首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The hard X-ray imaging telescope of the modulation collimator type is widely used in current solar observations. The spatial modulation telescope is the telescope which keeps its central axis not rotate, suitable for the satellite of 3-axis attitude stabilization. For the possible Chinese solar mission in the near future, we make a design of hard X-ray imaging telescope, and simulate the photon counting using the common simulation software GEANT4. Then we implement the image reconstruction with MATLAB, and compare the reconstructed image of the photons simulated by GEANT4 with that of the photons calculated by the geometric algorithm. The results show that the simulated one by GEANT4 is more closer to the reality than that obtained by the geometric algorithm. An executable design is also proposed at last.  相似文献   

2.
ASO-S卫星HXI量能器探测单元的标定   总被引:1,自引:0,他引:1       下载免费PDF全文
先进天基太阳天文台卫星(Advanced Space-based Solar Observatory, ASO-S)是中国科学院第2批空间科学先导专项之一,其主要目标是同时观测太阳磁场、耀斑和日冕物质抛射,并对3者之间的相互关系和内在联系进行研究.硬X射线成像仪(HXI)是ASOS卫星的3大载荷之一,它通过对太阳活动发射的硬X射线进行傅里叶调制成像,实现高空间分辨率和高时间分辨率的太阳能谱成像观测.量能器单机是HXI的关键单机之一,其主要任务是精准测量通过每对光栅后太阳硬X射线的能量和通量.主要介绍了量能器单机的工作原理及其关键指标要求、标定设备及标定方案,最后给出了标定结果,从而验证了量能器单机方案设计的合理性.  相似文献   

3.
硬X射线能带 (2 0KeV~ 1MeV)是我们了解天体物理中高能辐射过程的一个好窗口。成像硬X射线望远镜可以提供更好的分辨率和灵敏度来研究硬X射线天体物理学。本文介绍了成像硬X射线望远镜在美国和欧洲的发展 ,这包括 :1 )EXITE2 ,由美国哈佛———史密松林天体物理中心设计和运行的一个光电开关成像硬X射线望远镜 ;2 )EXIST ,一个成像硬X射线全天巡天望远镜 ,将于 2 0 1 0年由ULDB (EXIST -LINE)或国际空间站 (EXIST -ISS)承载 ;3)HERO ,由NASA/MSFC建造的一个新的硬X射线光学仪器。  相似文献   

4.
The CdZnTe array detector is a new type of semiconductor detector being rapidly developed in recent years. It possesses a high spatial resolution and a high energy resolution, and it can work at room temperatures. This paper describes the physical properties and working principle of the CdZnTe array detector, as well as the manufacturing technology, including the chip pretreatment, passivation, ohmic electrode preparation, array template selection, and array packaging technology (micro-interconnection). For evaluating the perfor-mance of the detector, the authors have developed successfully a 4 pixel×4 pixel CdZnTe array and an 8 pixel×8 pixel CdZnTe array (with the thicknesses of 5 mm and 2 mm, the pixel size of 2 mm×2 mm, and the gaps of 0.15 mm and 0.2 mm, respectively) in cooperation with the partner. A multi-channel electronic readout system based on the ASIC (Application Specific Integrated Circuit) chip is devel-oped independently for the charge measurement of the 4 pixel×4 pixel CdZnTe array. The energy spectra and corresponding energy resolutions of the 16 pixels are obtained with the 137Cs radiative source, among them the best resolution is 4.8%@662 kev.  相似文献   

5.
A new imaging balloon-borne telescope for hard X-rays in the energy range from 30 to 100 keV is described. The imaging capability is provided by the use of an extended URA-based coded-mask. With only one motor and suitable stop pins, we can rotate a carbon-fiber wheel with most of the mask elements attached to it by 180°, and a bar, which is also part of the mask pattern and is allowed to rotate freely over the wheel, by 90°; this combined rotation creates an antimask of the original mask, except for the central element. This is a novel and elegant manner of providing an antimask without additional weight and complex mechanical manipulations. We show that the use of antimasks is a very effective method of eliminating systematic variations in the background map over the position-sensitive detector area. The expected sensitivity of the instrument for the 30–100 keV range is of the order of 7 × 10-5 photons cm-2 s-1 keV-1, for an integration time of 104 seconds at a residual atmosphere of 3.5 g cm-2. This telescope will provide imaging observations of bright galactic hard X-ray sources with an angular resolution of 2° in a 10° by 10° FOV, which is defined by a collimator placed in front of the detector system. We are particularly interested in the galactic center region, where recent imaging results in X-rays have shown the presence of an interesting source field. Results of computer simulations of the imaging system are reported.  相似文献   

6.
Equipped with a suitable optical relay system, telescopes employing low-cost fixed primary mirrors could point and track while delivering high-quality images to a fixed location. Such an optical tracking system would enable liquid-mirror telescopes to access a large area of sky and employ infrared detectors and adaptive optics. Such telescopes could also form the elements of an array in which light is combined either incoherently or interferometrically. Tracking of an extended field requires correction of all aberrations including distortion, field curvature and tilt. A specific design is developed that allows a 10-m liquid-mirror telescope to track objects for as long as 30 min and to point as far as 4° from the zenith, delivering a distortion-free diffraction-limited image to a stationary detector, spectrograph or interferometric beam combiner.  相似文献   

7.
Schmahl  E.J.  Hurford  G.J. 《Solar physics》2002,210(1-2):273-286
The Reuven Ramaty High-Energy Solar Spectroscopic Imager RHESSI telescope produces hard X-ray images by Fourier imaging techniques that are capable of determining the sizes and shapes of sources with spatial scales in the range ∼ 2′′–180′′. Applying the method of Unpixelized Forward Fitting to RHESSI modulation profiles from simple flares, we have identified the presence of `halo' sources whose size scale (∼ 40′′) greatly exceeds the `core' sizes (≤ 6′′–14′′). Although such `core-halo' structures have been observed at radio wavelengths using a similar technique, the radio and hard X-ray phenomena may be different. These observations raise questions about the nature of these `halos'. Among the possibilities are that they are albedo sources, thin-target loops, or unidentified diffuse structures. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1022484822851  相似文献   

8.
A space-borne hard X-ray collimator, comprising 91 pairs of grids, has been developed for the Hard X-ray Imager(HXI). The HXI is one of the three scientific instruments onboard the first Chinese solar mission: the Advanced Space-based Solar Observatory(ASO-S). The HXI collimator(HXI-C) is a spatial modulation X-ray telescope designed to observe hard X-rays emitted by energetic electrons in solar flares.This paper presents the detailed design of the HXI-C for the qualification model that will be inherited by the flight model. Series tests on the HXI-C qualification model are reported to verify the ability of the HXI-C to survive the launch and to operate normally in on-orbit environments. Furthermore, results of the X-ray beam test for the HXI-C are presented to indirectly identify the working performance of the HXI-C.  相似文献   

9.
Three transit events of HAT-P-8 were observed by using the 1 m telescope of Yunnan Observatory and the 2.4 m telescope of Lijiang Astronomical Station in 2009 and 2012, respectively. The observational data are reduced with the coarse de-correlation and SysRem algorithms in order to improve the signal to noise ratio of the transit signals. The MCMC (Markov Chain Monte Carlo) technique is applied to analyzing the three transit light curves simultaneously, then the new parameters of the HAT-P-8 system are derived. The new value of the radius of HAT-P-8b is smaller than that given by Latham et al., while it is consistent with the value derived recently by Mancini et al. By linear ?tting on the 23 high-precision mid-transit times, the orbital period of HAT-P-8b is re?ned as P =3.0763461±0.0000021 d, and from the (O − C) analysis no obvious TTV (Transit Timing Variation) signal has been detected.  相似文献   

10.
硅微条探测器空间分辨率高、工作性能稳定, 广泛地应用于空间高能粒子探测领域. 如费米gamma射线空间望远镜(Fermi Gamma-ray Space Telescope, FGST)以及阿尔法磁谱仪(Alpha Magnetic Spectrometer 2, AMS-02)的径迹探测器中都采用了高位置分辨率的硅微条探测器. 基于硅微条探测器在空间观测领域的应用前景, 针对硅微条探测器单元设计了一套低噪声的电子学读出系统. 整个电子学系统分为前端电子学、数据获取电路和上位机软件. 前端电子学为提高集成度, 采用了一款电荷读出芯片VATAGP8, 实现了多通道、低噪声的电荷信号测量; 数据获取电路使用现场可编程门阵列(Field Programmable Gate Array, FPGA)实现了对前端电子学的时序控制以及对测量信号的采集控制; 上位机用来接收、处理数据获取电路采集的信号数据. 在对电子学通道的线性、基线、噪声等性能进行测试之后, 得到系统在0--200fC电荷输入范围内的线性增益约为13.41bin/fC, 积分非线性小于1%, 噪声小于0.093fC. 为了验证电子学读出系统对硅微条探测器单元的读出能力, 将两者集成在一起并测试了宇宙线缪子的能量沉积, 得到读出电子学系统的信噪比大于32, 缪子的电离损失能谱与Landau-Gaussian分布符合较好, 能够满足硅微条探测器单元读出电子学的设计要求.  相似文献   

11.
We present the spectral analysis system for the second-generation energetic X-ray imaging telescope experiment (EXITE2) balloon payload. EXITE2 is an imaging hard X-ray telescope using a coded-aperture mask and a NaI/CsI phoswich detector operating in the energy range 20–600 keV. The instrument was flown on a high-altitude scientific balloon from Ft. Sumner, NM on 7–8 May, 1997. We describe the details of the EXITE2 spectral analysis system, with emphasis on those aspects peculiar to coded-aperture instruments. In particular, we have made our analysis compatible with the standard X-ray spectral fitting package by generating a response matrix in the appropriate format including all the effects of a coded-aperture system. The use of , which may be a first for coded-aperture data, permits great flexibility in the fitting of spectral models. The additional effects of our phoswich system, or any other detector-specific considerations, may be easily included as well. We test our spectral analysis using observations of the Crab Nebula, and find that the EXITE2 Crab spectrum is consistent with those recorded by previous instruments operating in this energy range.  相似文献   

12.
Modern astronomical spectroscopy makes use of multi‐aperture slits placed in the focal plane of telescopes before light enters the spectrograph. Multiple object spectroscopy (MOS) allows several spectra to be obtained simultaneously with a multiplexing gain from the order of dozens of objects in 4m class telescopes to few hundreds in larger 8 m telescopes. Many of these devices make use of metal plates which are punched, milled or laser cut and can be used only for observation of a given astronomical target. A typical observing night requires from 4 to 20 MOS masks, which have to be prepared during an off‐line procedure, usually days before. Here we report an innovative technique to carry out multi object spectroscopy based on changes of properties of photochromic materials. Photochromic MOS masks consist of polymer thin films which can be made opaque or transparent in a restricted wavelength range using alternatively UV and visible light. Slit patterns can thus be easily written by means of a red diode laser on a UV preflashed plate. Writing time for a 10 × 10 arcmin plate is a few minutes and the whole procedure can be performed promptly after the acquisition of the field image and without mechanical debris as in milling or laser cutting. A computer controlled writing device suited for the AFOSC camera of the Asiago 1.8m telescope was built. The same focal plane mask can be UV erased and used more than 450 times. High contrasts have been reached by means of an appropriate passband filter in the light beam of the spectrograph. Our first successful observation run took place in January 2003. Spectra of selected stars in the crowded M67 cluster field and emission lines from the gaseous planetary nebula M97 were obtained. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The China Near Earth Object Survey Telescope is the largest Schmidt telescope in China, and it has acquired more than 3 TB astronomical image data since it saw the ?rst light in 2006. After the upgrade of the CCD camera in 2013, over 10 TB data will be obtained every year. The management of the massive images is not only an indispensable part of data processing pipeline but also the basis of data sharing. Based on the analysis of requirement, an image management system is designed and implemented by employing the non-relational database.  相似文献   

14.
A high‐order Adaptive Optical (AO) system for the 65 cm vacuum telescope of the Big Bear Solar Observatory (BBSO) is presented. The Coudé‐exit of the telescope has been modified to accommodate the AO system and two imaging magnetograph systems for visible‐light and near infrared (NIR) observations. A small elliptical tip/tilt mirror directs the light into an optical laboratory on the observatory's 2nd floor just below the observing floor. A deformable mirror (DM) with 77 mm diameter is located on an optical table where it serves two wave‐front sensors (WFS), a correlation tracker (CT) and Shack‐Hartman (SH) sensor for the high‐order AO system, and the scientific channels with the imaging magnetographs. The two‐axis tip/tilt platform has a resonance frequency around 3.3 kHz and tilt range of about 2 mrad, which corresponds to about 25″ in the sky. Based on 32 × 32 pixel images, the CT detects image displacements between a reference frame and real‐time frames at a rate of 2 kHz. High‐order wave‐front aberrations are detected in the SH WFS channel from slope measurements derived from 76 sub‐apertures, which are recorded with 1,280 × 1,024 pixel Complex Metal Oxide Semiconductor (CMOS) camera manufactured by Photobit camera. In the 4 × 4 pixel binning mode, the data acquisition rate of the CMOS device is more than 2 kHz. Both visible‐light and NIR imaging magnetographs use Fabry‐Pérot etalons in telecentric configurations for two‐dimensional spectro‐polarimetry. The optical design of the AO system allows using small aperture prefilters, such as interference or Lyot filters, and 70 mm diameter Fabry‐Pérot etalons covering a field‐of‐view (FOV) of about 180″ × 180″.  相似文献   

15.
The new échelle spectrograph FLECHAS (Fibre Linked ECHelle Astronomical Spectrograph) is in operation at the Nasmyth‐focus of the 0.9 m telescope of the University Observatory Jena. FLECHAS is equipped with a sensitive back‐illuminated and midband coated CCD‐detector, as well as with a calibration unit for flatfield and wavelength‐calibration. The spectrograph covers the spectral range between about 3900 and 8100 Å and exhibits a resolving power of R ∼ 9300. In this article all technical characteristics of FLECHAS are described and examples of the first astronomical observations obtained with the new instrument in July 2013 at the University Observatory Jena are presented, among them the first light spectra taken with FLECHAS, simultaneous imaging and spectroscopic observations, the determination of the detection limit of the instrument, the spectroscopy of stars of different spectral types and of faint extended objects, as well as the Li‐line detection in the spectra of young solar‐like stars. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
An interferometric astrometric mission, aiming at accuracies at around the10 microarcsec level, was recommended as a high priority concept within thenew ESA Horizon 2000+ scientific programme. The original outline concept forsuch a mission, GAIA, presented its general feasibility but did not addressmany questions of implementation or optimisation. Another concept of aninterferometer for a scanning astrometric satellite is presented. It containsa simpler optical telescope and a more efficient detector system. The designutilizes the full resolution of all light in the dispersed fringes of aFizeau interferometer. A preliminary optimization of the satellite indicatesthat two telescope units with a baseline of 100 cm will achieve a precisionof 3, 8, 22, 68, 302 microarcsec for parallaxes of stars with V = 12, 14, 16, 18, 20 mag, respectively, from a 5 year mission. Simultaneousspectrophotometry of the entire spectrum of each star will be obtained with aresolution corresponding to intermediate band photometry. The expectedprecision of this photometry is about 0.003 mag for V = 16. The performance is good in crowded fields, at least up to one star per 5 arcsec2. A Hipparcos-type beam combiner of 150 cm width is placed in front of atelescope with 4 square apertures of 50 cm. The assumed focal length is f = 60 m and the field 0.5 degree diameter. The detector consists of CCDs used for time delayed integration (drift-scan.)  相似文献   

17.
The NST (New Solar Telescope), a 1.6 m clear aperture, off‐axis telescope, is in its commissioning phase at Big Bear Solar Observatory (BBSO). It will be the most capable, largest aperture solar telescope in the US until the 4 m ATST (Advanced Technology Solar Telescope) comes on‐line late in the next decade. The NST will be outfitted with state‐of‐the‐art scientific instruments at the Nasmyth focus on the telescope floor and in the Coudé Lab beneath the telescope. At the Nasmyth focus, several filtergraphs already in routine operation have offered high spatial resolution photometry in TiO 706 nm, Hα 656 nm, G‐band 430 nm and the near infrared (NIR), with the aid of a correlation tracker and image reconstruction system. Also, a Cryogenic Infrared Spectrograph (CYRA) is being developed to supply high signal‐to‐noise‐ratio spectrometry and polarimetry spanning 1.0 to 5.0 μm. The Coudé Lab instrumentation will include Adaptive Optics (AO), InfraRed Imaging Magnetograph (IRIM), Visible Imaging Magnetograph (VIM), and Fast Imaging Solar Spectrograph (FISS). A 308 sub‐aperture (349‐actuator deformable mirror) AO system will enable nearly diffraction limited observations over the NST's principal operating wavelengths from 0.4 μm through 1.7 μm. IRIM and VIM are Fabry‐Pérot based narrow‐band tunable filters, which provide high resolution two‐dimensional spectroscopic and polarimetric imaging in the NIR and visible respectively. FISS is a collaboration between BBSO and Seoul National University focussing on chromosphere dynamics. This paper reports the up‐to‐date progress on these instruments including an overview of each instrument and details of the current state of design, integration, calibration and setup/testing on the NST (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The Coudé feed of the vacuum telescope (aperture D = 65 cm) at the Big Bear Solar Observatory (BBSO) is currently completely remodelled to accommodate a correlation tracker and a high‐order Adaptive Optics (AO) system. The AO system serves two imaging magnetograph systems located at a new optical laboratory on the observatory's 2nd floor. The InfraRed Imaging Magnetograph (IRIM) is an innovative magnetograph system for near‐infrared (NIR) observations in the wavelength region from 1.0 μm to 1.6 μm. The Visible‐light Imaging Magnetograph (VIM) is basically a twin of IRIM for observations in the wavelength range from 550 nm to 700 nm. Both instruments were designed for high spatial and high temporal observations of the solar photosphere and chromosphere. Real‐time data processing is an integral part of the instruments and will enhance BBSO's capabilities in monitoring solar activity and predicting and forecasting space weather.  相似文献   

19.
The central compact object for some gamma-ray bursts (GRBs) may be a strongly magnetized millisecond pulsar. It can inject energy to the outer shock of the GRB by through the magnetic dipole radiation, and therefore causes the shallow decay of the early afterglow. Recently, from a large number of GRB X-ray afterglows observed by Swift/XRT(X-ray telescope), it is revealed that many of them exhibit the shallow decay about 102∼104 s after the burst prompt emission. We have fitted the X-ray afterglow light curves of 11 GRBs by using the energy injection model of a magnetar with the rotation period in the millisecond order of magnitude. The obtained result shows the validity and universality of the magnetar energy injection model in explaining the shallow decay of afterglows, and simultaneously provides some constraints on the magnetic field strength and rotation period of the central magnetar.  相似文献   

20.
In astronomical observations at optical wavelengths, a fast image tracking system can be adopted to reduce the effects of the atmospheric seeing and telescopic tracking error, and therefore improve the observing efficiency. Aiming at the need of astronomical observations, totally 5 kinds of algorithms in two categories were selected to make a comparative study on their accuracies and stabilities under different noise conditions by both numerical experiment and laboratory test. The results indicate that the normalized cross-correlation method and barycenter method have not only a higher accuracy but also a better reliability against interferences, they will be applied to the high-resolution spectrograph of the Xinglong 2.16 m telescope and the scienti?c instruments of the SONG (Stellar Observations Network Group) project, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号