos and Deimos in order to carry out a comprehensive mapping and characterization of the two satellites and to deploy passive Laser retro-reflectors on their surfaces. In the second stage of the mission, the spacecraft will be transferred into a lower 1500-km Mars orbit, to carry out routine Laser range measurements to the reflectors on Phobos and Deimos. Also, asynchronous two-way Laser ranging measurements between the spacecraft and stations of the ILRS (International Laser Ranging Service) on Earth are foreseen. An onboard accelerometer will ensure a high accuracy for the spacecraft orbit determination. The inversion of all range and accelerometer data will allow us to determine or improve dramatically on a host of dynamic parameters of the Martian satellite system. From the complex motion and rotation of Phobos and Deimos we will obtain clues on internal structures and the origins of the satellites. Also, crucial data on the time-varying gravity field of Mars related to climate variation and internal structure will be obtained. Ranging measurements will also be essential to improve on several parameters in fundamental physics, such as the Post-Newtonian parameter ?? as well as time-rate changes of the gravitational constant and the Lense-Thirring effect. Measurements by GETEMME will firmly embed Mars and its satellites into the Solar System reference frame.  相似文献   

13.
We investigate how well the GRACE satellite orbits can be determined using the onboard GPS data combined with the accelerometer data.The preprocessing of the accelerometer data and the methods and models used in the orbit determination are presented.In order to assess the orbit accuracy,a number of tests are made,including external orbit comparison,and through Satellite Laser Ranging (SLR) residuals and K-band ranging (KBR) residuals.It is shown that the standard deviations of the position differences between the so-called precise science orbits (PSO) produced by GFZ,and the single-difference (SD) and zero-difference (ZD) dynamic orbits are about 7 cm and 6 cm,respectively.The independent SLR validation indicates that the overall root-mean-squared (RMS) errors of the SD solution for days 309-329 of 2002 are about 4.93cm and 5.22cm,for GRACE-A and B respectively; theoverall RMS errors of the ZD solution are about 4.25 cm and 4.71 cm,respectively.The relative accuracy between the two GRACE satellites is validated by the KBR data to be on a level of 1.29 cm for the SD,and 1.03 cm for the ZD solution.  相似文献   

14.
From photogrammetric analysis of stereo images of Mercury obtained during three MESSENGER flybys, we have produced three digital terrain models (DTMs) that have a grid spacing of 1 km and together cover 30% of the planet's surface. The terrain models provide a rich source of information on the morphology of Mercury's surface, including details of tectonic scarp systems as well as impact craters and basins. More than 400 craters larger than 15 km in diameter are included in the models. Additionally, the models provide important test cases for the analysis of stereo image data to be collected during MESSENGER's orbital mission phase. Small lateral offsets and differences in trends between stereo DTMs and laser altimeter profiles may be due to remaining errors in spacecraft position, instrument pointing, or Mercury coordinate knowledge. Such errors should be resolved during the orbital mission phase, when more joint analyses of data and detailed orbit modeling will be possible.  相似文献   

15.
This article provides the main scientific objectives and characteristics of the Phobos-Soil project, intended to fly to the Martian satellite Phobos, deliver its soil samples to the Earth, as well as explore Phobos, Mars, and the Martian environment with onboard scientific instruments. We give the basic parameters of the ballistic scenario of the mission, spacecraft, and some scientific problems to be solved with the help of the scientific instruments installed on the spacecraft.  相似文献   

16.
An artificial satellite, flying in a purely gravitational field is a natural probe, such that, by a very accurate orbit determination, would allow a perfect estimation of the field. A true satellite experiences a number of perturbational, non-gravitational forces acting on the shell of the spacecraft; these can be revealed and accurately measured by a spaceborne accelerometer. If more accelerometers are flown in the same satellite, they naturally eliminate (to some extent) the common perturbational accelerations and their differences are affected by the second derivatives of the gravity fields only (gradiometry). The mission GOCE is based on this principle. Its peculiar dynamical observation equations are reviewed. The possibility of estimating the gravity field up to some harmonic degree (200) is illustrated.  相似文献   

17.
We show that, when a natural satellite like Titan is invisible (e.g., due to an opaque atmosphere) its planetary orbit and its mass can be determined by tracking a spacecraft in close flybys. This is an important problem in the Cassini mission to the Saturnian system, which will be greatly improved by a good astrometric model for all its main components; in particular, an accuracy of a few hundred meters for the orbit of Titan is necessary to allow a measurement of its moment of inertia. The orbit of the spacecraft is the union of elliptical arcs, joined by short hyperbolic transitions: a problem of singular perturbation theory, whose solution leads to a matching condition between the inner hyperbolic orbit and the elliptical orbital elements. Since the inner elements are given in terms of the relative position and velocity of the spacecraft, accurate Doppler measurements in both regions can provide a satisfactory determination of Titan's position and velocity, hence of its Keplerian elements. The errors in this determination are discussed on the basis of the expected Allan deviation of the Doppler method; it is found that the driving errors are those in the elliptical arcs; the fractional errors in Titan's orbital elements are expected to be 10–7. It is also possible to measure the mass of the satellite; however, when the eccentricity e of the flybys is large, the mass and a scaling transformation are highly correlated and the fractional error in the mass is expected to be e times worse.  相似文献   

18.
The MErcury, Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission will send the first spacecraft to orbit the planet Mercury. A miniaturized set of seven instruments, along with the spacecraft telecommunications system, provide the means of achieving the scientific objectives that motivate the mission. The payload includes a combined wide- and narrow-angle imaging system; γ-ray, neutron, and X-ray spectrometers for remote geochemical sensing; a vector magnetometer; a laser altimeter; a combined ultraviolet-visible and visible-infrared spectrometer to detect atmospheric species and map mineralogical absorption features; and an energetic particle and plasma spectrometer to characterize ionized species in the magnetosphere.  相似文献   

19.
This paper provides a method for finding initial conditions of frozen orbits for a probe around Mercury. Frozen orbits are those whose orbital elements remain constant on average. Thus, at the same point in each orbit, the satellite always passes at the same altitude. This is very interesting for scientific missions that require close inspection of any celestial body. The orbital dynamics of an artificial satellite about Mercury is governed by the potential attraction of the main body. Besides the Keplerian attraction, we consider the inhomogeneities of the potential of the central body. We include secondary terms of Mercury gravity field from \(J_2\) up to \(J_6\), and the tesseral harmonics \(\overline{C}_{22}\) that is of the same magnitude than zonal \(J_2\). In the case of science missions about Mercury, it is also important to consider third-body perturbation (Sun). Circular restricted three body problem can not be applied to Mercury–Sun system due to its non-negligible orbital eccentricity. Besides the harmonics coefficients of Mercury’s gravitational potential, and the Sun gravitational perturbation, our average model also includes Solar acceleration pressure. This simplified model captures the majority of the dynamics of low and high orbits about Mercury. In order to capture the dominant characteristics of the dynamics, short-period terms of the system are removed applying a double-averaging technique. This algorithm is a two-fold process which firstly averages over the period of the satellite, and secondly averages with respect to the period of the third body. This simplified Hamiltonian model is introduced in the Lagrange Planetary equations. Thus, frozen orbits are characterized by a surface depending on three variables: the orbital semimajor axis, eccentricity and inclination. We find frozen orbits for an average altitude of 400 and 1000 km, which are the predicted values for the BepiColombo mission. Finally, the paper delves into the orbital stability of frozen orbits and the temporal evolution of the eccentricity of these orbits.  相似文献   

20.
The Mercury Imaging X-ray Spectrometer (MIXS) will be launched on board of the 5th ESA cornerstone mission BepiColombo. The two channel instrument MIXS is dedicated to the exploration of the elemental composition of the mercurian surface by imaging x-ray spectroscopy of the elemental fluorescence lines. One of the main scientific goals of MIXS is to provide spatially resolved elemental abundance maps of key rock-forming elements. MIXS will be the successor of the XRS instrument, which is currently orbiting Mercury on board of NASAs satellite MESSENGER. MIXS will provide unprecedented spectral and spatial resolution due to its innovative detector and optics concepts. The MIXS target energy band ranges from 0.5 to 7 keV and allows to directly access the Fe-L line at 0.7 keV, which was not accessible to previous missions. In addition, the high spectroscopic resolution of FWHM ≤ 200 eV at the reference energy of 1 keV after one year in Mercury orbit, allows to separate the x-ray fluorescence emission lines of important elements like Mg (1.25 keV) and Al (1.49 keV) without the need for any filter. The detectors for the energy and spatially resolved detection of x-rays for both channels are identical DEPFET (DEpleted P-channel FET) active pixel detectors. We report on the calibration of the MIXS flight and flight spare detector modules at the PTB (Physikalisch-Technische Bundesanstalt) beamlines at the BESSY II synchrotron radiation facility. Each detector was calibrated at least at 10 discrete energies in the energy range from 0.5 to 10 keV. The excellent spectroscopic performance of all three detector modules was verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号