首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 142 毫秒
1.
一、前言“七五”期间,长江三峡工程坝区外围深部构造研究发现三斗坪坝址区基岩的纵波P_g、横波S_g存在异常信息,因此,在“八五”期间通过乐天溪试验炮,在乐天溪—三斗坪—太平溪之间进行了T字型削面检验,获得三斗坪坝址北缘地区P_g、S_g和面波R_g的发育状态。这不仅证实了太平溪—乐天溪之间存在异常地质结构,而且揭示出该异常结构  相似文献   

2.
长江三峡工程坝区及外围地壳稳定性评价与分区研究   总被引:1,自引:0,他引:1  
本文分长江三峡工程坝区及外围(约31对万km2)和长江三峡工程库首区(约3万km2)两个层次和范围进行区域地壳稳定性评价与分区研究,在构造分区及现今地应力地场研究的基础上,运用模糊数学进行地壳稳定性量化综合评价,然后结合地质分析,进行地壳稳定性分区。长江三峡工程坝区及外围地壳稳定性评价与分区结果为:库首区地壳稳定性总体系属相对较稳定一稳定状态,三斗坪坝址区属于相对稳定地块;长江三峡工程库首区地壳稳定性评价与分区结果为:三斗坪坝址位于古老的花岗岩完整块体之上,属于相对稳定(Ⅰ)地块。从区域地壳稳定性评价看,  相似文献   

3.
本文在研究清江流域及外围区域地震地质条件和地震分布规律的基础上,划分了1、2个潜在震源区,并确定其相应的地震活动性参数,同时探讨区域地震烈度衰减规律及各潜在震源区对隔河岩和水布垭两坝址的影响烈度、进而复泊松模型,评价两坝址的地震危险性,获得了丙坝址不同期限内的地面峰值加速度及其相应的超越概率。根据对比分析,水布垭坝址的地震危险性比隔洒岩坝址小。  相似文献   

4.
张峰  王世杰 《地质科学》2001,36(1):101-106
仙女山断裂带和九湾溪断裂带是位距三峡工程坝址最近的两条主断裂。本文对断裂带中断层泥、断裂壁岩和断裂带围岩内选出的磷灰石进行了裂变径迹断代学的研究,并对径迹长度的频率分布进行统计测量。研究证实,仙女山断裂带与九湾溪断裂带发生的时期分别为0.60±0.05MaB.P.和0.29±0.04MaB.P.,与它周边的围岩经受的主要构造-热事件年龄(22.30±1.8Ma)截然不同。与其它方法年龄测定结果对比分析,均未见到全新世以来有明显的活动迹象,以此确认三斗坪坝址属稳定地壳区。  相似文献   

5.
沙牌坝址基岩场地地震动输入参数研究   总被引:2,自引:0,他引:2  
钟菊芳  温世亿  胡晓 《岩土力学》2011,32(2):387-392
重大水利水电工程地震动输入参数必须根据专门的地震危险性分析结果来确定。目前由地震危险性分析得到的一致概率反应谱具有包络的意义,不能反映实际地震的频谱特性,输入“一致概率反应谱”可能导致地震作用偏大;拟合设计反应谱人工生成地震动加速度时程的频率非平稳性也没有得到很好解决。为了解决这些问题,得到与坝址地震危险性一致、具体地震的输入参数,结合沙牌大坝提出了一套适用于重大水利水电工程基岩场地地震动输入参数确定方法:通过以有效峰值加速度为参数的概率地震危险性计算分析,确定坝址不同超越概率下的有效峰值加速度及对坝址贡献最大的潜在震源区;在最大贡献潜在震源内利用震级空间联合分布概率最大法确定坝址设定地震,依据加速度反应谱衰减关系确定与坝址设定地震对应的设计反应谱;根据设定地震结果和时变功率谱模型参数衰减关系确定时变功率谱,将时变功率谱和最小相位谱按三角级数叠加法进行强度和频率非平稳地震加速度时程合成。在对沙牌坝址区域的地震活动性及地震构造环境分析评价的基础上,采用上述方法,得到了坝址基岩场地不同超越概率下的有效峰值加速度、设计反应谱、强度和频率非平稳地震加速度时程等地震动输入参数。  相似文献   

6.
三峡库区上地壳横波速度结构   总被引:1,自引:0,他引:1       下载免费PDF全文
李小勇  朱培民  周强  彭松柏  刘江平  刘娇 《地球科学》2014,39(12):1842-1850
为了更好地了解三峡库区的稳定性, 利用三峡库区的流动宽频地震仪台阵于2011年4~5月期间观测的背景噪声数据, 采用互相关方法提取了瑞利面波的格林函数, 用多重滤波方法获得了瑞利面波的群速度频散曲线.利用走时层析成像方法获得了0.5~10.0 s周期的纯路径频散曲线, 进而反演获得了沿巴东-茅坪-土门方向的横波速度结构剖面, 揭示了三峡地区上地壳的速度变化情况.研究表明: (1)研究区地下速度结构与地质构造关系密切, 速度剖面上很好地反映了一个以黄陵背斜核部为中心的背斜构造; (2)九畹溪及其周边区域下方较快的速度变化可能与对应的区域断裂构造、地震活动性密切相关; (3)三斗坪地区上地壳表现为高速, 表明三峡坝区处于构造稳定区域.   相似文献   

7.
大柳树坝址的地震基本烈度是一个长期争议的问题,目前被定为Ⅷ度。生产争议的焦点在于对中卫一同心断裂带的评价。根据作者的研究,该带不是1709年中卫7.5级地震的发震断层,该带不会发生大于6级地震,包括F201在内的西段不会发生大于5级地震,对坝址所产生的影响烈度不会超过Ⅶ度;更外围地区的地震也不会产生超过Ⅶ度的影响烈度。大柳树坝址的基本烈度应以Ⅶ度为宜。  相似文献   

8.
以长江三峡地区实测应力资料为依据,用三维有限元方法定量地展现了该区弹性应变能空间分布状态,讨论了弹性应变能与地震活动的关系,结合地震震级、地震活跃期及地震迁移规律的综合分析,探讨了该区未来地震危险性。  相似文献   

9.
冶勒沥青混凝土心墙堆石坝最大坝高为124.5 m,坝址区地震烈度高,地质条件复杂,两岸坝基条件严重不对称。大坝上布设了9台强震仪组成的强震监测台阵,曾获得2008年汶川地震和攀枝花地震的大坝强震监测记录。2013年4月20日四川省雅安市芦山县发生里氏7.0级地震,冶勒大坝距震中约212.5 km,坝址区震感较为强烈,强震监测台阵获得了此次地震较为完整的有效记录。对芦山地震主震记录进行时域分析和频谱分析,总结冶勒大坝在芦山地震中的动力反应规律,并与汶川地震时坝体动力反应进行对比分析。研究表明,芦山地震主震时冶勒大坝最大加速度记录为47.043 cm/s2,最长持续时间为76.98 s,坝顶动力放大效应明显;芦山和汶川地震时大坝动力反应规律的差异与地震波频谱特性及大坝自振特性等密切相关。总体而言,冶勒大坝在震后运行安全稳定,芦山地震未对冶勒大坝造成明显不利影响。  相似文献   

10.
孙锡荣 《地下水》2018,(5):143-146
以内蒙古某水库坝址区为研究对象,利用用综合物探方法对坝址区的断层及破碎构造带、岩体的波速及完整性系数等参数进行测量,为地质工作提供基础资料。对地面物探工作和测井物探工作分别进行研究。地面物探采用高密度电阻率法,而测井物探采用地震测井和超声波声速测井相结合的综合测井方法,在上下坝址区域布置高密度电法断面,完成了坝线地质构造勘察,查明了坝址区河床段顺河断层及破碎带的位置、规模和延伸情况,结果表明:上坝址区断面勘察范围内未见明显的破碎构造带或断层,岩体的完整性与岩体的风化程度、构造发育程度有关;下坝址区有一低阻异常带F1,存在破碎带,但受勘测区域地形条件限制,无法布置足够长的电法断面,无法确认勘测断层倾向,测试成果与地质勘查资料基本吻合。  相似文献   

11.
The seismic hazard assessment of a site that lies in the low seismic region affected by the future existence of a large dam has been given less attention in many studies. Moreover, this condition is not addressed directly in the current seismic codes. This paper explains the importance of such information in mitigating the seismic hazard properly. Ulu Padas Area in Northern Borneo is used as an example for a case study of a site classified as a low seismic region. It is located close to the border of Malaysia, Brunei Darussalam, and Indonesia and may have a large dam in the future as the region lies in hilly geography with river flow. This study conducts probabilistic and deterministic seismic hazard analyses, and reservoir-triggered seismicity of a site affected by the future existence of a large dam. The result shows that the spectrum acceleration of the maximum design earthquake for the investigated site in the Ulu Padas Area in Northern Borneo is taken from the reservoir-triggered seismicity earthquake at short periods and from the current condition at longer periods.  相似文献   

12.
以穿越汶川震区的成兰铁路龙门山关键段为例, 探索提出了强震扰动背景下重大工程场区多尺度滑坡危险性评估方法。利用信息量模型反演评估了汶川地震诱发的同震滑坡空间分布特征, 以此为前提开展了区域和局地两种空间尺度的滑坡危险性预测评估。在区域廊带尺度上, 分别利用可能最大降雨量预测方法和信息量模型, 进行了日超越概率10%的最大降雨量时空分布预测及其诱发滑坡的危险性评估; 同时, 结合地震危险性区划成果, 开展了50年超越概率10%的基本地震动诱发滑坡的危险性评估。在局地场站尺度上, 利用基于崩塌运动过程模拟的Rockfall Analyst软件, 开展了柿子园大桥周边崩塌运动学特征(Runout)模拟和危险性评估。滑坡和崩塌危险性评估的结果分别为铁路规划选线和场站防护设计提供了不同尺度的地质安全依据。   相似文献   

13.
The paper describes an integrated approach to seismic hazard assessment, which was applied for the Taiwan region. First, empirical modelsfor ground motion estimation in the region were obtained on the basisof records from recent (1993-1999) earthquakes. The databaseincludes strong-motion data collected during the recent Chi-Chiearthquake (M=7.6, 21 September 1999) and large (M=6.8)aftershocks. The ground-motion database was also used for evaluationof generalised site amplification functions for typical soil classes(B, C and D). Second, the theoretical seismic catalogue (2001–2050)for the Taiwan region had been calculated using the 4D-model(location, depth, time) for dynamic deformation of the Earth' crustand 5D-model (location, depth, time, magnitude) for seismic process.The models were developed on the basis of available geophysical andgeodynamic data that include regional seismic catalogue. Third, theregion & site & time-dependent seismic analysis, which is basedon schemes of probable earthquake zones evaluated from the theoreticalcatalogue, regional ground motion models, and local site responsecharacteristics, has been performed. The seismic hazard maps arecompiled in terms of Peak Ground Acceleration (PGA) and ResponseSpectra (RS) amplitudes. The maps show distribution of amplitudesthat will not be exceeded with certain probability in condition oftypical soil classes during all possible earthquakes that may occur inthe region during time period of 2003–2025. The approach allowsintroducing new parameter that describes dependency of seismichazard on time, so-called 'period of maximum hazard'. Theparameter shows the period, during which every considered sitewill be subjected by the maximum value of ground motioncharacteristic (PGA or RS).  相似文献   

14.
A Probabilistic method is used to evaluate the seismic hazard of nineteen embankment dam sites in Jordan. A line source model developed by McGuire (1978) is used in this study. An updated earthquake catalogue covering the period from 1 A.D. to 1991 A.D. is used for this purpose. This catalogue includes all earthquakes that occurred in Jordan and adjacent areas, more specifically between latitudes 27.0°–35.5° N and longitudes 32.0°–39.0° E.Nine distinct seismic sources of potential seismic activities are identified. The seismic hazard parameters are determined using the method suggested by Kijko and Sellevoll (1989).The Peak Ground Acceleration (PGA) is selected as a measure of ground motion severity. Esteva (1974) attenuation relationship is used in evaluating PGA values at each dam site. Analysis is carried out for 50%, 90%, and 95% probability that is not being exceeded in a life time of 50, 100, and 200 years.Results of analysis indicate that PGA values are higher for dam sites closer to the Dead Sea Fault. This fault is believed to be responsible for most earthquake activities in Jordan and vicinity. The highest PGA value is found to be for Al-Karama dam site.  相似文献   

15.
Seismic hazard studies were conducted for Gaziantep city in the South Anatolia of Turkey. For this purpose, a new attenuation relationship was developed using the data of Zaré and Bard and accelerations were predicted employing this new equation. Deterministic approach, total probability theorem and GIS methodology were all together utilized for the seismic assessments. Seismic hazard maps with 0.25° grid intervals considering the site conditions were produced by the GIS technique. The results indicated that the acceleration values by the GIS hazard modelings were matched with the ones from the deterministic approach, however, they were underestimated comparing with the total probability theorem. In addition, the GIS based seismic hazard maps showed that the current seismic map of Turkey fairly yields conservative acceleration values for the Gaziantep region. Therefore, the constructed GIS hazard models are offered as a base map for a further modification of the current seismic hazard map.  相似文献   

16.
High and Aswan Dams Authority (HADA) proposed a plan aiming at constructing a rockfill dam in the Kalabsha area, about 60 km south of Aswan High Dam. The aim of this dam is to restrain the overflow of water to the Kalabsha Valley for keeping one billion cubic meters from being lost due to seepage and evaporation. The safety of dams during earthquakes is extremely important because failure of such a structure may have disastrous consequences on life and property. Therefore, different factors were considered as part of a site assessment. Five seismic source zones, close enough to the site to give rise to potentially damaging earthquake ground motions, were identified. Seven active faults that have the potential for producing significant earthquakes and that pass through or near the dam site were also identified. The earthquake loading represented by ground motions at the site was evaluated. Probabilistic seismic hazard procedures were used for assessing the earthquake loading at six individual sites using Area-and Line-Source Models (ASM & LSM). The ASM is based on current observed seismicity, whereas the LSM is based on geological slip rates. The output represents the expected acceleration amplitude with 90 percent probability of not being exceeded in exposure times of 20, 50, and 100 years. The results from the two models appear to be different, the expected ground motions from ASM were twice as high as expected from LSM. This difference is due to the load of the Aswan reservoir (Nasser Lake) triggering earthquakes on those parts of the faults that lie under the lake at Kalabsha area. The hazard at the selected sites is given by the hazard curve that is represented by the relationship between the peak ground acceleration and its annual exceedance probability. By comparing the curves for the six individual sites for the same source model, it can be concluded that the potential ground acceleration level for all the sites is almost the same. Considering the mean results from the two models, the annual exceedance probability of the expected ground acceleration from ASM is approximately ten times higher than the annual exceedance probability from LSM.Since ASM is based on current seismicity, it is more appropriate forrepresenting the actual hazard for the dam site.  相似文献   

17.
A probabilistic method is used to evaluate the seismichazard of Adassiya dam site on the Yarmouk river in Jordan. A line source model developedby McGuire (1978) is used in this study. An updated earthquake catalogue coveringthe period from 1 A.D. to 1996 A.D. is used for this purpose. This catalogue includesall earthquakes that occurred in Jordan and adjacent areas, more specifically between latitudes27.0°–35.5°N and longitudes 32.0°–39.0°E.Nine distinct seismic sources of potential seismic activitiesare identified. The seismic hazard parameters are determined using the method suggested by Kijko and Sellevoll (1989).The Peak Ground Acceleration (PGA) is selected as a measure of ground motion severity. Esteva (1974) attenuation relationship is used in evaluating PGA values at each dam site. Analysis is carried out for 50%, 90%, and 95% probability that is not being exceeded in a life time of 50, 100, and 200 years.Results of analysis indicate that PGA values at the dam site are as follows:[] Operating Basis Earthquake (OBE) (50% probabilityof non-exceedance for a design life of 100 years – corresponding to a return period of 145 years) is 133.6 cm/sec2.[] An earthquake with 90% probability of non-exceedancefor a design life of 50 years – corresponding to a return period of 475 years is 214.9 cm/sec2.[] Maximum Credible Earthquake (MCE) (Return period of900 years) is 283.0 cm/sec2.Strong motion acceleration time history of these earthquakes are givenbased on strong motion records of the November 1995 Gulf of Aqaba earthquake.Local site effect analysis for Adassiya Dam site using SHAKE program showed no amplification. Normalized site-specific acceleration response spectra for OBE and MCE design earthquakes is also given.  相似文献   

18.
The general philosophy of seismic hazard evaluation described here is appropriate for selection of seismic input to regional earthquake engineering codes prior to detailed on-site inspections and geotechnical assessments. Some probabilistic seismic hazard methodologies which can be applied in areas of low and high seismicity, are briefly described to emphasise the main equations with specimen results. Three aspects of hazard assessment are explored by different pathways. These include the analysis of regional earthquake catalogues to obtain magnitude recurrence, particularly using Gumbel extreme value statistics. This is extended to assess ground shaking hazard which is usually sought by earthquake engineers. Thirdly, the concept of earthquake perceptibility is developed, leading to the identification of an earthquake magnitude or type which is characteristic of a region. This most perceptible earthquake is most likely to be felt at any site in a region and provides an earthquake selection criterion which can be used in aseismic design of noncritical structures. Because there are several methods of seismic hazard evaluation, the view is expressed that it is sensible for practical purposes to seek results from different methods or different pathways to the hazard evaluation.Paper presented at the Commission of the European Communities' School on Earthquake Hazard Evaluation, Athens, and at the 21st General Assembly of the European Seismological Commission, held in Sofia, 1988.Now at School of Environmental Sciences, University of East Anglia, University Plain, Norwich NR4 7TJ, U.K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号